
CROSS ASSEMBLER, TEXT EDITOR, AND LINKAGE DEVELOPMENT:,

PERSONAL COMPUTER AND SDK-8S MICROCOMPUTER

A Thesis Presented to

The Faculty of the College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Hwa-Shing Chen;
~ if

June, 1983

ACKNOWLEDGEMENTS

I wish to express my gratitude to Professor Harold F. Klock

whose guidance makes this work possible. Thanks are also due to

my wife Wei-Li and my daughter Kaiting for their patience and

understanding throughout this work.

Finally, I want to express my great appreciation to my

parents for their spiritual support and encouragement.

CHAPTER

TABLE OF CONTENTS

PAGE

1. INTRODUCTION••••..••••••.••••••.•••••••••••••.•••••••..••..• 1

2. EXPANSION OF THE SDK-8S SYSTEM •••••••••••••••••••••••••.••.••.•• 6

2.1

2.2

Bas i c System•••••.••••••.••••••••••••.••••••••••••••.•••.•• 6

Expanded System ..••••..•.••.••••••••••••.••••••••••••...•.• 7

2.2.1

2.2.2

Expansion Driver Circuits •.....••.••••.•••••••.•..•• 7

External Expans;on .•••••••••.••.•••••.•••••••••..•.•9

3. DATA COMMUNICATION •••••••.••••••.•••••.•.••••.•••••••.••••..•.• 13

3.1

3.2

3.3

Hardware Design •••••.••••••••••••••••••.•••••••••••••••••• 13

Software Structure ••••••.•••••••••••••..•••.•••••••••.•..• 14

SDK-85 Communication Program •••••.••••••••.••••••••••••.•. 16

3.3.1

3.3.2

3.3.3

TRANSM Routine•.••••••••••••••••••••••••••••••••••. 19

RECEIV Routine•••••••••••••••••••••••••••••••••.••• 21

RUN Routine•.•••••••••••••••••••••••••••••••••••••. 24

3.4 OSI-C4PMF Communication Program •••••••.••••••••••••••.••.. 24

3.4.1

3.4.2

3.4.3

3.4.4

TRANSM Subroutine .••••••••••••••••••••••••••••.•••• 26

RECEIV Subroutine ••••••••••••••••••••••••••••••.••• 32

RUN Subroutine .•••••••••••••••••••.•••••••••.•••••• 32

RESET Subroutine ••••••••••••••••••••••••••••••••••• 3S

4. EXECUTIVE SYSTEM DEVELOPMENT ••••••••••.•••••••••••••••••..••••• 36

4.1

4 •.2

Disk Operating System of OSI-C4PMF •••••••••••••••••••••••• 36

Development Software and Its Executive Program •••••••••••• 36

5. EXTENDED MONITOR ••.•• 44

5.1 Overview••••••.••• 44

5.2

5.3

5.4

COlTITIand Format •• 46

Main Program Structure •••••••••••••..•••••••.••.•••••••••• 48

Data Communication Command Routines ••••••••••••••.•••••••• 50

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

DUMP Routine••••••••••••••••••••••••••••••••••••••• 51

GET Routine•• 51

RUN Routine•• 53

RESET Routine•••••••••••••••••••••••••••••••••••••• 54

LINK Routine••••••••••••••••••••••••••••••••••••••• 54

5.5 Display &Modification Command Routines ••••••••••••••••••• 56

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

5.5.6

EXAM and PRINT Routines •••••••••••••••••••••••••••• 56

SUBSTITUTE Routine••••••••••••••••••••••••••••••••• 57

INSERT Routine•.•••••••••••••••••••••••••••.••••••• 59

ERASE Routine••••••••••••••••••••••••••••••••••••••62

MOVE Routine••••••••••••••••••••••••••••••••••••••• 64

SEE/SET Routine•••••••••••••••••••••••••••••••••••• 66

5.6 File Maintenance Command Routines ••••••••••••••••••••••••• 68

5.6.1

5.6.2

5.6.3

5.6.4

SAVE Routine••••••••••••••••••••••••••••••••••••••• 68

LOAD Routine••••••••••••••••••••••••••••••••••••••• 70

CHAIN Routine•••••••••••••••••••••••••••••••••••••• 70

CREATE Routine••••••••••••••••••••••••••••••••••••• 72

5.7 Subroutines ••• 75

6. TEXT EDITOR •• 82

6.1

6.2

6.3

General Description •••••••••••••••••••••••••••••••••••••••82

Main Program Structure •••••••••••••••••••••••••••••••••••• 84

Non-File Mode Related Command Routines ••••••••••••••••••••86

6.3.1 INPUT Routine.~ •••••••••••••••••••••••••••••••••••• 88

6.3.2 LIST and PRINT Routines .•••••••••..••.•••.••••••••. 91

6.3.3 DELETE Routine•.•••••••••.••••••••••••••••••••••••. 93

6.4 File Mode Related Command Routines ••••••••••.••••••••••••. 95

6.4.1

6.4.2

6.4.3

6.4.4

NEW Routine•.••.•..•••••••..•••••••.•..••••••••.•.• 95

EXTEND Routine•••.•••••••••••••••••••••••••••••••.• 95

FILE Routine •.•••.•••••••••••••••••••••••••••.••••. 96

CALL Routine ••••••••••••••••••••••••••••••••••••..• 98

6.5 Subroutines •••••••••.••.••••••••••••••••••••••••••••••••. 100

7. 8080/8085 CROSS ASSEMBLER •.•••••••••••.•••••••••••••••••.••••. 107

7.1 Overview.••••••••••••.••••••••••••••••••••••••••••••••••. 107

7.1.1

7.1.2

7.1.3

7.1.4

System Description •••••••.•••••••••••••••••••.••.. 107

Des i gn Backgro un d•• •• • • •• . •109·

Syntax Fonnat••••••••••••••••••••••••••••••••••••• 110

Data Forms ••••••••••••.••••••••••••••••••••••..•.• 111

7.2 Main Structure ••••••••••••••••••••••••••••••••••••.•••••. !!2

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

The Initialization Procedure •••••••••••••••••••••• !13

The First Field Scan Procedure •••••••••••••••••••• 116

The Second Field Scan Procedure ••••••••••••••••••• 118

The Error Display Procedure ••••••••••••••••••••••• 120

The Ending Procedure •••••••••••••••••••••••••••••• 122

7.3 Instruction Translation •••••••••••••••••••••••••••••••••• 124

7.3.1

7.3.2

7.3.3

7.3.4

8080/8085 Opcode Organization & Manipulation •••••• 124

The One-byte Instruction Routine •••••••••••••••••• 125

The Two-byte Instruction Routine •••••••••••••••••• 127

The Three-byte Instruction Routine •••••••••••••••• 130

7.4 Directive Operation •••••••••••••••••••••••••••••••••••••• 130

7.4.1 ORG Operation •...•..••.••••••••••••••••••••••••••• 132

7.4.2 EQU Operation .•••••.•••••••••••••.•••••••••••••••• 132

7.4.3 OS Operation •••••••••••••••••••••••••••••••••••••. 134

7.4.4 OW Operation •••••••••••••••••••••••••••••••••••••• 134

7.4.5 DB Operation ••••••••••••••..•••••••••••••••••••••• 137

7.5 Subroutines •• 137

7.5.1

7.5.2

7.5.3

ISOLATE Subroutine •••••••••••••••••••••••••••••••• 140

GETDATA Subroutine •••••••••••••••••••••••••••••••• 140

POKWORD and POKEBYTE Subroutines •••••••••••••••••• 146

7.6 The Listing Program •••••••••••••••••••••••••••••••••••••• 148

8. SYSTEM OPERATIONS ••• 151

8.1 Initialization ••• 151

8.2 Edit Source File ••• 154

8.3 Assemble Source File ••••••••••••••••••••••••••••••••••••• 155

8.4 Operations of Extended Monitor••••••••••••••••••••••••••• 157

8.4.1

8.4.2

8.4.3

8.4.4

Insertion of an RET ••••••••••••••••••••••••••••••• 157

Save Object Code File ••••••••••••••••••••••••••••• 161

Load Program to SDK-85 for Execution •••••••••••••• 162

Get Result from SDK-85 •••••••••••••••••••••••••••• 163

8.5 Modify Program

9. SUMMARY AND FUTURE DEVELOPMENTS ••••••••••••••••••••••••••••••• 166

9.1 Sumnary •• 166

9.2 Future Developments •••••••••••••••••••••••••••••••••••••• 167

9.2.1

9.2.2

Double-Disk System Expansion•••••••••••••••••••••• 167

Hardwired Interrupt ••••••••••••••••••••••••••••••• 168

REFERENCES •• 170

APPENDIX

A. CROSS ASSEMBLER ERROR CODE INTERPRETATION •••••••••••••.•.••••• 171

B. SDK-85 DATA COMMUNICATION PROGRAM ..••••••••••••••••••••••••••• 172

C. OSI-C4PMF DATA COMMUNICATION PROGRAM ••.••••••••.•.•••••••••••• 176

D. ENHANCEMENT SYSTEM EXECUTIVE PROGRAM ••••.••••••••••••••••••••• 180

E. SDK-85 EXTENDED MONITOR PROGRAM ••••••••••••••••••••••••••••••• 181

F. TEXT EDITOR PROGRAM •••••••••••••••.•••.••••••••••••••••••••••• 187

G. 8085 CROSS ASSEMBLER PROGRAM .••••••••••••••••••••••••••••••.•• 191

H. ASSEMBLED FILE LISTING PROGRAM (SCRIBE) ••••••••••••••••••••••• 203

LIST OF FIGURES

FIGURE PAGE

1.1 SDK-85 Development System Functional Block Diagram ••••••••.•••• 4

2.1 SDK-85 Expansion Driver Circuit Diagram •••••••••••••••.•..•••••8

2.2 SDK-85 External Expansion Circuit Diagram •••••••••••••.••••..• l0

2.3 SDK-85 Expanded System Memory Map •••••••••••••••••••.••.•••••• 11

3.1 Flowchart for Main Program Structure of SDK-85 •••••••••••••••• 17

3.2 SDK-85 Command Table Structure •••••••••••••••••••••••••••••••• 18

3.3 Flowchart for Subroutine DATAIN ••••••••••••••••••••••••••••••• 20

3.4 Flowchart for Subroutine EMPTY •••••••••••••••••••••••••••••••• 20

3.5 Flowchart for SDK-85 Routine TRANSM ••••••••••••••••••••••••••• 22

3.6 Flowchart for SDK-8S Routine RECEIV ••••••••••••••••••••••••••• 23

3.7 Flowchart for SDK-85 Routine RUN •••••••••••••••••••••••••••••• 25

3.8 OSI-C4PMF Data Communication Program Memory Map ••••••••••••••• 27

3.9 Flowchart for OSI-C4PMF Subroutine BEGIN •••••••••••••••••••••• 28

3.10 Flowchart for OSI-C4PMF Subroutine CHKSUM •••••••••••••••••••• 29

3.11 Flowchart for OSI-C4PMF Subroutine SETUP ••••••••••••••••••••• 29

3.12 Flowchart for OSI-C4PMF Subroutine TRANSM •••••••••••••••••••• 31

3.13 Flowchart for OSI-C4PMF Subroutine RECEIV •••••••••••••••••••• 33

3.14 Flowchart for OSI-C4PMF Subroutine RUN ••••••••••••••••••••••• 34

3.15 Flowchart for OSI-C4PMF Subroutine RESET ••••••••••••••••••••• 34

4.1 OSI-C4PMF Disk Operating System Memory Map •••••••••••••••••••• 37

4.2 Disk Track Use Assignment ••••••••••••••••••••••••••••••••••••• 39

4.3 Overall Software Development Structure •••••••••••••••••••••••• 40

4.4 Flowchart for System Executive Program •••••••••••••••••••••••• 41

4.5 Flowchart for Executive Routines ••.••••••••••••••••••••••••••• 42

5.1 Memory Map for Extended Monitor ••••••.•••••••••••••••••••••••• 45

5.2 ·Command Summary for Extended Monitor •••••••••••••••••••••••••. 47

5.3 Main Program Structure of Extended Monitor•••••••••••••••••••• 49

5.4 Flowchart for Routine DUMP •••••••••••••••••••••••••••••••••••• 52

5.5 Flowchart for Routine GET ••••••••••••••••••••••••••••••••••••• 52

5.6 Execution Sequence of Routine RUN •.•••••••••••••••••••••••••.• 54

5.7 Execution Sequence of Routine RESET ••••••••••••••••••••••••••• 54

5.8 Flowchart for Routine LINK •••••••••••••••••••••••••••••••••••• 55

5.9 An Example for Displaying Form •••••••••••••••••••••••••••••••• 57

5.10 Flowchart for Routine EXAM and PRINT ••••••••••••••••••••••••. 58

5.11 Flowchart for Routine SUBSTITUTE ••••••••••••••••••••••••••••• 60

5.12 Flowchart for Routine INSERT ••••••••••••••••••••••••••••••••• 61

5.13 Flowchart for Routine ERASE •••••••••••••••••••••••••••••••••. 63

5.14 Flowchart for Routine MOVE ••••••••••••••••••••••••••••••••••• 65

5.15 Flowchart for Routine SEE/SET •••••••••••••••••••••••••••••••• 67

5.16 Flowchart for Routine SAVE •••••••••••••••••••••••••.••••••••• 69

5.17 Flowchart for Routine LOAD ••••••••••••••••••••••••••••••••••• 71

5.18 Flowchart for Routine CHAIN •••••••••••••••••••••••••••••••••• 73

5.19 Flowchart for Routine CREATE ••••••••••••••••••••••••••••••••• 74

5.20 Flowchart for Subroutine PARSE ••••••••••••••••••••••••••••••• 77

5.21 Flowchart for Subroutine SCAN •••••••••••••••••••••••••••••••• 78

5.22 Flowchart for Extended Monitor Subroutine DISPLAY •••••••••••• 79

5.23 Flowchart for Subroutine GETFILE •••••••••••••••••••••••••••••80

5.24 Flowchart for Subroutine SHOW•••••••••••••••••••••••••••••••• 81

5.25 Flowchart for Subroutine CALCPAGE ••••••••••••••••••••••••••••81

6.1 Command Summary for Editor •.•••••••••••••••••••••••••••••••••• 85

6.2 Flowchart for Editor Main Program Structure •••••••••••••••••••87

6.3 Flowchart for Routine INPUT ••••..•••••••••••••••••••••.••••••• 89

6.4 Flowchart for Routine LIST and PRINT •••••••••••••••••••••••••• 92

6.5 Flowchart for Routine DELETE ••••.••••••••••••••.••••••••••••.• 94

6.6 Flowchart for Routine FILE •••••••••••••••••••••••••••••••••••. 97

6.7 Flowchart for Routine CALL •.••••••••••••••••••••••••••••••.••. 99

6.8 Flowchart for Subroutine SHRINK •••••••••••••••••••••••••••••• 102

6.9 Flowchart for Subroutine RECQVER ••••••••••••••••••••••••••••• 103

6.10 Flowchart for Subroutine PUTID •••••••••••••••••••••••••••••• 104

6.11 Flowchart for Subroutine DISPLAY •••••••••••••••••••••••••••• 104

6.12 Flowchart for Subroutine STEND •••••••••••••••••••••••••••••• 105

6.13 Flowchart for Subroutine GETPOSITION •••••••••••••••••••••••• 106

7.1 The Assembler Workspace Memory Map ••••••••••••••••••••••••••• 108

7.2 Flowchart for Build Tables ••••••••••••••••••••••••••••••••••. 108

7.3 The Standard 8080/8085 Assembler Delimiters •••••••••••••••••• 111

7.4 Flowchart for The Initialization Procedure ••••••••••••••••••• 114

7.5 Flowchart for The First Field Scan Procedure ••••••••••••••••• 116

7.6 Flowchart for The Second Field Scan Procedure •••••••••••••••• 119

7.7 Flowchart for The Error Display Procedure •••••••••••••••••••• 121

7.8 Flowchart for The Ending Procedure ••••••••••••••••••••••••••• 123

7.9 The Register Array and Register-pair Array••••••••••••••••••• 124

7.10 Base Opcodes &Arithmetic Expression Table for Register-

related Instructions •• 126

7.11 Flowchart for One-byte Instructions Translation ••••••••••••• 128

7.12 Flowchart for Two-byte Instructions Translation ••••••••••••• 129

7.13 Flowchart for Three-byte Instructions Translation ••••••••••• 131

7.14 Flowchart for ORG Operation ••••••••••••••••••••••••••••••••• 133

7.15 Flowchart for EQU Operation ••••••••••••••••••••••••••••••••• 135

7.16 Flowchart for DS Operation ••••••••••••••••••••••••••••••.••• 136

7.17 Flowchart for DW Operation •••••••••••••••••••••••••••••••••• 138

7.18 Flowchart for DB Operation •••••••••••••••••••••••••••••••••• 139

7.19 Flowchart for Subroutine ISOLATE •••••••••••••••••••••••••••. 141

7.20 Flowchart for Subroutine GETDATA •••••••••••••••••••••••••••• 142

7.21 Flowchart for Arithmetic Operation •••••••••••••••••••••••••• 143

7.22 Flowchart for ASCII Operation ••••••••••••••••••••••••••••••• 144

7.23 Flowchart for Hex Operation ••••••••••••••••••••••••••••••••• 145

7.24 Flowchart for Binary Operation •••••••••••••••••••••••••••••• 145

7.25 Execution Sequence of Subroutine POKEBYTE ••••••••••••••••••• 146

7.26 Flowchart for Subroutine POKWORD •••••••••••••••••••••••••••• 147

7.27 Generalized Flowchart for File Listing Program SCRIBE ••••••• 149

8.1 An Example Program ••• 152

8.2 Source File of the Example Program ••••••••••••••••••••••••••• 152

8.3 Listing File of the Example Program •••••••••••••••••••••••••• 158

CHAPTER 1 INTRODUCTION

In recent years, user-assembled computer kits have been widely

used in schools. These single board computers contain all components

required for basic system operation. The simplicity and flexibility

make these computers well-suited for student experiments and simple

user applications. However, minimal capabilities of these kits

restrict system operation. The purpose of this thesis is to upgrade

the SDK-85, MCS-85 System Design Kit, and thereby provide a working

model for similar small system enhancement.

The SDK-85 basic system contains one page (256 bytes) of RAM

memory and an 8085A microprocessor operating at a 3MHZ system clock.

A built-in system monitor, a 6-digit LED display, and a 24-key keypad

help the user to enter a machine code program and operate the system.

On the prototype circuit board, a large wire-wrap area provides the

capacity for system expansion and development. Like most of the

simple microcomputer learning systems, the SDK-a5 lacks the ability

to process the symbolic language, and to manage the user files. The

user must assemble his program and then enter the hexadecimal machine

codes directly through the keypad every time. Due to these

inefficiencies and inconveniences, enhancement of the SDK-85 operating

capability is the objective of this project.

Development of a resident assembler and file management system

requir~ both extensive hardware and software expansion. Besides the

editor/assembler and the file management software programming, other

additional supporting developments may include ROM/RAM memory

1

2

expansion, ASCII keyboard input handling, video display circuitry

implementation, and floppy disk operating system design. In order to

maintain the simplicity and flexibility of the SDK-85, the cross

assembling scheme is adopted, instead of resident assembly. This

means the SDK-a5 enhanced operation is accomplished through the

assistance of a complete computer as a host system. The

editor/assembler and the file management programs for the SDK-a5 are

developed by using the existing facilities in the host system.

Through the data communication channel, the host system is able to

interchange information with the SDK-aS, and command the SDK-aS to

execute a specified program. In this way, only minor memory

expansion and a data communication development are needed to let the

SDK-85 perform any functi on ordered by the host system.

In this project, the 05I-C4PMF (former Ohio Scientific Inc.)

microcomputer is selected to perform the role as the host system.

The OSI-C4PMF is a 24K RAM machine based on the 6502 microprocessor

with two serial ports and two parallel ports. One serial port is

used to interchange data with the SDK-SS, and send data to printer.

The parallel ports are not used. Two floppy disk drives offer a

total of 160K bytes of storage capaci ty for thi s system. In the

system's firmware only a small monitor program and a DOS booting

routine are provided. The disk operating system, 05-65 DOS, and the

BASIC 1anguage i nterpreter are loaded from di sk to RAM 1ocati ons by

user's. request. To take advantage of DOS, a software development

system for the SDK-aS is designed and operated in the OSI-C4PMF.

The SDK-aS software development system created in this project

3

includes a Text Editor program, an 8085 Cross Assembler program, an

SDK-85 Extended Monitor program, and a group of 6502 assembly

language subroutines called by the extended monitor for data

communication. Except for these assembly language subroutines, the

programs are written in the BASIC language. Each of these BASIC

programs is loaded from disk to workspace of the OSI-C4PMF by proper

menu selection.

Figure 1.1 explains the overall system operation in functional

block diagram form. Through the assistance from the system, the user

is able to edit the 8085 assE~mbly language source file by using the

Text Editor, and is able to call the Assembler to translate this

symbolic language to an 8085 machine code program. The object code

file generated by the Assemb~er then can be allocated to the SDK-85

memory locations by the Extended Monitor. The Extended Monitor not

only performs the Loader function, it also offers the data

modifications and disk file maintenance capabilities which are not

available in the SDK-85 resident monitor. A memory buffer managed by

the Extended Monitor simulates any 2K range of the SDK~85 memory.

The user may order the Ext€lnded Monitor to copy a block of memory

contents of the SDK-a5 into the memory buffer for modification or

filing. Therefore, the user is able to enter, debug, and save his

program more efficiently.

The structure and algorithm of each hardware/software

implementation are detailed in the chapters to follow. Chapter 2

presents the memory expansion and data communication hardware

implementation on the SDK-8S system circuit. Chapter 3 depicts the

T
E

X
T

ED
IT

O
R

80
85

CR
O

SS
A
O
O
~
6
n
T

1"
:'

.l
'l.

vw
.c

.&
.Y

J.
.D

J,
.,.

C
,

D
IS

PL
A

Y
&

O
D

IF
IC

A
TI

O
N

S

D
A

T
A

OM
M

UN
IC

AT
IO

N
i

/

F
IL

E
M

AI
NT

EN
AN

CE

SD
K

-8
5

o

FI
G

U
RE

1.
1

SD
K

-8
S

D
ev

el
op

m
en

t
S

ys
te

m
F

u
n

ct
io

n
al

B
lo

ck
D

ia
gr

am

~

5

hardware/software design of thl~ data communication between the SDK-85

and the OSI-C4PMF. It also explains the execution procedure of each

assembly language communication routine of both systems. Chapter 4

highlights the overall linkage of the software developed and executed

in the OSI-C4PMF. Chapter 5, 6, and 7 describe the program logic for

the Extended Monitor, the Text Editor, and the Assembler

respectively. Chapter 8 uses a typical example to demonstrate the

operation and performance of this development system. Chapter 9

summarizes what has been accomplished and what possibilities still

exist for improvement. Appendix A provides the explanation on the

Assembler error code messages. Seven other appendixes document those

developed programs in source listing form.

CHAPTER 2 EXPANSION OF THE SDK-8S SYSTEM

2.1 Basic System

The SDK-85 is a simple microcomputer system based on the Intel

8085A microprocessor. In addition to the 3MHZ 8085A CPU, this

on-board system also includes the following devices:

8355 2K ROM with I/O

8155 256 Byte RAM with I/O Ports & Timer

8205 3 to 8 Decoder

8279 Programmable Keyboard/display Interface

Hexadecimal Keypad/display Circuit

TTY Interface Circuit

The SDK-85 monitor program resides in 8355 ROM memory, from

hexadecimal location 0000 to location 07FF. It provides utility

functions employing either a teletypewriter, terminal, or the

on-board keypad. Only one page of RAM is provided by. the 8155 for

user programming. This RAM can be addressed at locations 2000 to

27FF. One page of 8155 RAM thus occupies eight pages of mapped

memory. Multiple copies of RAM are due to incomplete decoding of the

8155.

On the circuit board, prototype space is allocated for additional

8355/Q755 expansion ROM and 8155 RAM. For further enhancement of the

basic system, an optional expansion driver area is provided. This

may not be addressed by the 8205, but affords space for 8212 latches
6

1

and 8216 buffers for drivi'ng auxil iary systems. The optional

expansion drivers leading to the board's prototyping area are enabled

only over the address range 8000-FFFF.

2.2 Expanded System

As described in the previous section, the fundamental system

does not have enough memory space to accommodate the complete

development program. Therefore, a minimal hardware expansion is

required.

In order to be more flexible in further developments, the method

of expanding optional driver area was adopted. By installing two

8212 address latches and five 8216 buffers in the appropriate board

position, the external decoding circuit and external memory devices

could be developed in the wire-wrap area.

2.2.1 Expansion Driver Circuits

The circuit layout of the expansion driver area was already

designed and printed by the manufacture in the upper right region of

the SDK-85 circuit board.

One 8212 latch is empl oyed for address/data bus demultiplexing

(DAO-DA7). Another 8212 buffers the unmultiplexed half of the address

(A8-A15), and five 8216 drivers,' buffer the data bus and control

signa~s. All buffered I/O buses are connected to the external

cf rcutts through the bus expanston connectors Jl and J2. A compl eted

circuit diagram of this expansion driver area is duplicated in Figure

2.1.

~
,
.

..0
..0

FI
G

U
R

E
2

.1
S

D
K

-8
S

E
x

p
an

si
o

n
D

ri
v

e
r

C
ir

e
u

it
D

ia
g

ra
m

I

O
-\

Q
M

I
e

R
O

I
e
-W

R
I

eo
·..

\",.
.

e
-
~
C
£
T

~
-
'
-
'
-
H

e
'"

5
L

e
-
~
0

e
·H

L
O

-
e

-I
N

T
A

/

e·
O

Q
r

e
o

r
e

·0
2

B
'
D
~

C
·L

:)
4

e
-
D

&
e

·Q
o

e
-D

7

e
·
~

e
a
'A

l
~
.
A
2
.

e
·
,
,
~

~
..-

-..
e

·A
£

.
e
·
~

e
·
~
.
,

a
·
"
~

0-
""

e
-I

I\
IO

0
'.

,1

~
:
~
l
~

~
A
I
~

e
"''.:

1 co

9

As can be observed in the circuit diagram, the address line A15

must be high (logic 1) to enable the 8216 data bus buffer/drivers.

This allows the bus expansion drivers to be enabled only when the

upper 32K memory locations (8000-FFFF) are addressed.

Since no external interrupt is used, the input pins for RST 6.5,

INTR, and HOLD are disabled by fixing the corresponding jumpers to

ground. If later developments require any of these external inputs,

Chapter 3 of the SDK-85 User's Manual should be reviewed.

2.2.2 External Expansion

The external expansion circuits are located on the upper left

hand side of the SDK-85 circut t board. This also identifies the

wire-wrap area. Circuitry he....e interfaces to the basic system via

connectors Jl and J2. Thus, the external expansion circuits may be

di vided into two categori E~S, extended memory, and a data

communication circuit. An off-board 74138 address decoder enables

the applicable component. Figure 2.2 shows the external expansion

circuit diagram.

The external expansion nemory components incl ude a 2716 2Kx8

EPROM and two 2114 1Kx4 static: RAM chips. Like the original system,

each output from the external address decoder enables a 2K block of

addresses. The 2716 EPROM is addressed from 8000 to 87FF in absolute

addressing. ·The 2114's are mapped at 9000-93FF in the lowest access

ranqe, and a dupl i cate res; des at 9400-97FF in the h; ghest access

range. Figure 2.3 presents the SDK-85 memory map after expansion.

The data cOnJ11unication circuit is composed of an MC6850 ACIA

~ o
FI

G
U

R
E

2
.

2
S

D
K

-8
5

E
x

te
rn

a
l

E
x

p
an

si
o

n
C

ir
c
u

it
D

ia
gr

am

·~
-I

SV
?'

Sr
b

+5
'-

'
~

f
I;

1/
/3

III
~5

Ib
/7

I/
i

J.B
/4-

8
12

.
II

IfI
J

"8
1/1

.
13

IZ
H

I'
13

22
Z

lt
J

rt
18

17
16

/5
"i!J

t
O

Jl
IJ

I,
,1

.O
J

O
fO

G
~

O
?

O
f

-'et
.V

o,
~O
l
~

1tJ
,.

WE

t-
~
c

-Vo
,l

tb
.p

O
J~
u
i
E

RI
W

P
ID

I»
1.

'3
J)

4.
1)

)
0

'l
Y

l
,z.

2'1
-

Ve
e.

-t-
qN

D
fitJ

D
~

~
G

~
W
~

12
QH

O
27

16
EP

RO
M

21
14

RA
M

21
14

RA
M

..
.-

..
-i

.c
s;

68
50

A
C

IA
iiC

i2
3

tS
T

.-r
C

lIW
III

M
A

3I
1U

S
"1

lO
1I

7f
flf

/f
1M

-
t

as
--

Lc
s

l~
C

51
CT

.S
A

-=-
..

~
N

II'
A1

.1
t~

It
fI

,M
'1

t'
1I

7f
f1
~

It.
J

fI
,J

f'i
IU

0"
'4

.11
A

lA
,

RS
CS

2.
~
C
X

be
l<

Jx
D

TX
D

-:
=

,-
S

'

'V
a;

'I
~S

8
1

,
IS

f
3

2.
'l2

J
22

19
~

6
1

4-
a

z
I

~t
J
~,
ll
5'

l5-
,
7
~

3
2

1
1

7
16

15
"

4-
~J

'l
L

J3
2.

I'
.J

'~
_'

-
y,

~
T

"4
1

74
1}

8
~
~

lS
i'
"
~

y
,
~

--
--

!-
A

)'1
/3

-
'tS

"T
-
2
H
3
?
~
/
1
C

<
-A

8
"11

HJ
.

~
c

il
I~

(il
l/)

lL6
.

A
3

VC
e;

E
l.E

3
E

l
".

':
..

z
p

aa
~

6
.L

1J
~

T
14

16
3

c
-s

r
-

12.
"
'J

cy
D
~

a
If

LO
fIO

r,N
D

~
eX

~
~

_
2.

e:
-

2.
I

I')
+

5
'

2
,

~
Vc

e
ex
:
~

r I J

~
74

16
3

r ~
c
~
;
5
"

7
~
C
'
l

~
~

5 !
'I

LO
IID

'- ~- 1
-

A A It If It A If ,. A A A
I, A
I

A
I

11 It, 'N
,D J) D D 1) 1:J
.

:I
J

D
;

RO lO
~ e

2116 m~ERNAL EPROM

11

1
()PEN

I/O ~~p ACIA

2114 E)(TERNAL RAM

EXTERNAL 1~ (DUPLICATE)

FFFFl
9800 t-----------------.......
97FF

9400
~---------------.......93FF

9000
8FFF 1------------------...

8800 1---------------------18m

8000 1-----------------....
7FFF

()PEN

EXPANSION RAM (DUPLICATE)

'-
'-r'

3000 ~----------------129FF

2900 1---------------128FF
EXPANSION RAM (8155)

8155 BA.SIC RAM

2800 1-- --1

27FF
BASIC FtAM (DUPLICATE)

2100 1-------------------120FF

2000 1-----------------......1FFF

KEYPAD/DISPLAY LOCATIONS

1800 1--------------------117FF

OPEN

1000 J-o.-------------------1OFFF

p..

S
(,)

lr\o
Nco

EXPANSION :ROM (8355/8755)

0800 1-------------------107FF
8355 MONIT~)R ROM

0000

FIGURE 2.3 SDK-85 Expanded System Memory Map

12

(Asynchronous Communications Interface Adapter), two 74163 4-bit

Presettable counters, a 7400 quad 2-input NAND gate, and a 7404 hex

inverter. As noted in Figure 2.2, the 6850 ACIA is addressed by I/O

mapping instead of memory mapP'ing. Two I/O addresses, 8E and 8F, are

assigned to the ACIA Control/status register and Transmit/receive

register respectively. The 3MHZ system clock is divided by cascaded

74163's in order to generate a 19.23KHZ clock for the ACIA. This

clock will be devided by 16, in programming the ACIA, to obtain the

1200 baud rate.

CHAPTER 3 DATA COMMUNICATION

3.1 Hardware Design

The data communication link between the SDK-85 and the OSI-C4PMF

is an asynchronous, serial data handler which transmits or receives

data bytes at a fixed rate of 1200 baud (1200 bits per second). Two

ACIA·s (Asynchronous Communication Interface Adapters), Motorola

6850·s, were used to perform this task. One of 6850·s was already

part of the original OSI-C4PMF I/O circuitry. The other 6850 was

added to the external expansion board of the SDK-85 system, and is

the ACIA of interest in this section.

The added ACIA handles serial data communication at a rate of

1200 baud. This means the ACIA transmits or receives one byte of data

bit by bit, as eight data bits. The 8 bits are preceded by one start

bit and followed by one stop bit. Each byte requires approximately

8.33 ms to transmit all bits. This is much slower than the

instruction execution time of E~ither microcomputer system. For this

reason, the handshaking between the two systems during communication

can be implemented by software rather than hardware. However, before

the software handshak i ng takes over , the hardware must be ready. Both

ACIA RTS (Request-To-Send) output pins are connected to each other's

CTS (Clear-To-Send) input pins in order to perform hardware

handshaking for the System-ready signal. When both ACIA's are-ready,

the software takes over.

As mentioned in Chapter 2, the 8085 CPU, of the SDK-85 system,

pro~;des 256 bytes of I/O dedicated memory. Two of these I/O memory
13

14

locations are assigned to the ACIA. Hexadecimal address 8E is the

Control/Status register, and address 8F is the Transmit/Receive

register. Because the~e memory locations can be accessed like an I/O

port, they can be both written to or read from. That means each

location performs the function of two registers.

Since the MC6850 was developed mainly for direct interfacing

with the 6800 and 6500 series microprocessors, it is necessary to add

gati ng for its i nterfaci ng \t,'; th the 8085-based system. As pictured

in Figure 2.2, the input signal (E) for enabling the I/O data buffer

is gi ven by NANDi ng the RD: and WR output pi ns of the 8085 CPU to

generate an active-low s i qnal for reading from or writing to the

ACIA. The R/W input pin of the ACIA is connected to the WR output

pin of the 8085 to determine the direction of ACIA data flow.

The clock circuitry, as shown in Figure 2.2, is implemented by

two cascaded 74163 presettable counters, which divide the SDK-85 3MHZ

system clock by 156 to generate 19.23KHZ for the ACIA. This clock

input will be divided by 16, in programming the ACIA, in order to get

1.2KHZ for the actual data clock.

Refer to Figure 2.2 detailing the complete data communication

circuit diagram.

3.2 Software Structure

The real-time data communication software in both OSI-C4PMF and

SDK-8S are written in the corresponding machine language. The user

controls these machine language programs through an OSI-C4PMF BASIC

language program called Extended Monitor, which is detailed in

15

Chapter 5. For communication structure, the OSI-C4PMF is the host

system which gives a command and/or initialization information to the

slave system, SDK-85.

Four commands, TRANSMIT, RECEIVE, RUN, and RESET were developed

for communication between the OSI-C4PMF and the SDK-85. TRANSMIT and

RECEIVE are employed to interchange data between two systems. RUN

orders a specified SDK-a5 program to be executed. And RESET

terminates the data communication channel.

Each comnand t s represented by an ASCII character. When the

OSI-C4PMF user issues a communication command to the BASIC language

program (Extended Monitor), the OSI-C4PMF transfers the execution

control to the proper 6502 machine language subroutine. First, the

software tests the hardwired handshaking line. A warning message

will be returned to BASIC, if the SDK-85 is not ready. Otherwise the

corresponding ASCII command byte is sent to SDK-85. Upon recognizing

this ASCII encoded command, the SDK-85 transmits the same ASCII byte

back to OSI-C4PMF for conmand veri fi cati on. No further i nformati on

is sent, unless that command is verified by OSI-C4PMF.

Except for RESET , the other three functi ons requi re the

OSI-C4PMF to provide fur-ther information to the SDK-85. RUN needs

the OSI-C4PMF to supply the starting address of the specified

program. TRANSMIT and RECEIVE require not only the starting address

for initializing a SDK-aS data location pointer, but also the length

of data string for setting up a byte counter.

Both systems accumulate the checksum when each data byte is

transmitted or received. After completion of data transmission, the

16

checksum maintained by SDK-8S is sent to OSI-C4PMF for checksum

verification. The error status is returned to the BASIC calling

program, and translated to a proper message for prompting the user.

3.3 SDK-8S Communication Program

The algorithm for this 8085 machine code program, which accepts

commands from the OSI-C4PMF host system and executes the specified

command routine, can be viewed in the generalized form shown in

Figure 3.1.

After turning the SDK-85 power on, hardware initialization is

necessary in order to transfer control to this communication program

which resides at SDK-85 starting location 8227 (hexadecimal). At the

beginning of this program, the ACIA undergoes reset. This is

followed by a program sequence which writes to the ACIA Control

register specifying 10 bits per' data byte (1 start bit + 8 data bits

+ 1 stop bit), divide-by-16 mode and low output state on the RTS

(Request-To-Send) pin. The purpose of this low output state is to

indicate that the SDK-85 is ready. Next, a small routine

repetitively checks the status of the communication link between the

OSI-C4PMF and the SDK-85. When the OSI-C4PMF is ready to transmit,

the routine is exited.

The next step in program execution is that of waiting for an

input cOlTJnand. This is also. the re-entry point for most of the

command routines when previous commands have been executed. After an

input byte is received, the comnand recognition routine compares this

input to the contents of the command table, as shown in Figure 3.2.

17

(STARr

[OSI

~Yait Command

31

(STOP

fGet Entry
~ddress

F Execute
L:.:0DlD Routine

fl:m. t Counter
~: Pointer

Decrement
Counter

N End of------... Table?

Skip Next...--...
2 Bytes

* •RUNt WITHOur RErURN

ADDRESS p OR •RES:m' t

COMMAND

FIGURE 30 1 Flowchart for Main Program Structure of SDK-8S

82C9

82CA

82CB

82CC

82CD

82CE

82CF

8200

8201

8202

82D3

82D4

TRANSMITI COMMAND BYTE (4F)

ENTRY ADDRESS OF ROUTINE

------ -
TRA~SMIT (8258)

RECEIVE COMMAND BYTE (49)

ENTRY ADI)RESS OF ROUTINE

-
REC~EIVE (821A) -

RUN C()MMAND BYTE (52)

ENTRY ADI)RESS OF ROUTINE

- ----..II

FUJN (828A)

RESEn' C:OMMAND BYTE (45)

ENTRY ADDIRESS OF RST 1 IN

-- MONITOR (0008) -

FIGURE 3.2 SDK-85 Command Table structure

19

If the input is identical to the command indicated by the command

pointer, then the next two bytes in the table are loaded into the

8085 CPU Program Counter. These bytes form the starting address of

the selected command routine. Any unrecognized input command takes

the flow of executi on back to the point of comnand entry.

In order to deal with the characteristics of the ACIA, two

widely used subroutines were developed. One is called DATAIN which

tests the status of RDRF (Receive Data Register Full) of the ACIA and

returns with input data in the Accumulator (Register A). The other

subroutine is called EMPTY which examines the status of TORE

(Transmit Data Register Empty} and returns control to the calling

routine when this register is ready for the next data transmission.

Figure 3.3 and 3.4 present the flowchart for these two subroutines

respectively.

The RESET command causes the data communication program to

transfer control back to the SDK-85 built-in monitor firmware. Since

the two bytes following the RESET command byte in the table form the

monitor entry location, no execution routine is developed for this

command. If the communication channel is needed later, the re-entry

procedures must be performed on the SDK-8S keypad.

The other three command routines are described in the sections

to follow.

3.3.1 TRANSM Routine

When a TRANSMIT command

transferred to this routine.

is received, the execution control is

TRANSM transmits a block of SDK-8S

G~ER
20

N

FIGURE 3-3 Flowchar-ti for Subroutine DATAIN

N

FIGURE 3.4 Flowchart for Subroutine EMPrY

21

memory contents to the OSI-C4PMF. The execution flowchart can be

viewed in Figure 3.5.

At the. beginning of this routine, the execution logic sets up an

address pointer in Registers H &L and a byte counter in Registers D

& E. These information are provided by the host system (OSI-C4PMF).

Before transmitting the specified data block, Registers B &Care

cleared for using as a checksum accumulator. Each data byte is added

to the checksum after being transmitted.

The error checking procedure is entered when the byte counter

reaches zero. First, the high-byte of checksum (Register B) is sent

to the host system for comparison. Then the execution logic waits

for the host system to send its checksum high-byte. Upon receiving a

byte from the ACIA, a comparison is made to check if the two checksum

high-bytes are the same. As depicted in the flowchart, the low-byte

of checksum (Register C) is sent if no error on the high-byte

comparison. The error checking is ended with transferring control to

the main program for the next c~nmand entry.

3.3.2 RECEIV Routine

Corresponding to the RECEIVE command, this routine accepts a

block of data bytes, and locates the received data to memory

locations specified by the host system. Figure 3.6 presents the

flowchart for this operation.

AS noted in the figure, the execution flow of this routine is

very similar to TRANSM routine. The difference is that instead of

outputting data bytes, RECEIV inputs data bytes. The checksum

G:NTER
Get Start Address
&: Byte-Count

IClear CHECKSUM

I Tran~m:lt Byte

IAccumul. CHECKSUM

Increme[~ Pointer
eCreJlle~Lt Counter

N

Transmit~ CHECKSUM
High-byt,e

Tranemi-t CHECKSUM
Low-bytl9

-1* FROM OSI

22

FIGURE 3.5 Flowchart :ror SDK-85 Routine TRANSM

G~-.-E_R__

Get StlLrt Addr-eas
& Byte•.Count

IClear CHECKSUM

Rece!VE! Byte &

store E~yte

I Accumulate
CHECKSUM

I Increment
Pointer'-...-----

23

N

__ ~* TO CHECK

FIGURE 3.6 Flowchart fear SDK-85 Routine RECEIV

24

checking procedures, as described in the previous subsection, are

shared by both TRANSM and RECEIV routines.

3.3.3 RUN Routine

The purpose of RUN routine is to transfer execution control to

the program specified by the host system. As shown in Figure 3.7,

this routine is started by obtaining the starting address of the

specified program from the OSI-C4PMF. Before loading the starting

address to the Program Counter, the address for re-entering

communication program is pushed -into the stack memory.

In order to restore the communication channel, the specified

program must not be a looping structure and must include an RET

(return from subroutine) instruction. Otherwise, the data

communication is discontinued. This makes the communication program

treat; the specified program as a subroutine.

3.4 OSI-C4PMF Communication Program

In this section, the communication program written in the 6502

machine language is discussed. This program, in fact, is composed of

a group of assembly language subroutines and command table

information. As mentioned, the BASIC program, Extended Monitor,

provides mutual interchange of information between the user and these

assembly language ·subroutines. It interacts with the user to pass

the communication parameters, and the assembly language subroutines

implement the real-time communication work with the SDK-8S.

These machine codes are stored at the first sector of the 39th

CENTER

I Get Start Add
Low-byte-...---_....

I Push Re-entry
Addr to Stack

Ipc: Start Addr

IRun Specified
Prog:ram

-1* HE-ENTRY ADDR
= 51

* ONLY APPLIED
WITH 'RET'

25

FIGURE 3. 7 Flowchart tor SDK-85 Routine RUN

26

track on disk. They are loaded to the OSI-C4PMF memory locations

starting from hexadecimal address 5EOO after the Extended Monitor

program. is located to BASIC workspace. Figure 3.8 shows the memory

map for these assembly language subroutines. As noted in the map,

memory locations starting from SEDD to 5EE2 are assigned to pass the

information set up by the BASIC routine to the assembly language

subroutines. Location 5EE5 is used as a message byte which contains

the error status code. Upon returning to BASIC, this location is

read by Extended Monitor program, and the content is interpreted as an

appropriate message to inform the user. The following statements

list the error status codes and the corresponding interpretations:

00 - Error free

01 - SDK-85 is not ready

02 - SDK-85 recognized a wrong command

03 - Transmission error (checksum error)

TRANSM, RECEIV, RUN, and RESET are the four major subroutines

called by the corresponding command routine in BASIC. To support

these major subroutines, certain housekeeping subroutines are

employed. These supporting subroutines are explained in flowchart

form shown in Figures 3.9, 3.10, and 3.11.

3.4.1 'TRANSM Subroutine

The function of this major subroutine is to transmit a string of

data bytes from the OSI-C4PMF memory locations to the SDK-8S.

0000

MPLO 009B

MPHI oosc

5EOO

5EDC

IMLO 5EnD

IMHI 5EnE

BYCLO 5EDF

BYCHI 5EEO

STALO 5EE1

STAHl 5EE2

CHKLO 5EE3

CHKHI 5EE4

MSG SEE5

CMOTB 5EE6

5EE1

5EE8

5EE9

5FFF

•
•

LOCAL MEMCIRY POINl'ER LOWBYTE }LOCAL MEMORY POrNrER HIGHBYTE

•·•
•
•·

6502 ASSEME~LY LANGUAGE PROGRAM

I""'"
IMAGE: OF MPLO

IMAGE: OF MPHI

BYTE COtThfTER LOWBYTE
~

BYTE COUNTER HIGHBYTE

STARr ADDRESS LOWBYTE

STARr ADDRESS HIGHBYTE
~

CHECKSUM LOWBYTE

1.CHECKSUM HIGHBYTE

~MESSAGE BYTE

TRANSMIT COMMAND BYTE (4F)

RECEIVE C10MMAND BYTE (49)

RUN CO]~ BYTE (52)

RESET C~)MMAND BYTE (45)
•
••
•
•
•

LOAD FROM
IMAGES

SETUP BY

BASIC

CLEARED

BY
BASIC

27

FIGURE 3.8 OSI-c4PMF Datia COl1mnmication Program Memory Map

28

* MESSAGE CODE
CLEARED____~ --(~ ENTER

[CheCk STATUS

N ' SDK-aS Ready?

y

r Transmit
~~oumand Byte

-1* POINI'ED
~ BYY

Message Code

.01 ~~et Response

~rerified ?

N

y

f"i[essage Code

L:'02

* SKIP BEGIN REo- y:ncrement SP
TURN ADDR FOR ..- ~'Y 2
DIRECT RETURN
TO BASIC

FIGURE 309 Flowchart fCtr OSI-C4PMF Subroutine BEGIN

-1 * CHECKSUM
CLEARED

IAccumul'!lte CHECKSUM

IIncremel~t Pointer

IDecrement Counter

FIGURE 3.10 Flowchart fc)r OSI-C4PMF Subroutine CHKSUM

(TranSmit Start Addr

fl'ransmi t Byte-Count

29

~ -1~ SET BY BASIC

FIGURE 3.11 Flowchart fc)r OSI-C4PMF Subroutine SETUP

Before data transmission begins, certain procedures are

executed. First, a test on the hardwired handshaking status (CTS

status) is performed to ensure the SDK-85 is in the READY state. No

further procedures will be executed, if this test fails. Second, the

RECEIVE command byte pointed by Register Y is transmitted to order

the SDK-8S to enter the receiving mode. After the SDK-8S responded

command is verified, the data string's starting location in the

SDK-8S memory and the string's length are sent in sequence. Then the

OSI-C4PMF local memory pointer, which marks the positions of the data

string, is reflected from its image to page 0 locations in order to

perform the indirect addressed data fetching. To be able to

accumulate the hexadecimal checksum, the DECIMAL bit of the 6502

CPU's Status register is cleared. These procedures are implemented

by calling the subroutines BEGIN and SETUP in sequence.

Upon returning from the SETUP subroutine, the data string

transmission begins. When a data byte is sent to the ACIA, the

subroutine CHKSUM is called to accumulate the transmitted data byte

to the checksum. CHKSUM also increments the memory pointer, and

decrements the byte counter. This procedure is repetitively executed

until the byte counter reaches zero.

To check the data transmission error, the checking logic

requires the SDK-8S to send its checksum high-byte for comparison.

OSI-C4PMF then echoes its checksum high-byte to the SDK-8S. If both

high-bytes are the same, the comparison on the low-bytes is

proceeded. As shown in Figure 3.12, any checksum mismatching leads

to an error code to be loaded into the message byte location.

31

kPoints Conmand

ITransrrdt Databyte

-1 * COMMAND
RECEIVE

.....--.Message Code

=03

C s_am......e_?----------

y

\\ ITransmit It Back

IGet CHlOCKSUM LOW

\

\

N

_____...~ _ ~ Get CHECKSUM HIGH* SDK-85
CHECKSUM

FIGURE 3.12 Flowchart j~or OSI-C4PMF Subroutine TRANSM

32

3.4.2 RECEIV Subroutine

As pi.ctured in Figure 3.13, the structure of RECEIV is similar

to TRANSM subroutine described in the previous subsection. But,

unlike TRANSM, this major subroutine orders the SDK-85 to enter the

transmitting mode, and rece ives a string of data bytes specified by

BASIC from the SDK-85.

After calling the subroutines BEGIN and SETUP to send ASCII

comnand TRANSMIT and the initialization data to the SDK-85, the

execution logic starts receiving data bytes from the slave system,

and allocates the received data to memory location addressed by the

local memory pointer. As for TRANSM, the subroutine CHKSUM is also

employed here to accumulate the checksum, and prepare for the next

coming byte.

The checksum checking procedure is shared by both RECEIV and

TRANSM, and is covered in the preceding subsection.

3.4.3 RUN Subroutine

This major subroutine is entered when the user orders the SDK-a5

to execute a specified program.

First, the subroutine BEGIN is used for ready-checking and

command transmission. Then the starting address of the user

specified program is transmitted to the SDK-aS in high byte. and low

byte order. Figure 3.14, shows the execution sequence for this

subroutine.

N

GNTER

~'{ Point
~:>umand

I Call BEGIN

ICall CHKSUM

Data End ?

--r COMMAND
TRANSMIT

33

y - - -1 TO CHECK

.FIGURE 3. 13 Flowchart for OSI-C4PMF Subroutine RECEIV

I Y Points Command

ITransout STAHl

FIGURE 3.14 I Flowchart fc-r OSI-C4PMF Subroutine RUN

G~_E_R_~

FIGURE 3. 15 Flowchart fOJr OSI-C4PMF Subroutine RESRI'

35

3.4.4 RESET Subroutine

As presented in Figure 3.15, the purpose of this subroutine is

simply to transmit the RESET conmand to the SDK-8S. After setting up

the Y register to point the RESET command byte, the subroutine BEGIN

is called to perform the realdy-test, command transmission, and

command verification.

CHAPTER 4 EXECUTIVE SYSTEM DEVELOPMENT

4.1 Disk Operating System of OSI-C4PMF

The SDK-aS development system is based upon the OSI-C4PMF (6502)

microcomputer. All of the systen software developed for the SDK-aS is

executed by the OSI' s BASIC interpreter and linked through the disk

operating system (DOS).

The OS-65 DOS formats a 5 1/4" di skette to forty tracks (0-39),

and eight sectors per track. Each sector holds 256 bytes. Each

track accommodates 2K bytes. Therefore, a formatted diskette may

store total of 80K bytes. The DOS and the system util ity software

occupy the first fourteen tracks (0-13) of disk. The BASIC program

directory is stored at track 21. The remaining twenty five tracks

can be used to save the user programs.

The OSI-C4PMF is a 24K RAM machine. Figure 4.1 shows the memory

assignment of the OSI-C4PMF disk operating system. Like most of the

microcomputer systems, only a small routine resides permanently in

firmware for booting DOS from disk after reset. As soon as DOS

acquires execution control and configures the system, it loads the

BASIC program located on the 14th track of the disk into the

work:space, and executes it immediately. This small greeting program

can then be used to assign execution to other existing programs on

the disk. This technique is referred to as an auto-run feature.

4.2 Development Software and Its Executive Program

The SDK-85 ,-software development system ; s a group of BASIC
36

0000

OOFF
0100

01FF
0200

22FF
2300

265B
265C

2A4A
2A4B

2E78
2E79

3118
3119

3278
3279
3270
327E

5FFF

6502 PAGE ZERO

6502 STACK

TRANSIENT PROGRAM AREA FOR USER'S
LANGUAGE J?ROCESSOR

1/01 HANDLERS

FLCIPPY DRIVERS

DISK OPERA'TING SYSTEM (DOS)

PAGE 01
j/1

SWAP BUFFER

DOS EXTENSIONS

SOURCE FIL~ HEADER INFORMATION

SOURCE FILE WORKSPACE

37

FIGURE 4.1 OSI-c4~1F Disk Operating System
Memory ltiap

38

programs designed to enhance the operation of the SDK-8S

microcomputer. The developed software tools include a Text Editor, a

Cross A~sembler, and an Extended Monitor. The Text Editor provides

the functions for editing the assembly language source file; the

Cross Assembler converts the assembly language source codes to the

8080/8085 machine codes; the Extended Monitor performs the data

interchanging with the SDK-85 and offers the data modifications, and

the binary file maintenance capabilities. To link these BASIC

programs, an executive program is also developed.

Currently, the software developed is a single-disk operation

system. All the developed BAS][C programs, the 6502 machine language

program, and the associated reference data reside in one disk.

Figure 4.2 presents the disk track assignment for the SDK-85

development system.

To take advantage of auto-execution, the greeting program is

designed to be the executive program of the SDK-aS software

development system. It not only provides a menu to 1ink all

development software, but all so changes system confi gurati on

appropriate to the function selected by the user.

At present the menu i ncludles the three development programs for

the SDK-85, and a function FREE which releases the full workspace for

user proqramni nq, Figure 4,.3 presents the overall software

development system structure. As noted in the flowchart, only the

Assembler is able to enter the other programs without transfer

through the System Executive program.

The algorithm of the System Executive program is depicted in

TRACK

0-13

14

15-18

19-20

21

22-25

26-28

29-30

31

32

33

34

35

36

37-38

39

39

39

39

USE

08-65 DOS VERSION 3.2

SDK-85 DEVELOPMENT S'~STEM EXECUTIVE PROGRAM

SDK-85 EXTENDED MONI~roR

TEXT FILE EDITOR

OS-65 DOS DIRECTORY

8080/8085 CROSS ASSmffiLER

ASSEMBLER LISTING PRC>GRAM

EXTENDED TEXT FILE

USER BINARY FILE I

USER BINARY FILE II

USER BINARY FILE III

USER BINARY FILE IV

USER BINARY FILE V

ASSEMBLED OBJECT CODE: FILE

FIRST TEXT FILE

Sector 1 - 6502 MACHINE LANGUAGE SUBROUTINES & TABLE

Sector 2 - USER BINARY FILE DIRECTORY

Sector 4 - ASSE>tBLER REFERENCE TABLE CONTENTs PAGE 1

Sector 5 - ASSEMBLER REFERENCE TABLE CONTENTS PAGE 2

FIGURE 4.2 Disk Traclt Use Assignment

39

,
,

S
Y

S
TE

M
"

.....
.

....
...

EX
EC

U
TI

V
E

;
7

7
'

F
R

E
E

S
Y

S
T

E
M

PR
O

G
RA

M

\/
\V

\V

EX
TE

N
D

ED
A

SS
EM

BL
ER

..
."

'''T
T

''''
'"

n
/

(A
SM

8S
)

'"
E

D
IT

O
R

1
Y
l
V
l
~
J
.
·
J
.
v
n

"'
-;;

iiI
"

"V
\1

FI
G

U
RE

4.
3

O
v

er
al

l
S

of
tw

ar
e

D
ev

el
op

m
en

t
st

ru
c
tu

re

+=

o

(START

I Print Hello MSG

y

y

y

Enable I,' & I:', 'NEW' &
'LIST', and CONTROL-C

IDisable 'REDO FROM START'

~eleaseFull Workspace

CSTOP

FIGURE 404 .Flowchart tor 'SYlBtem Exeou~i ve Program

Change Low
.J-----... Workspace

(57FF)

Enable 'REDO FROM START'......---"IIIIJlI
Disable ',' & ':'

RUN
EDITOR

42

Change Low
Workspace
(53FF)

.... ~ Enable 'REDO FROM START'

Disable ',' & ':'

Change Low
Workspace
(S5FF)

Load Obj
....-..--oIIiN Code File

to Buffer

Load 6502
...---... Aesembly

Program

able 'l:uIDO FROM START'
isable I,' & 's'

G RUN
~{-MONITOR

FIGURE 4. 5 Flowchar1~ for Executive Routines

Figure 4.4 and 4.5. In order' to work with the DECWRITER IV printer,

which may be operated only at 300/110 baud rate, the ACIA is

reconfigured to the 300 baud rate. The ACIA is also used by the

Extended Monitor to communicate with the SDK-8S, at a 1200 baud rate.

As marked in the flowcharts, the System Executive program

reconfigures certain system features for the menu selected program

before execution control is transferred. In general, two major

changes are made. First, the lower limit of the DOS workspace is

redefined for protecting the corresponding buffer. This ensures that

the DOS does not interfere with the buffer area just beneath the

workspace. Second, the -REDO FROM START I message is enabled, and the

BASIC string terminators I II, & I: I are disabled. I n do i ng so, the

chance of losing execution control due to user's failure is

minimized. For instance, if a null input were accidentally entered,

the 'REDO FROM START I would be displayed to avoid re-entering the

program.

The FREE function offers a chance to let the user to escape from

the development system prcsrem. The entire workspace is assigned,

the IREDO FROM START I is enabled, the LIST & NEW commands are

enabled, and the CONTROL-C function is restored. Before transferring

control back to DOS, the System Executive program clears itself from

the workspace. When the DOS prompt lOki is displayed on the screen,

the system is ready for user proqrammtnq.

CHAPTER 5 EXTENDED MONITOR

5.1 Overview

This p~gram was developed for the purpose of supporting

housekeeping functions for the SDK-85 development system. It

provides enhanced abilities, which are not available in the SDK-85

built-in monitor, such as disk file storage, data block move and

insertion, and screen/printer display, etc. These capabilities are

enabled since the Extended Monitor program is executed on the

OSI-C4PMF system, rather than on the SDK-85 itself. Therefore, the

most important functions are those data communication commands which

can give orders to the SDK-85 for interchanging data.

Figure 5.1 presents the map 0 f memory ass i gnment. As may be

noted, the OSI-C4PMF locations from 5600 to 50FF act as a data buffer

simulating SDK-8S memory. l-he first two buffer locations store the

starting SDK-8S address; the next two locations store the ending

SDK-8S address. The remaining bytes hold a facsimile of SDK-85 data.

The first four reference addresses reflect the actual memory

locations where the data block should be located in SDK-85 memory.

Therefore, the 2K OSI RAM buffer contains a memory model of the

SDK-8S system.

In the BASIC program, two variables 5T and ON are assigned to

represent, in decimal, the starting and ending memory image address

val ues respecti vely. These addresses and the correspondi ng val ues may

be specified by the user, or may be updated by certain command

routines. The Extended Monitor program also mai nt.ai ns a pointer (BS)
44

0000

3270
327E

55FF
5600

5DFF
5EOO

5EFF
5FOO

5FFF

03.-65 DOS

EX'I'ENDED MONITOR

PRC~GRAM WORKSPACE

BUFFER FOR SIMULATION OF

SDK-85 MEMORY

6502 ASSEMBLY LANGUAGE
SUBROU'l~INES & TABLE

USER BINARY FILE DIRECTORY

TRANSI~~ION AREA

FIGURE 5. 1 Memory)fJlP for Extended Monitor

46

which always targets the OSI-C4PMF address of the first byte of the

buffer (5600). This makes the local address (SA) of any data in the

buffer obtainable by taking the difference between ST and the user

specified address NS, and adding it to BS.

As listed in Figure 5.2, sixteen commands were developed to

perform various tasks. These commands can be classified under the

following functional groups: data communication commands, memory

display & modification commands, and disk file maintenance commands.

By manipulating these commands in the Extended Monitor, the user may

send the object code file to the SDK-85 memory and execute it, or may

get a block of data from the SDK-8S and save it as a disk file unit.

The user may also modify or rearrange the current data file in the

buffer area, or may display a list of contents of the file on screen

or printer.

The algorithms of how to implement these commands are explained

in the following sections.

5.2 Command Format

The command string should consist of the syntax field and/or the

specification field. Any non-alphanumeric characters can be employed

as a separator between these fields. Only if the first character of

the specification field is a decimal digit, can the field separator

be omitted.

In the syntax fi el d, a command entry must be provi ded. 5i nce

the command logic recognizes the leftmost two characters only, a two

letter abbreviation for the c:ommand is allowed. In certain command

DESCRI.Pl'ION

:en: - YYYY (CR)
IXIX (CR)
(CR)

Dumps contents or x:xxx througb YYYY to 501C--85
Dump. content. or XXIX through end o~ s1Jlat.~..wl IJM:IDO""' 'to --85
Dumps enti~ contents o~ aiJDulated memory to £D&:-85

GEt :an: - YY'fY (CR)
:an: (CR)
(ca)

Gets cootent8 ot :IXI:I throu&b Y't'J:'{ :t'raII SDI-85
Gets content. ot IXXX through end ot aimulat.ed lDe!DOry from SDX-85
Gets entire contents ot s1mu.lated IDeD:)ry t'raa SDK-a5

:an: (CR)
(CR)

Orders SDK-85 to execute program starting at location XXXI

Orders SDK-85 to execute pro!l'"alll detined in simulated memory

REset (ca) Orders 5Og:..8S to errter its ay8"teat moDi tor

XXXI - YYY.Y (CR)
XXIX (CR)
(ca)

Displays coatents ot xxx:x through YYY't on sCl"Iten
Displays contents ot IXXX. th.rougb end ot s1JDJJ.ated memory 011 sCl"Iten
Displa1's entire cantel1ts ot simulated lDeIIlOry 011 scr-een

PRint XXIX - YYY:'f (CR)
ru:x (ca)
(CR)

Prints cOl1tents ot XXIX through YYYY on printer
Prints contents ot :rx:xx through end ot simulated memory on printer
Prints entire contents ot aimul.ated memory 011 printer

IIIX / DO (CR) Substitotes the content ot XIXX with hex value DO

mserio n:II / D (ca) Inserts capacity tor 0 (0-9) bytes starting at address xx:o:

ERase n:x:x / 0 (ca) Erases D (0-9) bytes starting at address XXXI

zzzz • n:n - YY'{'{ (cR) Mona contents ot XXIX through YYYY to locations starting at ZZZZ

SEe / SEt (CR) Displays current range ot simulated memory / Sets new range

Lo&d8 specitied file trom disk to bufter

Ch.ains specitied tU. with current til. in butter

Sa...es current bu.tter content. to disk UDder Sp89it1ed tile name

Creates new tlle name in user tile directory(CR)

F'ILENAM! (CR)

.PIU.'.7UME (ca)

Wad

CReate

SAn

CHain

It----+--------t---------1

u

s ~ ~-----_+---------.-t__-------------------------__t

t:ffi

~
Q,Uit (CR) Exit.a Extended Mon.i tor

(2) Cft - CARRUGB R!:I'URN

FIGURE 5.2 Command Summary for Extended Monitor

48

strings, (eg. data communication and display commands) the

specification field is optional. On the other hand, most of the

modification and file maintenance commands, require user

specifications. The specification field may contain up to 3 address

operands, as in the MOVE command. Like the field separator, any

non-alphanumeric characters can be used to separate operands.

Details of each command syntax and the requirements of the

specification field are descy'ibed in the following command routines,

and are listed in Figure 5.2.

5.3 Main Program Structure

Whenever entering the Extended Monitor from the System Executive

program or the Assembler, the object code file on track 36 is always

loaded to the buffer before execution starts. In this way, the

Extended Monit~r may work as a Loader of the cross assembling system.

The main program structure is shown in Figure 5.3. Before

accepting any command via ke~fboard, three procedures are processed.

First, ST and ON are defined by the first four bytes of the current

buffer; second, the user-definE~d binary file directory is loaded from

disk into the last page of available RAM (5FOO-5FFF) and is restored

as a BASIC string array; third, the command array is defined for

recognition of keyboard entries~

After the syntax field of the user input string is isolated frQm

the specification field, the command recognition logic takes the

leftmost two characters as a substring and performs comparisons with

the command array. The execution logic will proceed toward the

STARI~

Disp &Defi~
Simulated~~

Restore DirectoryI
from Disk

N

Go To
Command Rou
tine

STOP)

Read user~
Command iI,~

Isolate Co~ruand I

Define~
Conmand Arr~

* TAKE LEFI'-
MOST 2 CHAR , ,

FIGURE 5..3 Main Progranl Structure of Extended Monitor

50

corresponding command routine, if a command is confirmed. Otherwise

a syntax error message will be sent, and execution logic will accept

a new user input.

Further scanning on the command string is performed by each

command routine, when it is necessary. As described in greater

detail in later sections, two scanning subroutines have been

developed. PARSE is a subroutine which handles those commands with

default options. If the address is not specified, PARSE designates

the default condition. Otherwise, PARSE converts the entered string

characters to the proper address value(s). SCAN is a subroutine

called by those command routines which have no provision for default.

The only command which causes the Extended Monitor program to be

tenninated, is the conmand QUIT (abbreviated QU). This command

orders the execution logic to save the current binary file directory

on disk, and clears the Extended Monitor program from BASIC workspace

by transferring control to the ~'stem Executive program.

5.4 Data Communication Command Routines

The most important function that the Extended Monitor provides

is the ability to communicate with the SDK-a5 motherboard. Each of

the data communication command routines sets up the necessary

infonnation, then transfers control to a conmon routine, called LINK.

LINK calls the specified assembly language subroutine which

implements the command function by interacting with the SDK-aS. The

assembly language subroutines are described in section 3.4.

51

5.4.1 DUMP Routine

DUMP is a BASIC routine which operates with the assembly language

subroutine TRANSM, to transfer a block of data in the simulated

memory to the SDK-8S. DUMP functions as a Loader for the Assembler.

The user mayor may not enter address specifications following

the command field. If an address specification is issued, then the

starting address must be included. The ending address may be

omitted. The subroutine PARSE w"ill replace the excluded address with

the corresponding default address value.

After the DUMP routine collects the necessary information, the

execution logic will be routed to the routine LINK, in order to

associ ate the assembl y 1anquaqe subrouti ne, TRANSM, wi th the BASIC

DUMP routine. If a transmission error occurs, unlike other error

procedures, the execution logic may be ordered to retransmit the data

block at the user1s request. For this reason, the specified variable

values remain valid, after the DUMP command is executed, until they

are redefined.

Figure 5.4 depicts the flowchart of this routine.

5.4.2 GET Routine

The program logic of the GET command routine is very similar to

the DUMP routine described in the previous subsection. However, the

purpose of this routine is to get a block of data from the SDK-8S and

to allocate that data to the corresponding locations in the buffer

area. The GET function may be seen as the inverse of the DUMP

function. Figure 5.5 presents the execution flowchart for this

ENTER
Call PARSE

.....-~ Return wi
NS,BC, & S

g~-_I
Go To

Display
Error

Set TRANSM
~--.iiiiI~Assem Sub

Entry Addr

*TO LINK

52

FIGURE 5.4 Flowcllart for Routine DUMP

ENTER

Go To-

"..Display

~ Error

N

DN- EN
(EXPANSION OF

SIMULATED

:MEMORY

~
et RECEIV

Assem Sub. En
t: Address

*TO LI

FIGURE 5.5 Flowchart for Routine GET

53

routine.

The BASIC variable, ST, and its associated hexadecimal value in

the first two bytes of buffer RAM are initialized prior to user

command entry. These values define the start of a 2K block of

simulated SDK-8S memory. The address specifications of the GET

command can not alter S1 or its hexadecimal equivalent. This means

that GET can only operate within the 2K buffer boundary. If the

starting and ending addresses designated in the GET instruction, fall

within this 2K range, then the corresponding SDK-8S data is loaded

into the buffer displaced, if necessary, from the start of the buffer.

To incorporate this additional data, the end of data record must be

indicated.

Thus, if the value of the last address specification (EN) is

greater than the current ending address (ON) of the simulated SDK-8S

memory, then the value of EN replaces ON and the hexadecimal value of

ON in bytes 3 &4 of the buffer are likewise converted.

5.4.3 RUN Routine

This command routine can be used to order the SDK-85 to execute

any specified program residing in the memory of the SDK-85. The user

mayor may not give the starting location of that program. If there

is no address field followin!~ the syntax field, NS will default to

the current starting address (ST) of simulated SDK-85 memory.

As cautioned in Chapter 3, if there is no RET instruction at the

end of the 8085 program or the SDK-85 program itself is terminated in

an infinite looping structures then the OSI-C4PMF system loses

control of the SDK-85. In this case, a manual reset and

initialization on the SDK-85 is necessary if the communication

channel is to be restored.

The program sequence of this routine is reproduced in Figure

5.6.

700 REM RUN Command Routine Entry
710 GOSUB 20100 : REM Call GETNS
715 ON CHK GOTO 30000, 30050, 30100, 30300 : REM Check error
718 IF J-(K+3)<>0 GOTO 30000 : REM Extra specification
720 LO=71 : REM Set assembly subroutine RUN entry address
725 GOTO 11500 : REM Go to LINK routine

FIGURE 5.6 Execution Sequence of Routine RUN

5.4.4 RESET Routine

This command performs a soft-reset function on the SDK-85. In

other words, the OSI-C4PMF releases its control of the SDK-aS and

lets the SDK-85 ROM monitor program take over.

Unlike other conmands, there should be no address following the

syntax field. Figure 5.7 duplicates the program procedures of the

RUN routi ne.

750 REM RUN Command Routine Entry
760 LO=92 : REM Set assembly subroutine RESET entry address
765 GOTO 11640 : REM Go to LINK

FIGURE 5.7 Execution Sequence of Routine RESET

5.4.5 LINK Routine

Unlike the previous routines, this routine is not a direct

comnand procedure. It is used to link all data communication

commands and the corresponding assembly language subroutines

55

Load NS to STAHl &
>-----~ ~-----------.....STALO Bytes

y

Load Be to BYCHI &1
BYCLO B es

Load SA to IMHI & I
IMLO B es

Zero MESSAGU BYTEI
MSG

Clear CHICHI&I
CHKLO B es,~

* ENTRY FORL- - _ -
'RESEr' I

Load Assem SUb;u-1
tine Address B es

Call Assembly Lan-I
guage Subroutine

N

y

Go To
Display
Error

FIGURE 5.8 Flowchart for Routine LINK

56

together. The aforementioned command routines set up the necessary

address values. Then LINK is entered to allocate those values to the

appropriate memory locations before calling the assembly language

subroutines. LINK also checks communication error status by

examining the message byte, after returning from the assembly language

subroutine.

Figure 5.8 presents the algorithm of this routine. As may be

noted, the RESET entry is different than the entry location of other

commands.

5.5 Display &Modification Command Routines

Seven commands are class.ified in this family. They are EXAM,

PRINT, SUBSTITUTE, INSERT, ERASE, MOVE, and SEE/SET. The common

characteristic of these commands is that they can be used to

display/print the contents of the simulated SDK-85 memory, or modify

the layout of the current buffer.

5.5.1 EXAM and PRINT Routines

Although EXAM and PRINT are two independent commands, they share

the same procedures to perform the displaying task. The EXAM command

allows the user to examine Cl block of data on the screen, and the

PRINT command prints the datcl on the serial printer. However, the

PRINT command has an extra feature which the EXAM command does not.

This "is the ability of allowing the user to add a title line before

data printout. Both commands use the same displaying form, an

example of which is shown in Figure 5.9.

57

o 1 2 345 6 7 8 9 ABC D E F
0010 AC CD 00 28 30 49 FF DE C6 E8 20 12 AD
0020 01 39 SO B2 FO 4F EA 60 7F 03 56 8A 9D CD 37 FA
0030 DE SO F6

FIGURE 5.9 An Example for Displaying Form

Like the data communication cOll1l1ands, the user mayor may not

specify the first and last displaying addresses. The subroutine

PARSE is again used here to return the appropriate starting address

and the byte-count, or error code.

The subroutine DISPLAY is called to exhibit data on the screen or

printer. DISPLAY collects 16 bytes of data in a string, and sends

the string to either the screen or printer by checking a display

flag. As illustrated in the example of Figure 5.9, the first row

indicates the least significant digit of the hexadecimal address.

These digits, 0 to F, form the col umns of a matrix. The matrix rows

begin with an address value which is a multiple of sixteen. The data

dump is accomplished by displaying blanks until the data starting

address is hit.

Upon returning from the subroutine DISPLAY, the user may request

the execution logic to display the next 256 bytes of data by simply

typi ng ItyIt when interrogated by the OSI -C4PMF •

Figure 5.10 explains the algorithm in flowchart form.

5.5.2 SUBSTITUTE Routine

This function allows the user to change the contents of the

buffer area.

ENTER
PRIm'

Set
Printer Flag

Print Line

ENTER
EXAM

Set
Screen Flag

Call PARSE
Return wi
NS &: EC

y

Equate DS to NS

(DS= DATA STARr)

Call DISPLAY

Go To
Display

Error

Set
EC:z 256

N

FIGURE 5.10 F10WC~Lart for Routine EXAM and PRINI'

59

Once the user specifies the location and the new contents to be

entered, the subroutine SCAN is called to check if there are any

errors on the entered values. After the task of changing is

performed, the program logic compares the address of the altered byte

with the current ending address value of simulated SDK-85 memory. If

the changed location exceeds the current end of simulated SDK-8S

memory, the pseudo SDK-8S memory is expanded to i ncl ude that byte.

This performs an automatic change & increment function for convenient

buffer operation.

The routine is designed so that the user may change the contents

of the next buffer location by simply entering the new data value in

hexadecimal when prompted by the execution logic. This sequence of

events continues until the bottom of the buffer is reached or any

non-hex digit is entered.

Figure 5.11 shows the flowchart for this operation.

5.5.3 INSERT Routine

The flowchart of thi s command rout; ne is presented in Figure

5.12. The starting address where the data is to be inserted and a

single decimal digit which indicates the number of inserted bytes,

must be provided by the user. An error message is generated if this

insertion would increase the size of the buffer over the 2K capacity

or if the number of bytes is greater than nine. Therefore, this

function allows the user to insert a maximum of nine bytes.

The actual action taken by the execution logic is to move the

data block which follows the insertion point down 0 bytes. D is a

60

* RErURN ADDR
IN NS &: CON
TENT IN D

CENrER

"~all SCAN

Go To
Display

Error

y

<-------
Subst.Ltute Conten
of NB w D

[NS= NS+1

IUpd8,te DN &; DN By
tes w NS

N

y

FIGURE 5. 11 Flo~rchart for Routine SUBSTITUTE

* REI'URN ADDR
IN NS & NO.
IN D

y

61

Will ExeE~d Y.....-----~-.I
Buffer ?

N

* MOVE BO'ITOMr
FIRST

Calculate I
Move-coun1~

Set st&r'~
MovingL~

Set Move])own I
Flag

Call upo:~

DN= DN+D~

Go To
Display
Error

FIGURE 5.12 Flowchart for Routine INSERI'

62

variable in the range of a to 9. As noted in Figure 5.12, the

execution logic sets a flag and then calls a subroutine UPON to

perform the block move task.. Moving the bottom of the block first

prevents loss of data due to overwriting. The ending address of

simulated SDK-85 memory is extended to appropriate new location.

It should be noted that the contents of the locations where the

user intends to make insertions remains unchanged.

the SUBSTITUTE command, which is described

subsection, to enter new data to those locations.

The user must use

in the previous

5.5.4 ERASE Routine

This function allows the user to erase a number of bytes from

simulated SDK-85 memory. ThE~ number of addresses cannot be greater

than nine, and the starting location must be valid in the current

buffer range. Otherwise the execution logic will refuse to perform

this operation, and an error message will be generated.

Unlike the INSERT command, the program sets an UP flag before

calling the UPON subroutine. The address of the first byte to be

moved is set to the location just beyond the last byte to be erased.

Then UPDN moves the data block, starting at the first address to be

moved through the end of simulated memory. The data block is in this

way, shifted up 0 locations. As for INSERT, D is the variable

containing the number of bytes to be erased. Before this routine is

terminated, the ending address of the memory image is updated with

the result of ON minus 0 bytes.

A generalized flowchart for ·this routine may be reviewed in

* RE:rURN·ADDR
IN NS & NO.
IN D

* MOVE TOP
FIRST

calCulate]
Move-Count

Set Start]
Moving Loc

Set Moveup]
Flag

Call UPON]

y

Go To
Display

Error

ON: ON-O]

FIGURE 5.13 Flowchart for Routine ERASE

64

Figure 5.13.

5.5.5 MOVE Routine

To perform this function which can relocate a data block

anywhere in the buffer area, three address operands must be provided

in the specification field. The first is the destination starting

location of the data block. The next two operands represent the

source starting and ending address of that data block respectively.

Figure 5.14 shows the f lowchart of this routine. Upon entering

this routine, the subroutine GETNS is called to isolate the first

operand and return the destination starting address in the BASIC

variable NS. Since GETNS is then used to fetch the starting address

of the data block, it is necessary to equate MS to NS. GETNS is

called by the subroutine SCAN ~Ihich reads the next two operands, and

returns the source starti ng and endi ng addresses in NS and EN.

The executi on 1ogic examines these three address val ues to

determine the direction of movement . If the function desired to move

down, the program logic will also detennine the end of the data block

to prevent over-expansion (2K maximum). Like INSERT and ERASE, the

UPON subrouti ne is employed to perform data block movement.

In the case of downward data block movement, the ending address

of simulated SDK-8S memory is updated, if the data block move

increases simulated memory sizE~. In movi~g data upward, the size of

simul ated memory generally remai ns the same. It may only be reduced

if the user sets the source ending address equal to the current end

of simulated SDK-8S memory.

65

(ENl'ER

Go To

Display
Error

Set
MoveUp Flag

Call UPDN

UP

y

[call GEl'NS

IEquate MS to NS
U!MS=DESTlNATION

[::::all SCAN

* REl'URN D~S

TlNATION

* RETURN BLOCK
RANGE IN NS
&EN

DOWN

Call UPDN

xceed DN? ---Y-..... Upda~~ DN 8:
DN Bytes

~-"'EN =- DN ?

N

FIGURE 5.14 FlowchB~rt for Routine MOVE '

66

5.5.6 SEE/SET Routine

The SEE/SET function allows the user to examine or define the

range of simulated SDK-85 memory. This function contrasts with the

automatic ranging which occurs as a result of previously discussed

conmands. The SEE/SET conmand has no specification field. In this

way, the user may view the current range of simu1 ated memory wi thout

affecti ng the estab1 i shed 1im'i ts . The user may set a new boundary

under the direction of sof tware logic. No change is made unless the

user input is a hexadecimal address ,

The flowchart of this routine is presented in Figure 5.15. As

illustrated, the routine is begun by calling the subroutine SHOW to

display the current limits, tn hexadecimal, on the screen. The

execution logic interrogates the user on whether to change the upper

boundary. The user may enter' a new address in four hexadecimal

digits or may simply enter an "N" to escape this change. The lower

boundary procedure operates in a. similar manner. Again, the user may

enter a new address or may avo t d change by typi ng II Nil • Next, the

error detection procedure begins. If the simulated SDK-85 addresses

exceed a 2K range, or the ending address precedes the starting

address, or if any invalid hexadecimal digit is entered, an error

message is displayed.

It should be noted that the SEE/SET operation not only changes

the decimal variables maintained in BASIC workspace, but also alters

the corresponding hexadecimal bytes in the first four locations of

the buffer.

G-rrER

ICall s...)H~OW__....

N

--. * PROVIDE ' SEE '
FUNCTION

67

Go To
Display
Error

y

Set New ST &
ST Bytes

Set Nel" DN &:
DN E!S

FIGURE 5. 15 Flowchart f·or Rou-tine SEE/SEl'

68

5.6 File Maintenance Command Routines

The Extended Monitor allows the user to manage five binary

files. Track 31 to track 35 are reserved for these files. Each file

occupies one track on the disk. A directory is maintained by the

Extended Monitor program to provide records to file maintenance

commands.

As mentioned before, the user file directory is recovered from

sector 2 of track 39 when the Extended Monitor program initializes

the system. The directory is composed of two arrays, F$(X) and P(X).

F$(X) holds the file names of each track, and P(X) records the

integer number of pages (sectors) occupied by the corresponding file.

The directory may be updated by certain file maintenance commands,

and is saved back to its disk location before exiting the Extended

Monitor.

5.6.1 SAVE Routine

This command routine allows the user to save the current file in

the buffer onto the disk ~'ith a defined file name in the

specification field.

The routine starts by calling the subroutine GETFILE which

checks the user input file name with the directory contents, and

returns with a file index number in variable X. Only five tracks

have been assigned for file storage. If the returned value in X is

greater than 5, then the routine is terminated and an undefined file

error message is displayed. Otherwise the subroutine CALCPAGE is

Call GETFlLE
Return wi LoI~

Index (1-5)

Call CALCPAG1~

to Calc Page
of Buffer File

N

69

Convert Index No_I
to Track No.

Update PAGE-COUNTI
of Directory

Save Buffer
File to
Disk

Go to
Display
Error

FIGURE 5.16 Flowcha.rt for Routine SAVE

70

called for calculation of the page-count (P) of the current file in

the buffer. Page-count determines the integer size of the file to be

saved.

Since the five file tracks are located from tracks 31 to 35, the

appropriate track position can be obtained by adding the index value

to the base value 30. Before saving to disk, the corresponding

page-count in the directory is updated with the value in P.

Figure 5.16 presents the flowchart for this command routine.

5.6.2 LOAD Routine

Retrieving a file from one of the file tracks and loading it

into the buffer, is the purpose of the LOAD routine. As with SAVE,

the user input file name must be defined prior to its designation in

the specification field.

After the file name has been verified, the base value, 30, is

added to the index number. This track number is converted to a

string variable to be used in a DOS load statement of the BASIC

routine. As depicted in Figure 5.17, the range of the simulated

SDK-85 memory is redefined by the contents of the first four

locations of the buffer. This is accomplished by calling the SHOW

subroutine after loading. SHOW will also displaying the new simulated

memory limits for the userls reference.

5.6.3 .CHAIN Routine

The CHAIN routine was developed to combine two files into a

single file space within the confines of the 2K buffer. In order to

ENTER

Call GETFILE
Return wi Loe
Index (1-5)

N

71

Convert Index to
Track No.

Load File
From Disk

To Buffer

Call SHOW to
Display New
ST &: DN Range

Go To
Display
Error

FIGURE 5.17 Flowchart for RO\1tine LOAD

72

successively join two files, the file which is to come first must

reside within the buffer before the CHAIN command is issued. The

file described in the specification field is the remaining file.

As mentioned earlier, the user file directory is composed of a

file name array F${X) and a file page-count array P(X). The latter

indicates the integer number of pages in each file. Since the size

of the buffer is limited to eight pages, routine logic determines the

total number of pages in the combined file, to prevent exceeding the

lower limit of the buffer. This procedure, as shown in Figure 5.18,

is implemented by adding the page-count of the current file in the

buffer to the page-count of the disk file to be chained. The files

are not joined if the sum is greater than 8 pages. The CHAIN

operation transfers the disk file to the location following the end of

the file residing in the buffer.

The ending address of simulated SDK-85 memory is increased to

include the added file. The first four bytes of the added file are

removed by a deleting process.

5.6.4 CREATE Routine

To create, rename, or check the filenames of the user directory

are the purposes of this command routine. As for SEE/SET, no

specification field is allowed. The routine logic instructs the user

to enter filenames.

Figure 5.19 shows the execution sequence of this routine. As

illustrated, the algorithm starts by displaying the current directory

on the screen. The user must then confirm the intention to generate

ENTER Call GETFILE

13

N

Call CALCPAGE -1 *= FILE

Go To
Display
Error

* AFTER CON
BlNATION

Delete Disk File
ST &: DN Bytes

FIGURE 5.18 Flowchart for Routine CHAIN

M1

ENTER

Display
Directory

Define Filenam
to Directory

Display
D1"rectory

FIGURE 5.19 Flowchart for Routine CREATE

75

a new filename. Otherwise the routine will be terminated. This gives

user an opportunity to simply review the directory without changing

it.

The filename creation procedures may be divided into three

parts. First, the first 7 characters are read from the user console

as a filename. Second, the user is asked to enter the location index

(1-5). Third, the entered filename is allocated to the array

position pointed to by the location index.

After these steps are completed, the updated directory is

displayed on the screen. The user may create another filename or

exit this routine when the routine raises the question on the screen.

5.7 Subroutines

The execution procedures of major subroutines are explained in

flowchart form in the next few pages. From Figure 5.20 to Figure

5.25, the following subroutines are depicted:

PARSE - Interprets the specification field or defines default

val ue (s)

SCAN - Reads the specification field without assigning default

val ue

DISPLAY - Exhibits data block from NS through EN on screen or

printer

SHOW - Defines 5T & ON from the first four buffer bytes and

displays their hexadecimal values

GETFILE - Gets the designated file location index

76

CALCPAGE - Calculates the integer number of pages that the file

in the buffer occupies

Those subroutines which are not listed above can be reviewed in

the Extended Monitor program listing in the Appendix.

ENrER

77

Has Spec. Field?

y

Call GETNS

N
Default
NS=ST

* BYTE-COUNT IN
Be-- LOCAL ADDRESS
POINTR IN SA

RETURN

N Default
EN=DN

FIGURE 5. 20 Flowchart tor Subroutine PARSE

N

N

ENTER

Call GEmS

End of Field?

Call GETDATA

Calculate
Local Pointer

RETURN

y

y Set
Err Code

78

FIGURE 5. 21 Flowohart for Subroutine SCAN

(\J
(\J

•
Ll\

79

*DS=ADDR. OF FIRST DATA

*NS-ADDR_ OF FIRST ROW
*BK.NO_ OF BLANKS]](FIRST ROW
*TIlINO _ OF NON-BLANltS

N

Set
x=6

Em'ER

N Has Filename
?

Skip Spaces

Y Filename
=F$(X)?

N

~* ~:XFILE

/
/

80

FIGURE 5.23 Flowchart for Subroutine GETFILE

ENI'ER

Get DN From
"'---PoI

Buffer

Get ST From
Buffer

Equate
DN

Equate
ST

Display DN

Display ST

FIGURE 5.24 Flowchart for Subroutine SHOW

ENI'ER

y

Calculate
Pages in P

- --1 * CURHEm' FILE
IN BUFFER

FIGURE 5.25 Flowchart tor Subroutine CALCPAGE

CHAPTER 6 TEXT EDITOR

6.1 General Description

This Editor is developed for the purpose of editing the text

file of the assembly language source program. It is written in BASIC

language, and stored on disk under the file name, EDIT. It is loaded

into BASIC workspace by the proper menu selection in the System

Executive program or the error exit of the Assembler.

A 2K buffer is protected by limiting the lowest BASIC workspace

to hexadecimal location 57FF. This buffer is used as the source file

I/O transition area for saving to or loading from disk. Due to the

restriction of limited memory, the maximum file capacity at a time

maintained in the workspace by the Editor is 4K characters (bytes) or

280 source lines. Four tracks are available to accommodate the

source files. Every two tracks contain a total of 4K bytes.

Therefore, one file may occupy two tracks, and the Editor may manage

two files. One is called First file. Another one is called Extended

file. The First file uses disk tracks 37 and 38. The Extended file

uses tracks 29 and 30. A file mode flag maintained by the Editor

guides the disk accessing logic to either the First file tracks or the

Extended file tracks. This flag defaults to flag the First file mode

by the Editor initialization procedures, and may be varied by the

proper commands. Although the Editor manages these two 4K-files as

two independent files, lacking an END directive at the end of the

First file will cause the Assembler to see the Extended file as an

extension of the First file. This makes the Editor impose a maximum

82

83
capacity upon the source file of 8K bytes or 560 source lines. It

should be noted that the Extended file cannot be assembled

individually.

Each of the entered source lines is maintained by a BASIC string

array element. Every line must be started by a decimal line number.

This line number is used as an index reference to locate the entered

line to the proper array element position. Once a new line is

entered, the program logic sorts all lines in sequence by comparing

the line numbers. Therefore, no insertion command is needed. The

use of line numbers is modeled after the BASIC programming language.

In order to store more characters in the limited memory space,

every entered line is rearranged by a shrinking procedure before the

input logic prompts the user to enter a new line. The shrinking

procedure scans the entered line, and replaces the encountered

multiple-space with one space character followed by a letter

character (A-Z) as the repeat-count. For example, a source line is

entered as below ('*' represents space):

lO*******LDX*H,2000H

After completing the shrinking process, the appearance of this line

is shown as below:

lO*GLDX*AH,2000H

The letters G and A represent the repeat-counts for seven spaces and

one space respectively. Therefore, the maximum allowed spaces

betwee~ any non-space characters is limited to twenty six which is

the total number of alphabetic letters. The displaying/printing

commands recover each of the specified lines back to its original

84
form without changing the shrunken form.

A string array variable, I$(X), is assigned to accommodate the

entered source lines. A numerical array variable, I(X), stores the

corresponding line numbers. The Editor program maintains a

Line-count in variable I and a Data-count in variable C. The

Line-count records the number of lines in the current file. The

Data-count indicates the total bytes occupied by the current file.
-

Since one byte is reserved for the file ending mark used in

filing/retrieving procedure, the upper-limit for the Data-count is

4095 bytes (4096=4K). After shrinking an entered line, the program

logic accumulates the length of this shrunken line and one extra byte

into Data-count. The extra one byte is reserved for the

character-count (length) of that line while dumping the file to disk.

When the Data-count indicates that the current file has overflowed

(greater than 4095 bytes), the program logic adjusts the size of the

file by deleting the highest-numbered line until the Data-count is

reduced under the limit (less than or equal to 4095 bytes).

Figure 6.1 lists all of the Editor command syntax and their

corresponding operations.

6.2 Main Program Structure

The Editor program is started by setting the File mode flag to

the First file mode. Unless the user issues an EXTEND command to

alter the file mode, the disk accessing logic is always led to those

tracks (tracks 37 &38) where the First file resides.

After the command array is defined, the Line-count and

cOMMAND SYNTAX

New

Extend

Input

File

Call

List
XX
XX-
-XX
XX-YY

Print
XX
XX-
-XX
XX-YY

Delete XX
XX-
-XX
XX-YY

Quit

85

DESCRIPrION

Clears entered lines & enters First file mode

Clears entered lines & enters Extended file mode

Inputs source lines containing line numbers

Files entered lines to disk

Calls file from disk

Ldsts all lines of file on screen,
Lists line XX on screen
Lists lines XX through end of file on screen
Lists from start of file through line XX
Lists lines XX through YY on screen

Prints all lines 'of file to printer
Prints line XX to printer
Prints lines XX through end of file to printer
Prints fran start of file through line XX
Prints lines XX through Y'i to printer

Deletes line XX from file
Deletes lines XX through end of file
Deletes fram start of file through line XX
Deletes lines XX through YY from file

&xi.ts Editor

** NOTE: XX & YY ARE LINE NUMBERS IN DECIMAL.
COMMANDS MAY BE ABBREVIATED BY FIRST INITIAL.

FIGURE 6. 1 Coumand Suumary for Editor

86

Data-count are both initialized to zero. Then the execution logic

prompts the user to enter a command input. As shown in the command

summary (Figure 6.1), a one letter abbreviation for the command is

acceptable. If the leftmost character of the entered string is not a

letter character, a syntax error message is sent, and the execution

logic requests the user to re-enter a command. Otherwise, this

isolated letter is compared with the entries of the command array.

The execution logic will proceed toward the corresponding command

routine, if a command is confirmed. Otherwise, the syntax error

message will be displayed, and execution logic will accept a new user

input.

Like the Extended Monitor, the QUIT command causes the Editor

program to be terminated. As depicted in Figure 6.2, when this

command is confirmed, the execution logic clears the Editor program

from BASIC workspace by transferring control to the System Executive

program.

Other commands are divided into two groups, the file mode

related commands and the non-file mode related commands, as discussed

in the following sections.

6.3 Non-File Mode Related Command Routines

Four commands are classified under this group. They are INPUT,

LIST, PRINT, and DELETE. The common characteristic of these commands

is that the algorithms are independent of the File mode flag.

Default First
File Mode

(RUN)...--_......._----...
Define & Read
Command Array

~--......
Set

Extended
File Mode

(RUN)

* AUTO CLEAR
DEFINED
STRING &

NUMERICAL
VARIABLES

87

y
N

INPUT?

y y

EXTEND?
Initialize
LINE-COUNT N
DATA-COUNT

Syntax
Error

Take Leftmost_
Character

First Char.is N
Letter? ~------~

I~olate

Conmand Field

FIGURE 60 2 Flowchart for Ed!tor Main Program Structure

88
6.3.1 INPUT Routine

This function allows the user to enter the source file. The

execution logic sends the question mark to prompt the user to enter

source file line by line. Each of the entered lines must be started

by a non-zero number digit (1-9). The user may input those source

lines in a random numbered sequence. This routine will place each

entered line in the proper location by comparing this line number

with other line numbers. This routine is exited when the user inputs

a non-number led string or the file reaches its maximum limit (280

lines or 4095 bytes).

As may be viewed in Figure 6.3, the INPUT routine is started by

checking the Line-count. If the Line-count records 280 lines

already, a file-full message is sent and execution logic is routed to

wait a new command input. Otherwise, the routine execution proceeds

to accept a new line input. A question mark displayed on the screen

indicates that the execution logic is ready to receive a new line.

The user may order the Editor to implement other functions by simply

typing the proper command instead of number-led line. Upon receiving

the user entered string (A$), the execution logic tests the leftmost

character of this string to determine whether it is a source line.

If the leftmost character is not a non-zero decimal digit (1-9), the

execution logic exits this routine, and routes to the command

recognition procedure. If the test verifies that the input is a

source line, the line array pointer, X, is defined by 1+1. The

entered line then is read into the line array position pointed by X.

As aforementioned, this new entry must be rearranged by a shrinking

~
Y BE j.

CCMtAND

\
\

\

• Y IS POSITION
POnrrER

FIGURE 6.3 Flowchart for Routine INPUT

90

process. To do this, a subroutine SHRINK is called. SHRINK returns

the shrunken line and its new character-count (length). Upon

returning from this subroutine, the error flag is checked. If the

error flag indicates that there is a violation on the space limit

(twenty six spaces), then an error message is sent and the execution

logic is led back to the beginning of this routine ~o request the

user to re-enter a line. After the logic confirms that the entry is

a valid line, another subroutine PUTID is called to collect and place

the line number in the line number array position pointed by X. Then,

the execution logic enters the sorting procedures.

If there is only one line in the source line array or the new

entry has the highest line number, then the file is already in

sequence. Otherwise, the further evaluation is proceeded. A FOR •••

NEXT loop is applied to compare the line number of the new entry to

other entries in the line number array. If the comparison logic

detects the new line number is equal to the number in position Y,

then the line in position Y is replaced by the new entry. If the new

number is smaller than the number in position Y, then those lines

starting from position Y through the end of file are repositioned by

moving them down one line position, and the new entry is inserted to

position Y.

After sorting all lines in sequence, the Line-count is increased

to include the new entry. The character-count of the new entry is

accumulated into the Data-count. If the Data-count indicates that

the total characters is not over 4095 bytes yet, the execution logic

routes to the beginning step of this routine. Otherwise, this

91

overflowed file is adjusted by deleting the highest-numbered line.

This adjustment is performed until the Data-count is reduced below

the boundary. Then the execution logic sends a file-full message,

and exits this routine.

6.3.2 LIST and PRINT Routines

The only difference between these two commands is the displaying

destination. The LIST command sets the screen flag (F=l) which leads

the displaying logic to screen. The PRINT command sets the printer

flag (F=2), before routing to share the rest of the program

statements with the LIST command.

In both cases,

syntax is optional.

line specifications,

a specification field following the command

This specification field is used to enter the

in which a dash mark is the separator between

the start line and end line. The user may specify both the start

line and end line, or specify either one, or omit this field. The

execution logic will replace the excluded specification with the

corresponding default value.

As depicted in Figure 6.4, if there is no file established in the

workspace, the execution control is simply transferred to the command

recognition procedure to wait a new command entry. Otherwise, the

execution logic proceeds toward the examination of the specification

field. If there is no line specification, the displaying range

defaults to the whole file. Otherwise, the subroutine STEND is called

to scan the specification field, and return the displaying range.

After checking the error flag returned by STEND and confirming no

Set
>---~ Flag for I---.....~.,

Screen

N

y

92

Set
~-~Flag for

Printer

Has N.
Specification~----------~

Field ?
y

Initialize
SEARCH Flag

Go To
Display
Error

y

Call STEND
Return Start &
End ositions

N

Call DISPLAY

Default
to

All Lines

. FIGURE 6.4 Flowchart for Routine LIST and PRINT

93

error, the subroutine DISPLAY is called to and send the designated

lines to either the screen or the printer.

6.3.3 DELETE Routine

This command routine performs the deletion of a block of

specified source lines. Unlike LIST and PRINT, this routine requires

the presence of the specification field. As listed in the command

summary (Figure 6.1), the user may specify both start line and end

line, or specify either one. A dash mark is also used here to

separate these two line specifications. If one of the line

sp~cifications ;s absent, the corresponding default value is used.

Figure 6.5 illustrates the execution sequence ;n flowchart form.

As may be noted, if the execution logic detects a null specification

field, this routine is exited. When the presence of the

specification field is confirmed, the subroutine STEND is called to

evaluate this field and return the deleting range. The specified

lines must be existed in the file. Otherwise a 'NOT IN THE LISTING'

message is sent.

The deletion work is accomplished by three procedures. First,

those lines to be deleted are excluded from the Line-count and

Data-count. Second, those lines, starting from the line just beyond

the last line to be deleted through the end of file, are moved to new

positions starting from where the first deleting line resided. The

last procedure clears the useless array entries for faster DOS

execution.

Line- Y
~-----..Count=O?

N

Go To
Display
Error

Call STEND

Reduce Line-Count
Data-Count

Call MOVE
(DELEr.rION)

Clear Useless
Lines

N

FIGURE 6.5 Flowchart for Routine DEIEI'E

95

6.4 File Mode Related Command Routines

NEW, EXTEND, FILE, and CALL are the four members of this command

group. The first two commands will change the File mode flag. The

other two take the File mode flag as reference during operation.

6.4.1 NEW Routine

This command clears any entered lines and its corresponding

arrays from memory, so that the user can have the full space to input

a new file. The File mode flag is set to the First file mode. This

command can be employed to clear the Extended file.

In order to destroy all of the defined variables, a very simple

scheme is applied. According to the characteristics of the BASIC

command, RUN, all of the established string arrays and numerical

variables will be set to null by issuing this command. Therefore,

this routine simply re-runs the main program statements starting from

setting the First file mode, as shown in the main program flowchart

(Figure 6.2).

6.4.2 EXTEND Routine

When this command is issued, the current file in memory is

cleared, and the Editor enters the Extended file mode.

This operation starts with setting the File mode flag to

indicate the Extended file. Then, as for NEW, the BASIC command,

RUN, is executed to set all of the arrays and variables to null. As

mentioned, the NEW command can be used to exit the Extended file

mode.

96

6.4.3 FILE Routine

The FILE command routine dumps the current file to transition

buffer, and saves this ASCII file on the disk. The execution logic

will check the File mode flag to determine whether to use the First

file tracks (tracks 37 &38) or the Extended file tracks (tracks 29 &

30) •

The capacity of the transition buffer is only 2K bytes (one

track). Each file may occupy 2 tracks. Therefore, the execution

logic checks to see if the buffer is full, after dumping a byte.

Once the buffer address pointer (BA) exceeds its limit, the contents

of this buffer is saved to the first track of the corresponding file.

The rest of the file then is dumped and saved to the second track.

As explained in Figure 6.6, the dumping procedure for each of

lines is started by storing the character-count (length) of that line

to the buffer location pointed by SA. Then a FOR ••• NEXT loop

converts each of the characters to ASCII representation, and dumps

this ASCII byte to the buffer. As noted, after dumping a byte, the

buffer address pointer is checked. If the contents of BA indicates

that the buffer is full, the execution logic checks the File mode

flag and saves the current buffer data to the proper first track

(track 37 or track 29). Before re-starting the dumping process, the

buffer address ppinter is initialized, and a track pointer (T) is

increased to indicate the first track has been used already.

After having all of the source lines dumped, a null ASCII byte

is placed as file end mark. Next, the execution logic examines the

Initialization

Dump

Character-Count

*FIRSTFILE
TRACK 37 & 38

*EXTENED FILE-
TRACK &:

97

Get
Next
Line

N

Dump

Character of Lin
Init Buffer &:
Inc Track Pointr

Init Buffer &:

Inc Track Point

1

Dump ASCII Null
as End Mark

2

FIGURE 6.6 Flowchart for Routine FILE

98

contents of the track pointer. If the track pointer records that the

first track is not available, the logic stores the buffer contents in

the second track of the corresponding file designated by the File

mode flag. Otherwise, the File mode flag guides the disk accessing

logic to place the buffer data to either of the first tracks.

6.4.4 CALL Routine

This command is the inverse of the FILE function. It retrieves

the First file or Extended file from disk, and reconstructs that file

in the workspace. As with FILE, the current setting of the File mode

flag designates which file to be retrieved.

The calling procedure ;s executed following the reverse order of

filing. As described in the FILE routine, the length of each line is

stored before dumping that line, and the last character in the file

is a null ASCII byte. Therefore, after the retrieving logic loads the

proper track contents to the buffer, the first byte obtained from the

buffer must be the character-count of the first line. If the

character-count is an ASCII null, this marks the end of the file. A

non-zero character-count sets up a FOR NEXT loop to recover the

succeeding characters of that line. After recovering a line, the

execution increments the Line-count, accumulates the Data-count, and

calls the PUTID subroutine to collect that line number. This process

is repeated until the execution logic reads a zero character-count

which marks the end of the file.

As with the FILE routine, a file may occupy more than one traCK

of data. After reading a byte from the buffer, the execution logic

Load Buffer
Track 37 or 29

Initialization

Initialize a
Line

Recover
Character-Count

...... * DEPEND ON
FILE MODE

FLAG

99

N

Recover
~--~Init Buffer Point

Character to Line

Call PUTID to Get
Line Number

.... ... Inc Line-Count &:

Ace Data-Count

FIGURE 6.7 Flowchart for Routine CALL

100

checks the buffer address pointer. If the pointer indicates that the

end of buffer has been reached, then new buffer contents are loaded

from the second track of the corresponding file.

A flowchart for this operation is shown in Figure 6.7.

6.5 Subroutines

This section presents the execution flowcharts for certain

important subroutines. In Figure 6.8 to Figure 6.13, the following

subroutines are explained:

SHRINK -

Scans the source line pointed by X, and replaces the

encountered spaces with one space character followed by an

alphabetic character as repeat-count

RECOVER -

Recovers the source line pointed by X to its original form in

T$ without changing its shrunken form

PUTID -

Puts the line number of the source line specified by X into the

corresponding location of line number array

DISPLAY -

Recovers and sends a block of source lines starting from array

location S through E to screen or printer

STEND -

Interprets the specification field or defines default value (s)

in Sand E

101

GETPOSITION -

Searches the location of the specified line number in the line

number array and returns the appropriate location in X or T

s

ENTER

Initialize
Scan Pointer

102

Collect Preceded
Non-S ace Characs

Search
Non-Space
Character

I~olate

Preceded Space

--------1 Collect 1 Space &
a Re eat-Count

y

Update New Line
Character-Count

Place Shrunk
Line to Array

* REPEAT-COUNT IS
REPRESENTED BY

ASCII A - Z

FIGURE 6.8 Flowchart for Subroutine SHRINK

ENTER

"
Initialize

Scan Pointer
......- ,~

Search
Space Character

"
Collect Preceded
Non-Space Characs

"
End of Line?

y
~ RETURN

N

"Convert Repeat-
I~ Count to Number

~,r:
Collect

One Space

" J\
Number

= Number-1

,~

N
Number=O?

y

Adjust
Scan Pointer

FIGURE 6.9 Flowchart for Subroutine RECOVER

103

ENTER

104

Next
Position

Isolate Preceded
Number Di its

Put Number into
Line Number Arra

FIGURE 6. 10 Flowchart for Subroutine PUTID

Call RECOVER

Next
ine

To
Screen

FIGURE 6.11 Flowchart for Subroutine DISPLAY

105

ENTER

sition

Call GETPOSITION
End Position

Error?

Start Position
~-~

Default

Isolate
cification Fiel

End Position
Default

Adjust
Scan Pointer

Call GETPOSITIOlq-__~~

(start Position

N

Y N....-.....-(Called by DELETE,....--....
?

End Posi
tion = X

End Posi
tion = T

Set
Error Fla

FIGURE 6.12 Flowchart for Subroutine STEND

106

ENTER

Let LN= Decimal
Digits Value

x- BO'TTOM
POSITION

T- TOP POSI
TION

Decrement
T

y

End of

File?

FIGURE 6.13 Flowchart for Subroutine GETPOSITION

CHAPTER 7 B080/8085 CROSS ASSEMBLER

7.1 Overview

To develop an assembly language processing program is the main

purpose of this thesis. This Assembler program performs the clerical

task of translating the 8080/8085 assembly language source program

into the binary (machine) code language which can be executed by the

80BO/80B5-based microprocessor systems.

7.1.1 System Description

This Assembler program is written in BASIC language, and is

stored on disk under the file name ASM85. It is loaded into BASIC

workspace, and executed by the proper menu selection in the System

Executive program.

Figure 7.1 presents

executing the Assembler.

the workspace memory assignment while

A 2K buffer is reserved as a transition

area for the source file created by the Editor. The buffer assigned

for the object codes has a maximum capacity of 1K bytes. The Editor

imposes a maximum capacity upon the source file of BK bytes or 560

lines. A typical 8080/8085 assembly language source line includes

line number, operation code field, and the spaces between them. If an

average line occupies sixteen memory locations, then the source file

comprises 512 lines. Assuming each line generates two bytes of

object code, then a lK buffer for the assembled code is adequate.

Before assembling the source file, the lK buffer region is used

as a temporary work area for the recovery of all reference tables

107

WORKSPACE STAR!' - 327E

53FF
5400

57FF
5800

END OF MEMORY - 5FFF

THE ASSEMBLER PROGRAM & DOS
WORKSPACE

(REFERENCE TABLES TRANSITION
AREA)

THE OBJECT CODE BUFFER AREA

THE SOURCE FILE BUFFER AREA

108

FIGURE 7.1 The Assembler Workspace Memory Map

ENTER

Load Ref
Define Table

Tables to
1----,.-., ,.......--.-.. Size & Init

Object Cod
tter Area

Build
DIRECTIVE

Table

Build
REGISTER &:...-.--....
REGISTER-PAIR
Tables

Build INS &:

BASE-OPCODE
abIes

FIGURE 7.2 Flowchart for Build Tables

109

from the disk. Necessary records include the instruction table, the

base-opcode table, the directive table, the register table, and the

register-pair table. All table information is stored permanently on

disk, and is transposed to corresponding arrays in the BASIC

workspace. The reference table contents occupy disk sectors 4 &5 of

track 39. Except for the base-opcodes, all table entries on the disk

are stored in ASCII form. ASCII null characters are used as

separators between elements on the disk. For the instruction

mnemonic record, disk storage consists of instruction characters

followed by a separator and a corresponding base-opcode. Figure 7.2

shows the flowchart of the table construction sequence at the

beginning of the Assembler main program.

7.1.2 Design Background

The reference tables could have been generated directly in the

BASIC program by reading table entries from DATA statements, rather

than recovering information from disk. However, the DATA statement

occupies BASIC workspace even after the data has been read. Since

the reference tables are large, considerable workspace memory can be

saved by fetching the information from disk. After transferring the

table data into the 1K object code buffer, the data is converted into

BASIC string arrays in workspace memory. The contents of the lK

buffer are later overwritten during object code generation.

Other features of the Assembler have been designed in such a way

as to minimize the requirements for BASIC workspace memory. Only one

source line at a time is recovered from the source file buffer and

110

operated on by the Assembler. All consecutive sequences of ASCII

blanks in the source line are reduced to one space when brought into

workspace. The comment field is not recovered into workspace.

Because the Assembler main program supports no comment field, it

does not output the listing file. Instead, a subprogram SCRIBE ;s

accessed to perform the listing task. Unless the source language

file released by the Editor is 100% error free, the Assembler does

not let the user select the listing function. Every detected error

is sent to either screen or printer in error-code form. The meanings

of the error codes·are listed in the Appendix.

Like most of the assemblers written for microcomputers, a

two-pass scheme is applied. In the first pass, the assembler simply

collects and defines all symbols. In the second pass, it replaces

the references with the actual definitions. Since a source file is

physically read twice, and much time ;s consumed in the BASIC

language interpreter, the assembling speed is slow.

7.1.3 Syntax Format

Many assemblers use fixed format. Some assemblers require that

each field of a line start in a specific column. An example of this

might be when there is no label field, the first column must be a

blank. Another instance is when the operation code (mnemonic) field

must start in the 7th column. The fixed formats are often a nuisance

to users. Thus, for convenience, the design of this Assembler adopts

a free format where the fields may appear anywhere in the line. To

avoid confusion, it is required .that the user retrain from using

111

labels which are the same as instructions or directives.

The field assignment, like all assemblers, may consist of a

label field (optional), an operation code (instruction or directive)

field, an address field (conditional), and a comment field

(optional). Each field must be separated by a proper delimiter.

Figure 7.1 presents the standard Intel 8080/8085 assembler

delimiters.

: - AFTER LABEL FIELD
ISPACE 1

- BETWEEN OPERATION CODE AND ADDRESS
- ·BETWEEN OPERANDS IN THE ADDRESS FIELD

BEFORE COMMENT

FIGURE 7.3 The Standard 8080/8085 Assembler Delimiters

For more flexibility to the user, this Assembler allows the

first three delimiters shown in Figure 7.3 to be interchangable in

all fields. Only the semicolon is always used to mark the comment

field. For example, instead of using a colon after the label field,

the user may type spaces or commas between the label field and the

operation code field. The Assembler will also ignore the extra

delimiters or the appearance of delimiters in comments.

7.1.4 Data Forms

Data in the address field may be presented in various forms. It

may be a label, decimal value, hexadecimal number, binary digits, or

ASCII characters. This Assembler accepts all of the above

representations, and also allows simple arithmetic operations.

For 21 5 complement numbers, the equivalent decimal range for one

112

byte of data extends from -128 to 255. Similarly, two bytes of

binary data range from -2048 to 65535 in decimal representation. The

Assembler converts any negative decimal values, in the address field,

into the corresponding 2's complement form.

This Assembler will also handle arithmetic expressions involving

the operators 11+11 and II_II. The arithmetic expressions are evaluated

from left to right, and no parentheses are accepted. The operands of

the expression may be in the form of a label, decimal number,

hexadecimal value, or binary representation. Care must be taken to

eliminate any spaces between the operand and sign.

7.2 Main Structure

The structure of the Assembler main program can be illustrated by

dividing it into five parts. These include initialization,

first-field scanning, second-field scanning, error displaying, and

the ending procedure. In processing through each pass of the

Assembler, most of these operations are encountered. The Pass

pointer variable, P, guides the logic of these procedures to the

appropriate execution path.

Since thls Assembler adopts a free format, the first group of

characters collected by the scan logic may be a label, an

instruction, or a directive. Unless the syntax logic confirms that

this field is an instruction or a directive, the execution logic

defines this field as a label, and second-field scanning is

initiated. If a proper operation code is not found in scanning the

first two fields, a syntax error code is generated. Subsequent field

113

scanning (operand/address) is implemented by each operation code

routine specified by the syntax logic.

The following variables are assigned to represent the important

pointers and flags throughout the Assembler program.

p - Pass Pointer (1 -pass 1, 2 -pass 2)

X - Scanning Pointer

y - Symbol Table Pointer

A - Source File Buffer Memory Pointer

S - Object Code Buffer Memory Pointer

U - Program Counter

E - Error Counter

R - Error Code

o - Display Flag (1 -printer, 2 -screen)

F - ORG Flag (1 -no ORG yet)

F2 - Filetype Flag (1 -first file, 2 -extended file)

7.2.1 The Initialization Procedure

The initialization process is the start of the Assembler

program. It handles the housekeeping work for the Assembler, and

provides necessary information to the Assembler for reference.

The execution logic of the Assembler begins in building the

reference tables. The sequence. of building these tables is depicted

in Figure 7.2. The execution logic proceeds to prompt the user, and

read a keyboard entry which defines the Display flag guiding the

error code output to either screen or printer.

114

STARr

Build Tables

* ENTRY OF
PASS 1

Init P, Y, and E

-1
* ENTRY OF

",..- - - PASS 2......---......_--...
Reset Pointers &-----

Flags

J* ENTRY OF

...---------",-------...-1 LINE RECOVERY

Peek a CHARACTER-COUNT

Load EXTEND Fil
to Butfer Y File N.....-.... ~----.

End Mark?

Isolate Line Number

IUpdrl; -,
-isource I

Buffer wi
I2nd..!!:.a~

,.,,
Recover
Line
Before

EXTEND
Flag Set?

N
Set

EXTEND
Flag

FIGURE 7.4 Flowchart for The Initialization Procedure

115

To begin pass 1, P is initialized to 1; Y and E are both zeroed.

It should be noted that the entry point of pass 1 is only one logical

operation before the entry point of pass 2. Common pointers and

flags are then initialized. Subsequently the first 2K of source file

is loaded to the source file buffer area.

The routine of scanning the source line begins with clearing the

error code to zero. Before scanning the first field, a source line

is converted into a string variable (1$) from the source file buffer.

This conversion acts upon a line which was formatted by the Editor

when saved to disk.

The first byte obtained from the buffer must be the

character-count of that line. If the character-count is an ASCII

null (00), this marks the end of the file. If a file-end mark is

detected, the program checks the Filetype flag. As mentioned in

Chapter 6, if the Filetype flag indicates that the current file in

the buffer is not an extended file, then the logic loads the extended

file from disk, and sets Filetype flag to 2. The file recovery

process is repeated from the first line of the extended file. If the

current file is the extended file and the end of file character-count

is found, then the END directive has been omitted. The execution

logic is led to the error display procedure.

A non-zero character-count sets up a FOR NEXT loop to

recover the succ~eding characters of that line. If multiple

consecutive spaces are presented, they are represented as a single

space followed by a repeat-count. In the Assembler only one space is

loaded into BASIC workspace. The repeat-count is disregarded.

116

Character recovery ;s finished when the current line is ended or a

semicolon is encountered. The source buffer memory pointer (A)

points to the character-count of the next line.

A single file, even though not an extended file, may occupy more

than one track of information. This means that during character

recovery, the Assembler may need to access the disk in order to

retrieve the remainder of the file. The subroutine CHKBUFF is called

to check the buffer memory pointer (Al. If the pointer indicates

that the end of buffer has been reached, then new buffer contents are

loaded from disk from the second track of the corresponding file.

After obtaining the line number of the current line, the

execution flow is routed to the field scanning procedures. The

execution algorithm for this part of the program is presented in

Figure 7.4.

7.2.2 The First Field Scan Procedure

The field scanning procedure starts by calling the subroutine

ISOLATE. ISOLATE is the only subroutine for line scanning in this

Assembler. It starts collecting characters after finding a valid

symbol (an alphanumeric digit, single quotation mark, or minus sign),

and stops when the line ends or any delimiter (space, comma, or

colon) i~ encountered.

If the current line is a comment line or has no valid starting

character, then the execution logic recovers the next line.

Otherwise, syntax logic starts classifying the first group of

characters.

117

Directive
Operation
(ORG, DS,
DW, or DB)

N

y

N

tEND'

Y Operand
.....---.... Error ?

* COLLECT CHARACTERS
UNTIL HIT DELIMITER

* NOM, LETTER, QUOTE,
OR t - t ARE STAR!' eH

Set Err
Code

y

Defined Y
~-~

Symbol?

Directive ?

Symbol Table Y

verflow ?

Instruction
Translation

1

N Address
Error ?

Define
-'Symbol

FIGURE 7.5 Flowchart for The First Field Scan Procedure

118

Directive EQU is not permitted in the first field, since EQU

must be preceded by an alphanumeric label. If the content of this

field is not a directive, then the subroutine SEARCH MNE is called to

determine whether it is an instruction. The returned variable Z

contains the result of the search, with a zero meaning no instruction

found, or a 1-3 indicating the number of bytes required by the

verified instruction. As shown in Figure 7.5, if the syntax logic

confirms that it found an instruction, the proper execution path is

determined by the Pass pointer, P. Pass 1 only adds Z to the current

Program counter (U), and to the object code buffer pointer (S). Pass

2 performs the actual opcode and address field translations.

The Pass pointer is also checked, if this field is neither a

directive nor an instruction. Pass 1 checks the symbol table to see

if it is a multiple defined label, and to see if the table is full

(maximum 100 entries). The first six characters of this group are

taken as a label and placed into the symbol table, if the above two

checking procedures are satisfied. Since all labels are defined in

pass 1, pass 2 neglects label definition and proceeds to second field

scanning directly.

7.2.3 The Second Field Scan Procedure

Since the characters collected in the first field are not an

operation code, the syntax logic collects and scans the second group

of characters. If the second group is still not a directive or

instruction, the syntax error code is generated.

Like first field scanning, the procedure starts by calling the

119

* SYNTAX
ERRORr

J
I

N

1

Call ISOLATE
Second Field

Has Character ? t---......-

y
~----~ Directive ?

N

'ORG' or
'END' ?

Directive
Operation
(EQU, DS,
DB, DW)

y Operand Instruction
Error ? Translation

N

Evaluate Address y Set
PROG CNTR Error ? Err Code

N

PrGURE 1.6 Flowchart for The Second Field Scan Procedure

120

subroutine ISOLATE to collect the second group of characters. No

valid starting symbol or a non-operation code causes the syntax logic

to set a syntax error code and route to error displayi~g. ORG and

END are the two directives which cannot be preceded by label. It is

a illegal statement if one of these two is found in the second field.

Other directives lead the execution flow to the corresponding

operation routine.

As shown in Figure 7.6, the same algorithm which is used in the

first field scanning is also applied here. The Pass pointer leads

the execution logic to the appropriate path. Pass 1 evaluates

Program counter; pass 2 executes the found instruction translation

routine.

7.2.4 The Error Display Procedure

Because the program is shared by both pass 1 and pass 2, certain

errors are repeatedly generated. It is therefore necessary to

determine when an error code should be displayed.

Error codes 1 to 4 are permitted to be displayed in pass 1;

error codes 5 to 9 are displayed in pass 2. Other entries are

rejected by this procedure, and return the execution control to the

step of recovering the next source line.

Before displaying the accepted error code on the screen/printer,

Error-count (E) is incremented to record this error. Then the

user-defined Display flag leads the displaying statement to either

screen or printer. As depicted in Figure 7.7, the last operation of

this procedure is examining the error code again. If it indicates an

Err Code
= 5-9 ?

y

2

N

Increment
ERROR COUNTER

1

N Err Code
= 1-4 ?

y

121

Display Err
on Screen

2

'END'
ERROR?

1

y

Display Err
on Printer

FIGURE 1.1 Flowchart for The Error Display
Procedure

122

NO END error (code=9), then execution logic routes to the ending

procedure, rather than recovering the next line.

7.2.5 The Ending Procedure

This procedure is entered when END directive is found or a file

ending mark is hit.

First, the object code buffer pointer is checked to see if the

size of the generated object codes is over the lK limit. If it does

exceed the boundary, no pass 2 will be processed, and the execution

flow is led to the error ending procedure. Second, the Pass pointer

is checked. Pass 1 increments the pointer to 2, and re-enters the

initialization procedure for pass 2 operation. If Pass pointer

indicates that the pass 2 operation is completed, then Error-count is

checked to determine the next step. Non-zero Error-count leads the

execution flow to the error ending procedure, in which the Editor may

be selected for error corrections or the System Executive program

take over the control. If Error-count indicates no error was detected

throughout the assembling work, the hexadecimal values of start and

end of Program counter are loaded to the first four bytes of the

object code buffer. As illustrated in Figure 7.8, after the entire

contents of the object code buffer are copied to disk track 36, the

execution logic prompts the user to determine the destination. The

user may select the listing function by simply entering "(":

Otherwise the System Executive program is loaded from the disk and

executed.

123

y

Run
EDITOR

Read
Destination

N
?

y

Error Free

Poke START & END

ADDR to Object
Code Buffer

1

y

/
/

/

y
Object Codes> 1K?

PASS
Pointer
= 2

Run

SCRIBE

* STARr ADDR

AT TOP 2,
END ADDR AT

NEXT 2 LOC.

FIGURE 1.8 Flowchart for The Ending Procedure

124

7.3 Instruction Translation

An instruction may be interpreted into an one-byte, a two-byte,

or a three-byte instruc~ion. When syntax logic leads the execution

to the corresponding instruction routine in pass 2, the found

instruction mnemonic and its base-opcode have been pointed to by the

variable T.

7.3.1 8080/8085 Opcode Organization &Manipulation

By examining the opcode table and the instruction format of the

Intel 8080/8085 microprocessor, an important algorithm can be found.

That is, all the opcodes of register-related instructions are based

upon the associated sequence of register/register-pair. Therefore,

these opcodes can be obtained by manipulating the base opcode with

proper offset value.

According to this algorithm, the register sequence of the

register table and the register-pair table are built as shown in the

following figure.

REGISTER TABLE

ARRAY SUBSCRIPTS 0 1 2 3 4 5 6 7

REGISTER SYNTAX B C 0 E H L M A

REGISTER-PAIR TABLE

ARRAY SUBSCRIPTS 0 1 2 3

REGISTER-PAIR SYNTAX B 0 H SP

FIGURE 7.9 The Register Array and Register-pair Array

125

Those opcodes, which are related to Register B, are chosen as

the base opcode for the corresponding instruction mnemonic family.

The actual opcode then can be acquired by developing an arithmetic

expression involving the array subscripts manipulation of the

corresponding register. For instance, the opcode for INR B is

hexadecimal value 04, then the opcodes for the entire INR family can

be found by performing the following arithmetic operation:

4+(S*8) ; S is the subscript of the corresponding register

Each instruction family has its arithmetic expression to

manipulate its base opcode. Figure 7.10 lists the register-related

instructions and the corresponding arithmetic expressions. All of

the base opcodes in the expressions are presented in decimal form.

As noted in the figure, POP and PUSH families use a different

register-pair table. Since this is the only exception, no extra

table is built for this purpose. The element SP in the register-pair

table simply is tempararily replaced with PSW when POP or PUSH is

met. It may also be noted that RST family uses no table. The number

digit following RST is used in the expression.

Those instructions which are not listed in Figure 7.10 use

absolute opcode from the base-opcode table directly. The total

entries of the instruction table and the base-opcode table are

seventy nine.

7.3.2 The One-byte Instruction Routine

Most of the register-related instructions are one-byte

instructions. Entering this routine with variable T containing the

I.NSTRUCTION ARlTHMETIC EXPRESSION REGISTERS USE

MOV r1, r2 OPCODE = 64+(31*8)+32 B,C,D,E,H,L,M,A

INR r OPCODE = 4+(s*8) B,C,D,E,H,L,M,A

OCR r OPCODE = 5+(s*8) B,C,D,E,H,L,M,A

ADD r OPCODE ::: 128+s B,C,D,E,H,L,M,A

ADC r OPCODE = 136+8 B,C,D,E,H,L,M,A

SUB r OPCODE = 144+5 B,C,D,E,H,L,M,A

SBB r OPCODE = 152+8 B,C,D,E,H,L,M,A

ANA r OPCODE = 160+5 B,C,D,E,H,L,M,A

XRA r OPCODE = 168+s B,C,D,E,H,L,M,A

ORA r OPCODE = 116+s B,C,D,E,H,L,M,A

eMF r OPCODE = 184+s B,C,D,E,H,L,M,A

RST 0-7 OPCODE = 199+(0-1)*8 NON

POP rp OPCODE = 193-1-(5*16) B, D, H, PSW

PUSH rp OPCODE = 197+(S*16) B, D, H, PSW

STAX rp OPCODE = 2+(S*16) B, D

LDAX rp OPCODE = 10+(3*16) B, D

1NX rp OPCODE 2 3+(S*16) B, D, H, SP

DCX rp OPCODE = 11+(S*16) B, D, H, SP

DAD rp OPCODE = 9+(S*16) B, D, H, SP

MVI r, DB OPCODE = 6+(s*8) B,C,D,E,H,L,M,A

LXI rp, D16 OPCODE = 1+(S*16) B, D, H, SP

NOTE: ~ is the subscript of the register sequence in table

FIGURE 7.10 Base Opcodes & Arithmetic Expressions Table for
Register-related Instructions

126

127

position index of the found instruction, a base opcode is obtained

from the corresponding location of the base-opcode array. T is then

checked to determine whether the found instruction is a

register-related instruction. The program logic assigns the

execution to the proper instruction family procedure to get actual

opcode. If the entered instruction ;s not a register-related

instruction, the base opcode is used as actual opcode. The execution

sequence is explained in Figure 7.11, where B represents the base

opcode and S stands for the subscript of the register/register-pair

i n the tab1e .

After the proper opcode is obtained, the subroutine POKEBYTE is

called to place this byte into the object code buffer. Then, the

execution logic checks to see if there are any unnecessary fields.

The error-free exit is to recover the next source line. Any detected

error causes the execution to go to the error display procedure.

7.3.3 The Two-byte Instruction Routine

In the entire two-byte instruction family, only MVI is a

register-related instruction. If variable T indicates that MVI is

met, the procedure of obtaining the actual opcode for the MVI family

is performed. Otherwise the execution logic by-passes the MVI

process and calls POKEBYTE to dump the opcode. After opcode is

placed at the proper location, the subroutine GETDATA is employed to

scan the operand field and return the decimal operand value in

variable D. As shown in Figure 7.12, if the returned error code

indicates that GETDATA could not find an operand (code=l), then the

128

Get BASE OPCODE(B).....--.....
From Table

y

Call Glm.'RP
....-.-~ Return wi

:s- 13+(s*16)

Call GErRGTR
Return wi----.......
B= B+(s*8)

N

N

'MOV' ?

Arith & Logic Y Call CHKRGTR

Family ?

ENTER

* ADD, ADC, SUB,
SOO, •••••••

ORA" CMF etc.

Restore 'SP'

Set
Err Code=8

y

y Err Code N
~---... = O?---~

Extra Fields ?

Call POKEBYTE

N

FIGURE 7.11 Flowchart tor One-byte Instructions Translation

129

ENTER

Get BASE OPCODE(B)
From Table

y

N

Call GETROTR
~-----...o!""Return wi

--------.----- B= B+(8*8)

Call POKEBYTE
Y Err Code......-

= 0 ?
N

Err Code

• 7

Modify
Err Code=6

........_~ Err Codeet ?N~N
(No Operand)

y

2' s Complement
Conversion

Call GETDATA
Return Operand
Value in D

* ASCII BYTE
POKED BY
GETDATA

FIGURE 7. 1 2 Flowchart tor Two-byte Instructions Translation

1~

error code is modified to 6. Because the error code 1 is not

displayed in pass 2. The logic also checks to see if the operand is

an ASCII character. Since ASCII data has been dumped to buffer in

GETDATA, the POKEBYTE statement is by-passed.

The permissible data value in decimal is ranged from -128 to 255.

Exceeding this limit causes an error to be sent. If the data value is

acceptable, the program logic examines the sign of this data. A

Negative value is converted to the 21s complement representation.

The operand byte allocation and the extra field checking procedures

are shared with the one-byte instruction routine.

7.3.4 The Three-byte Instruction Routine

Like the two-byte family, only one instruction, LXI, is

register-related in this family. The algorithm shown in Figure 7.13

is similar to the two-byte instruction routine. Since this routine

sees the operand as a word (two bytes), the valid range for the

returned data is from -2048 to 65535 in decimal representation. The

subroutine POKWORD automatically performs the 21s complement

conversion if the given data is negative.

7.4 Directive Operation

The directives of the standard Intel 8080/8085 assembler are not

all allowed to be used in this Assembler. Several of the

pseudo-operations provided by the Intel assembler are not commonly

used, and the limited workspace does not have the capacity to

accomodate all of the directive operations. Therefore, only those

131

ENTER

Get BASE OPCODE(B)
From Table

y

Modify
Err Code=6

y Call GErr'RP
111------...-........ Return wi

......-.....--... B= B+(s*16)

Call POKEBYTE

Call GEmlATA
Return Operan
Value in D

* OPCODE BYTE

* -2048in(
65536

* AUTO-CONVERI'

2 t s COMPLE

MENT

Call POKWORD

y

Err Code=1?
(No Operand)

Err Code
= 1

FIGURE 7.13 Flowchart for Three-byte Instructions Translation

132

frequently used directives are included in this Assembler. They are

ORG, EQU, OS, OW, DB, and END.

Since the END directive operation is included in the ending

procedure, no description is written for it in the following

subsections.

7.4.1 ORG Operation

The ORG directive sets the Program counter to the value

specified by the operand field, in which the operand may be in the

form of a label, decimal number, hexadecimal value, or binary digits.

Because the pointer of the 1K object code buffer is initialized to

the start of buffer locations, multiple ORGas must specify address in

ascending sequence. Otherwise the former loaded object codes might

be overwritten by the latter dumped codes.

As shown in Figure 7.14, the ORG flag is developed to

distinguish the first met ORG from others. This flag is reset at the

pass entries in the initialization procedure. When an ORG is met,

the execution logic checks ORG flag to determine the execution path.

If the flag indicates that this is the first ORG operation, then the

Program counter (U) is equated to the address value returned by

GETDATA, and ORG flag is set to 2. If ORG flag variable contains 2,

then the object code buffer pointer (5) follows the increment of the

Program counter to a new location.

7.4.2 EQU Operation

This directive assigns the value of the address field to the name

ENTER

Reset ASCII Flag
to Prevent ASCII

Call GEiIDATA
Return New
START in D

* U= USER PROGRAM

COUNTER
S= OBJECT CODE

BUFFER POIN

TER

133

Err Code N
L..----~~--_t= 0 ?

y

* 1- THE 1st
ORG

2- THE REST -,
-,

New START Les
Than Current
FROG CNTR (U).

N

Err Code

= 4

N

y

Increment U &:
S to New Value

Set ORG Flag
= 2

Equate U to
ew STAR!'

(8 Unchange)

FIGURE 7. 14 Flowchart for ORG Operation

134

specified in the label field. Figure 7.15 depicts the flowchart for

this operation.

In order to avoid defining the label twic~, an EQU operation is

executed only in pass 1. Consequently, all the detected errors can

only be displayed in pass 1. Therefore, the found error codes are

modified to syntax error code before exiting the routine. The

address field may take all forms described in section 7.1.4, but only

one ASCII character is allowed. If the subroutine GETDATA returns

ASCII data, the Program counter and the object code buffer pointer

are decrement by one to eliminate the increment in GETDATA. Since the

name in the label field was defined to the current value of the

Program counter in the first field scanning, the EQU operation

redefines this name to the value returned by GETDATA.

7.4.3 OS Operation

The DS directive orders the Assembler to reserve a number bytes

specified by the value in the operand field. The operation simply

increments the Program counter and the object code buffer pointer by

the value obtained at the subroutine GETDATA.

ASCII and negative data are not permissible. The execution

sequence of this operation is depicted in Figure 7.16.

7.4.4 OW Operation

The OW directive stores a list of words into the object code

buffer. The 16-bit values (one word=two bytes) are located starting

at the current setting of the object code buffer pointer. Each word

2

ENTER

ONLY RUN IN

PASS 1

135

* GETDATA
POKED ASCII
&: INC PROG
COUNTR
(u &: s)

Decrement
U &: S by 1

Set ASCII Flag to
Allow 1 ASCII

Call GETDATA
Return Operan
Value in D

Err Code= N......---------.
O?

y

y
ASCII Operand?

N

* REPLACE
VALUE AT

TABLE LOC

Y-1

Define D to
Symbol Value
Table

Extra Fields?

N

y

..--~ Err Code

- 1

FIGURE 7.15 Flowchart for EQU Operation

ENTER

Reset ASCII Flag
to Prevent ASCII

Call GRI'DATA
Return Operan
Value in D

Err Code= O?

y

D Value> O?

y

N

N Err Code=
7

136

Increment PROGRAM
COUNTER to New 1,0

(U. U+D , s~ S+D)

FIGURE 7. 16 Flowchart tor DS Operation

137

in the operand field is separated by either a comma, space, or colon.

The words may be presented by all forms but ASCII. If the value

returned by GETDATA subroutine exceeds the range (-2048 to 65535),

the illegal value error is generated.

As illustrated in Figure 7.17, the execution logic is looped

until all words are stored or an error is detected. There is no

length limit set by this operation, but the Editor can accept a

source line up to 256 characters only.

7.4.5 DB Operation

The DB directive stores a list of bytes into the object code

buffer. The bytes are located starting at the current setting of the

object code buffer pointer. Each operand value is returned by the

subroutine GETDATA. The legal range for a 8-bit value is from -128

to 255. Unlike DW, DB also handles a string of ASCII characters

enclosed in quotation marks. As aforementioned, the ASCII string is

converted and stored by GETDATA.

Figure 7.18 depicts the flowchart for DB operation. As for DW

operation, there is no limit on the length of the list. Each item on

the list is separated by either a comma, space, or colon. An ASCII

string is treated as one item.

7.5 Subroutines

As may be noted in previous sections, several processes are

implemented by calling the proper subroutine. Here only certain

important subroutines are discussed. Others can be reviewed in

ENTER

Reset ASCII Flag
to Prevent ASCII

Call GETDATA

Return Operand
Value in D

N
Err Code = O?

y

Legal Value ? ~N__~~ Err Code:

y

Call POKWORD

Call GEI'DATA
Return Operand
Value in D

Has Operand ?

N

,
""

* -2048 {D <
65536-

FIGURE 7.17 Flowchart for DW Operation

ENTER Set ASCII Flag to
Allow ASCIIs

139

N

y

Call GErDATA
Return Operan
Value in D .

Err Code
....--~

=7,,
~* -128 ~D <256

Call GErDATA
Return Operan
Value in D

FIGURE 1.18 Flowchart for DB Operation

140

details by referring to the Assembler program in the Appendix.

7.5.1 ISOLATE Subroutine

This subroutine is the field scanner of the Assembler program.

Whenever a field is to be isolated from the source line, ISOLATE is

called. Figure 7.19 shows the flowchart for this subroutine.

The scanning pointer, X, is initialized to point to the start of

a source line when that line is recovered into the workspace. X then

is managed by ISOLATE to indicate the next start scanning position.

As illustrated in the flowchart, ISOLATE starts with checking if the

line ends. Then it starts searching a valid field starting

character. An alphanumeric character, a quotation mark (indicates

ASCII), and a minus sign are the valid field starting characters.

Once ISOLATE hits one of these characters, the position of that

character is marked in variable K, and execution logic begins

searching for any delimiters. Either a comma, a space, a colon, or

line ends stops the searching. X now points to the stop position.

Then ISOLATE collects the substring starting from position K through

X-1 in variable G$ for returning. If ISOLATE cannot find a valid

character to start, the error code 1 is returned.

7.5.2 GETDATA Subroutine

Another frequently called subroutine is GETDATA, which scans the

address/operand field and returns the interpreted decimal value in D.

As mentioned, data in the address field may be presented in the

following forms: a symbol, ASCII string, hexadecimal representation,

ENTER

* SEARCH FOR

FIELD STARr
CHARACTER

Start Scanning
From Position X

Number, Let er,
Quote Mark, or
Minus Sign ?

N

/.
I

y

Mark FIELD
START Po~ition

in K K= X

N

yComma, Space, or
Colon ?

An Delimiter)

Colleet Characters
trom Position K to
X into Gt

FIGURE 7. 19 Flowchart tor Subroutine ISOLATE

ENTER
Call

ISOLATE
Err Code

.......--"'iI~

= 1 ?
N

* RETURN IF HIT

'+', '-', OR
FIElD END

Call
SEARCH SYMBOL

N

y

y

.....-_~Undetined Symbo
Error ~--~

(Err Code = 5)y

RETURN

All Decimal
Digits ?

ad Value Fro
Symbol Value
Table to D

FIGURE 7. 20 Flowchart for Subroutine GETDATA

" * BEI'WEEN THE
PRESENT SIGN
AND THE NEXT

SIGN

Call GEI'DATA
(Nested GETDATA)

* CLEAR SUM &

MARK THE
FIRST SIGN's
POSITION TO
1

* MARK THE NEXT
SIGN OR EXPRE

SSION END

Check +
~--...Operand t s Sign

Subtract Add
from to
S~ S~

F!GURE 1.21 Flowchart for Arithmetic Operation

Count The Number of
~--------~~ haracters

y

N Has End Quote
~------..

Mark ?

* MAy BE 0, 1,
2, OR NO LIMIT

144

Illegal Fonn
Error

(Err Code=6)

Start From
Leftmost Char

Convert ASCII,~ ~

Call POKEBYTE

End of
Characters?

Set Up
ASCII Message

N

* TO INFORM
CALLING

ROUTINE

F!GURE 7.22 Flowchart for ASCII Operation

>---~Exclude Tail
Character-H

Call
HEX-DEC

.......~~All Hex
Digits ?

y

RETURN

N

. Illegal
~-~Form Error

(Code:: 6)

FIGURE 1.23 Flowchart for Hex Operation

Exclude Tail
l---~

Character-B

All
Binary
Digits?

y

N Illegal
Value Err

Code: 7)

Call
BIN-DEC

RETURN

Illegal
Form Erro
(Code: 6)

FIGURE 7.24 Flowchart for Binary Operation

146

decimal digits, binary representation, or arithmetic expression. The

main logic of GETDATA leads the execution flow to the proper branch

procedure •.

As shown in Figure 7.20, GETDATA starts by calling the

subroutine ISOLATE to collect an operand field. If no valid

character is found, GETDATA returns the execution control to the

calling routine. Otherwise the data classification is proceeded.

The data classification process is executed in the following

sequence: check if arithmetic, check if ASCII, check if symbol, check

if hexadecimal, check if binary, check if decimal. Figure 7.21, 22,

23, 24 present the corresponding data operations. If the execution

logic cannot classify data in any of the above categories, the error

code is defined to UNDEFINED SYMBOL ERROR.

7.5.3 POKWORD and POKE BYTE Subroutines

The subroutine POKEBYTE dumps the entered byte value 0 to the

object code buffer location specified by the pointer, S. Then

POKEBYTE increments both Program counter (U) and object code buffer

pointer (S) to the next address. The program sequence of POKEBYTE is

listed in Figure 7.25.

4700 REM Subroutine POKEBYTE
4710 POKE S,D : REM Dump byte
4720 5=5+1 : U=U+l
4730 RETURN

FIGURE 7.25 Execution Sequence of Subroutine POKEBYTE

The subroutine POKWORD converts the entered value 0 to two

Call DEC-HEX

Isolate Lo
Byte Digits

Isolate Hi
Byte Digits

Call HEX-DEC

RETURN

* ENTER WITH D
HOLDS WORD DEC

VALUE

-1* RETURN 4 HEX
DIGITS

_ ~* CONVERT TO
DECIMAL

FIGURE 7.26 Flowchart tor Subroutine POKWORD

148

decimal equivalent bytes and stores these two bytes to the object

code buffer. This subroutine starts with calling the subroutine

DEC-HEX to convert the decimal value D to an equivalent 4 digits

hexadecimal representation. DEC-HEX subroutine will convert the

negative decimal entry to the equivalent 2's complement form. Then

POKWORD takes the low-byte of the returned hexadecimal representation

and calls HEX-DEC subroutine. HEX-DEC returns the decimal equivalent

value in D. Next, POKEBYTE subroutine is called to load this

low-byte value to object code buffer. Similar procedures, as shown

in Figure 7.26, are implemented by POKWORD to store the high-byte

value to the next buffer location.

7.6 The Listing Program

As mentioned before, the Assembler main program does not have the

capacity to install the listing operation. Therefore, this program is

developed to perform the listing function for the Assembler. It is

stored on disk under the file name SCRIBE. This program is loaded to

workspace and executed only if no error was detected by the

Assembler.

Since the only reference that can be passed from the Assembler

is the object code file, SCRIBE re-establishes the symbol table for

its own use. Each source line is recovered and scanned before

displaying. The format of line displaying is divided into the

following fields: the address field, the opcode field, the data

field, the source statement field. After printing the file, the

symbols and the corresponding hexadecimal values are listed in the

STAR!'
Recover

Jo--~""

MNE Table

Evaluate
PROGRAM
COUNTER

Obtain
Codes vi

OBJ CODE---<
'--------'

Buffer

Print a Line
on"o.S_creen Printer

--~

rupdate..,
'Source I
'Buffer I

_L-.r-l
STOP

via
OBJ CODE
Buffer

FIGURE 7.27 Generalized Flowchart for File Listing Program SCRIBE

150

form of five sets per row.

Instructions, DB and OW directives generate object codes. SCRIBE

processes these operation codes by obtaining byte/word from the proper

location of the assembled object code buffer. Therefore, only the

instruction and directive tables are restored from disk. Like the

Assembler main program, the program counter and object code buffer

pointer are evaluated follow each operation in order to record the

data code location and rebuild the symbol references.

Before SCRIBE performs the listing work, it prompts the user and

reads a user defined display flag. This flag guides the listing

logic to send the file to either the screen or the printer. After

the listing work is completed, the execution logic interrogates the

user to determine transferring control to the Extended Monitor or the

System Executive program.

Figure 7.27 presents a generalized flowchart to depict the

execution sequence for SCRIBE program.

CHAPTER 8 SYSTEM OPERATIONS

In this chapter, the operation procedures of this software

system are explained by demonstrating the typical processing sequence

of a simple example program. This example source program will be

entered by using the Editor, and will be converted to an 8085 machine

language program by the Assembler. Then the Extended Monitor will be

employed to file this object code program, and send this program to

the SDK-85 for execution. Those procedures of how to obtain

information from the SDK-85 and how to modify the program also will be

illustrated.

The source program in Figure 8.1 is the example program to be

demonstrated. It calculates the sum of a series of data bytes. The

length of the series is in location labeled LENGTH and the series

itself starts in location next to LENGTH. The sum is stored in the

hexadecimal address 2000. This addition program ignores carries.

8.1 Initialization

To start this operation, both SDK-8S and OSI-C4PMF systems first

must undergo hardware initialization. After power up the SDK-8S, the

user should press the EXEC key followed by entering the hexadecimal

address 8227 to enable the data communication program. When the

SDK-8S is controlled by this program, an 'E' is shown in the leftmost

digit of the LED display. Then, a diskette contained the system

programs must be inserted into disk drive A of the OSI-C4PMF

computer. Upon pressing the BREAK key, the OSI prompts the message

151

ORG 9000H
LXI H,LENGTH
MOV B,M
SUB .A

NEXT: 1NX H

ADD M

OCR B
JNZ NEXT

STA 2000H
LENGTH: DB 2

DB 01H, 02H
END

Points to LENGTH
B = data counter
Clears A

Points to data byte
Addition

; Data end ?
No, adds the next byte
Stores the sum
2 data bytes follows
Data bytes

152

FIGURE 8.1 An Example Program

Addition of a string of data bytes1

5
10
15
20

25
30
35
40
45
50
55
60
65

ORG 9000H

LXI H,LENGTH
MOV B,M
SUB A

NEXT: 1NX H

ADD M
DCR B
JNZ NEXT
STA 2000H

LENGTH: DB 2
DB 01H, 02H
END

Points to LENGTH
B = data counter
Clears A
Points to data byte
Addition
Data end ?

; No, adds the next byte
Yes, stores the sum
2 data bytes follows
Data bytes

FIGURE 8.2 Source File of the Example Program

153
'H/D/M ' on the screen. D selects the disk operation and boots the

DOS from the disk. The DOS then loads the System Executive program

to workspace, and executes this program to provide the following menu

display.

FUNCTIONS AVAILABLE:

(1) EXTENDED MONITOR - INTERCHANGE, MODIFY, & FILE DATA

(2) EDITOR - EDIT THE 8080/8085 SOURCE LANGUAGE FILES

(3) ASM85 - ASSEMBLE THE 8080/8085 SOURCE LANGUAGE FILE

(4) FREE - FREE SYSTEM FOR USER PROGRAMMING

SELECT FUNCTION (1-4)?

The user may select the desired operation by entering the

corresponding numerical digit. Any entry that fails to fall into the

range from 1 to 4 will cause this menu to be displayed again. If the

user intends to exit the developed system, the FREE function may be

selected. When the following message is displayed, the workspace is

cleared and the DOS is ready to accept the BASIC language programming

or a DOS command.

SYSTEM FREE
11645 BYTES AVAILABLE
OK

8.2 Edit Source File

To enter and to edit the source file of the example program, the

numerical key 112 11 specifying the edit operation is pressed. The

Editor program then is loaded and executed. A message 1 Command? 1

prompts the user for a command entry. As mentioned in Chapter 6, all

of the Editor commands can be abbreviated to one letter. For

entering the input mode, an 111 11 keyboard entry is issued. When the

input mode prompt 111 is displayed on the screen, the Editor is ready

to accept a source line input.

The program is entered line by line with a non-zero decimal

number at the start of each line. These numbers represent the

sequence of the program statements. Before pressing the RETURN key

to end a line, the SHIFT-O can be used to delete the preceding one

character. After the input mode prompt (I?I), another source line

can be typed or a command can be entered to exit the input mode.

Suppose the form of this program is entered as shown in Figure 8.2.

In order to reserve the insertion capability, the line-increment

value must be at least greater than one. In this demonstration, the

line-increment is five. After having all lines entered, the user may

want to examine this entered source program on screen, or obtain a

hard copy from printer. To do so, the user simply types an IILII for

screen listing, or a lip" for printer output. The user may specify

the range of displaying by entering the line specification following

the command syntax. These commands make the Editor exit the input

mode and to perform the specified command.

Before exiting the Editor, the source file just entered must be

155
filed to disk. This can be done by typing IIF II

• The filing speed is

0.52 second per line. Since this example program did not exceed the

buffer capacity, no extended file is needed. If in the input process

a 'Buffer ends at line XXX' message is displayed on the screen, this

means the program is too large and line XXX is the last line. The

user may then use the extended file mode to accommodate the rest of

the lines. To enter the extended file mode, the user should file the

current file to disk, then type "E II
• Command NEW (IIN") will clear

the extended mode.

Now, the example program source file is in the disk. The Editor

then can be exited by typing IIQII (QUIT). This makes the menu

selections to reappear on the screen.

8.3 Assemble Source File

To assemble the source program, a "311 is entered to select the

Assembler operation. Before the assembling process begins, the

Assembler program sends the following message to interrogate the

user.

List errors on printer instead of screen (YIN)?

After reply, the Assembler starts translating the source file at the

rate of 30 lines per minute, and the following messages will be shown

to indicate the processing status.

This is a slow assembler!

156

Begin assembling ••...

o errors in PASS 1

Continue PASS 2

End assembling. Total 0 error~

These messages indicate the case of error free. If any errors are

detected, a proper error message will be sent. For example, if there

is a syntax error in line XXX, the message will be:

Error #1 in line XXX

In the case of errors, the last message sent by the Assembler is:

Go back to Editor for corrections (YIN)?

In the case of error free, the last message is:

Do you want a completed listing (YIN)?

In both cases, a "N II entry causes the menu selections to reappear on

the screen. If the user selects the listing function, the succeeding

question is:

List on printer instead of screen (YIN)?

Either listed on printer or screen, the assembled example program

157

will be listed as shown in Figure 8.3. After the listing work is

completed, the following message is:

Do you want to go to the Loader (YIN)?

If the reply is lIyll, then the Extended Monitor will be enabled.

Otherwise, the menu selections will be raised.

8.4 Operations of Extended Monitor

In order to communicate with the SDK-8S, Extended Monitor

function is selected. When this program is loaded and executed, the

user should see the welcome messages as followed:

*** SDK-85 EXTENDED MONITOR ***

Current data in buffer are released by the Assembler
Simulated SDK-85 Memory Starting Address - 9000

Ending Address - 9010

COl1111and?

The object code file of the example program now resides in the

Extended Monitor simulated SDK-85 memory buffer area. These boundary

addresses can be changed to simulate another portion of the SDK-85

memory by using the SE command. The SE command may alter the range

but has no affect on the contents in the range.

8.4.1 Insertion of an RET

As mentioned, in order to regain control of SDK-8S, an RET

80
80

/8
08

5
C

R
O

SS
A

SS
EM

B
LE

R
,

R
EL

EA
SE

D
19

82
.

E
.E

.
O

H
IO

U
.

AD
DR

O
P

DA
TA

SE
Q

SO
U

R
C

E
ST

A
TE

M
EN

T

1
;

A
d

d
it

io
n

o
f

a
st

ri
n

g
o

f
d

at
a

b
y

te
s

5
90

00
10

OR
G

gO
OO

H
90

00
21

O
E9

0
15

LX
I

H
,L

EN
G

TH
;

P
o

in
ts

to
LE

NG
TH

90
03

46
20

M
OV

B,
M

;
B

=
d

at
a

co
u

n
te

r
90

04
97

25
SU

B
A

;
C

le
ar

s
A

90
05

23
30

N
EX

T:
IN

X
H

;
P

o
in

ts
to

d
at

a
b

y
te

90
06

86
35

AD
D

M
;

A
d

d
it

io
n

90
07

05
40

D
CR

B
;

D
at

a
en

d
?

90
08

C
2

05
90

45
JN

Z
N

E
X

T
;

N
o,

ad
ds

th
e

n
ex

t
b

y
te

90
0B

32
00

20
50

ST
A

20
00

H
;

Y
es

,
st

o
re

s
th

e
su

m
90

0E
02

55
LE

N
G

TH
:

DB
2

;
2

d
at

a
b

y
te

s
fo

ll
o

w
s

9
0

0
F

01
60

DB
01

H
,

02
H

;
D

at
a

b
y

te
s

90
10

02
65

EN
D

SY
M

BO
L

T
A

B
L

E
:

N
E

X
T

90
05

LE
NG

TH
90

0E

FI
G

U
R

E
8.

3
L

is
ti

n
g

F
il

e
o

f
th

e
E

xa
m

pl
e

P
ro

gr
am

..
J
.

V
1 co

159

(Return-from-subroutine) instruction should be installed at the end.

In editing the example program source file, this instruction was not

included. Therefore, an insertion is needed. By examining the

listing printout in Figure 8.3, the RET instruction should be placed

at address 900E. This means those data bytes starting from the

labeled address LENGTH through the end must be moved down one

location. To do this, the IN command (INSERT) first can be used. By

typing II IN 900E/1 11
, the data block is relocated and the address 900E

is available to enter the opcode of RET. To enter this opcode into

address 900E, the command statement IISU 900E/C9 11 is employed, and the

followed message is:

Substitute 900F?

Since only a byte is to be entered, the reply should be simply a IIN II
•

A 2-digit hexadecimal input will replace the contents of address

900F, and a similar message for the succeeding substitution will be

displayed.

Because the address of LENGTH is changed to 900F, the

corresponding contents of address 9001 must also be modified to OF by

using the same procedure just demonstrated.

One would normally put RET into the original source program.

The modified object codes can be examined by screen display or

printer output. The command EX (EXAM) selects the screen; the

command PR (PRINT) selects the printer. If the user issues the PR

command without address specification followed, the whole object code

160

program will be sent to the DECWRITER printer. Before printing this

file, the following message is asked.

Do you need a title (YIN)?

If the reply is YES, then the next question is:

Title?

Suppose the ti~le is given as "OBJECT CODE LISTING OF THE ADDITION

PROGRAM". Then the printout from the printer will be shown as

following:

OBJECT CODE LISTING OF THE ADDITION PROGRAM:
o 1 234 5 6 7 8 9 ABC 0 E F

9000 21 OF 90 46 97 23 86 05 C2 05 90 32 00 20 C9 02
9010 01 02

As noted, the last address is extended to 9011. In order to

confirm that the simulated memory range covers this expansion, the SE

command can be used. The SE command raises the following messages:

Simulated SDK-85 Memory Starting Address - 9000
Ending Address - 9011

Change Starting Address?

The message verifies that the previous insertion extended the

boundary to include address 9011 already. Therefore, no change needs

to be made. A "N" entry leads the execution to escape the present

function.

8.4.2 Save Object Code File

Before sending this modified object code program to the SDK-85

for execution, the user may wish to save this program to disk. The

user may use any created filename in the directory, or may create a

new filename. However, the CR command must be involved. This

command will display the current directory and will allow creation of

new filenames. For instance the directory messages are:

-- DIRECTORY -

LaC. FILE NAME
1 CHECKIN
2 APPTEST
3 KEY
4 ???
5 ???

Are you sure (YIN)?

If the user simply want to check the directory, the above question

helps the user to escape creation of filename. If the user intends

to create a filename for the example program, then the succeeding

question is:

Enter new file name?

Suppose, the example program is named ADDITION. After entering this

filename, the followed question is:

162

At which storage location (1-5)?

As noted, locations 1 through 3 already have names, and locations 4 &

5 are undefined. The user may select any location. For those

defined locations, this will be a rename process. For the two

no-named locations, this will be a creation process. Suppose the

location 4 is selected. The updated directory will be displayed as

following:

-- DIRECTORY -

LaC. FILE NAME
1 CHECKIN
2 APPTEST
3 KEY
4 ADDITIO
5 ???

Create another file (YIN)?

As noted, the created filename ADDITION is placed into location 4,

but only the leftmost seven characters were defined. The user may

create or rename another filename by typing lIy lI•

The example program ADDITION now is ready to be stored to disk

file location 4 under the filename ADDITIO. The user is able to save

this program by typing liSA ADDITIOn.

8.4.3 Load Program to SDK-aS for Execution

The next step is to load this example program to the SDK-8S

resident memory for execution. Since the range of the simulated

163

SDK-85 memory has not been altered, the loading operation can be done

by si mpl y enteri ng "DU II (DUMP command) wi thout address

specifications. The contents of the current simulated memory then

will be loaded to the corresponding SDK-8S resident RAM locations.

When the prompt "Done" is displayed, the program is loaded.

To order the SDK-85 to execute this program, the RU command

(RUN) must be employed. Either "RU" or "RU 9000" will corrmand the

SDK-8S to execute that program. Since this example program is not a

looping structure and is equipped with an RET, the data communication

channel is still maintained after the program is executed.

8.4.4 Get Result from SDK-85

As noted, this example program ADDITION stores the sum to SDK-85

location 2000. The current simulated SDK-8S memory does not cover

this address. It is therefore necessary to set a new pseudo memory

range. After using the SE command to define a new boundary to

include the address 2000, the GE command (GET) then can be issued.

Suppose the new simulated memory range is set to 2000-2010. Upon the

information is received, the result may be examined by typing "EX

2000-2000" to display only that byte on the screen.

a 1 2 3 456 7 8 9 ABC D E F
2000 03

8.5 Modify Program

The example program just executed performs the addition of two

numbers. As noted from the structure of this program, it can be

164

modified to calculate more numbers by changing LENGTH and adding data

bytes. This may be accomplished in two ways.

The first way is to use the Editor to modify the source program.

To do this, first, the user should type "QU II to exit the Extended

Monitor, then, select the Editor when the menu selection appears.

After entering the Editor, the source file can be retrieved by

issuing the C command (CALL). The example source program will be

loaded to the buffer at the average speed of 0.9 second per line.

When the Editor prompts IDone l
, the user can use the I command to

enter the input mode. The newly entered statement will replace the

same numbered statement in the file. After the proper lines are

entered, the user should file the modified source program to disk,

then exit the Editor and select the Assembler to assemble this file.

Those procedures of re-entering the Extended Monitor and Loading

program to SDK-85 are the same as mentioned before.

The other way is to modify the object code file directly. Since

the object code file of the example program had been filed to disk,

the cOfl111and statement IILO ADDITIO" entry will retrieve that file.

After the file ADDITIO is loaded, the screen will show the following

messages:

Simulated SDK-85 Memory Starting Address - 9000
Ending Address - 9011

The SU command now can be used to substitute and enter contents

at proper locations. Following those loading and executing

procedures described in the previous subsections, this modified

program then can be executed in the SDK-85.

Those operations which are not demonstrated above can be

reviewed in the chapters of the Editor and the Extended Monitor

description.

CHAPTER 9 SUMMARY AND FUTURE DEVELOPMENTS

9.1 Summary

The goals established at the start of this project have been

accomplished. In the SDK-85, the resident RAM has been expanded to

accommodate a larger user program. A data communication circuit has

been constructed on the SDK-85 board for serial interfacing with the

OSI-C4PMF system. The communication control program has been

developed in the expanded EPROM ~emory to co-operate with the host

system to implement the user specified operation. In the host system,

OSI-C4PMF, a cross-assembling and file managing system for the SDK-8S

has been written and installed. This software system includes the

Text Editor, the 8085 Cross Assembler, and the SDK-85 Extended

Monitor. The Editor provides the functions for editing the source

assembly language file. The Assembler translates the source codes to

the 8080/8085 machine code program. The Extended Monitor performs

the data interchanging with the SDK-8S and supplies the data

modifications, and the binary file maintenance capabilities. Through

the assistance offered by this enhancement system, the user now is

able to manage the operation of the SDK-8S microcomputer more

efficiently and conveniently.

This development provides a model of using a DOS-based personal

computer to enhance a kit computer's operating capabilities without

extensive resident hardware and software expansion. Except for the

assembly language programs and the DOS command statements, the BASIC

language programs (Editor/Assembler/Extended

1~

Monitor) are

167

machine-independent, and can be executed on other personal computers.

9.2 Future Developments

Although the present version of the developed system uses almost

all of the memory and disk space, it is still possible to advance the

operation capabilities. The following sections provide both hardware

and software enhancements that can be developed in the future

expansions.

9.2.1 Double-Disk System Expansion

The present software developed is a single-disk operation

system. The operating programs and the user files are both on one

diskette. It is possible to make minor software modifications to

expand the system to a double-disk operation system.

To support this, the DOS commands, DISK!IISELECT A" and

DISK!"SELECT B", can be used in the BASIC program to guide the disk

access to drive A or B respectively. One may construct the system so

that the system programs can be read from disk drive A, and the user

file information can be retrieved from disk drive B. Since track 0

through 9 are reserved by DOS, a total of thirty tracks can be

accessed by the DOS commands CALL and SAVE. Excluding the tracks

used by the user assembly language source file, object code file, and

directory, twenty four user binary files can be installed on the user

file diskette. To initiate this operation, a command INIT, which

will format a file disk, may be added to the Extended Monitor

program. On the system program disk, those tracks which were used to

168

store the user files, then are available to develop other utility

programs to enhance the capability of the system operation.

9.2.2 Hardwired Interrupt

Another major improvement can be scheduled in the future is to

install the hardware RESET function for the Extended Monitor. As

described in Chapter 3 and Chapter 5, the RUN command causes an user

specified program to be executed in the SDK-85. If the specified

program is a looping structure or has no RET instruction at the end,

the user loses control of SDK-85. To improve this, the hardwired

interrupt of the SDK-85 can be employed.

The available SDK-85 user interrupt is RST 6.5 which can be

accessed at connector Jl of the SDK-85 circuit board. At present,

RST 6.5 is disabled and will be available to use after the jumper

wire is removed from jumper 3-4. The 8085 RST 6.5 is a high-level

sensitive interrupt input. The interrupt signal must be held on for

at least 5,770 ns. Therefore, the hardware design could be developed

by using a one-shot chip and an inverter to generate a proper timing

signal to the RST 6.5 input. The falling-edge trigger signal for the

one-shot chi~ can be fed from the OSI-C4PMF ACIAls RTS output pin or

a PIAls control line. To co-operate with the hardwired signal, the

SDK-85 communication program must also be modified. Since the vector

for RST 6.5 is set to branch to RAM location 20C8, the communication

program should place a JMP instruction for re-entry in locations

20C8-20CA during initialization.

In doing so, the Extended Monitor command RESET is able to

169

generate an interrupt to the SDK-85 system for restoring the data

communication channel.

170

REFERENCES

1. Intel Corporation, SDK-85 System Design Kit User's Manual, 1978

2. Intel Corporation, MCS-80/B5 Family User's Manual, 1979

3. Ohio Scientific Inc., OSI-C4PMF Challenger User's Manual, 1978

4. MOS Technology Inc., MCS6500 Microcomputer Family Programming

Manual, 1975

5. Lance A. Leventhal, 8080A/80B5 Assembly Language Programming,

Osborne &Associates Inc.

6. Lance A. Leventhal, Introduction to Microprocessors: Software,

Hardware, Programming, Prentice-Hall Inc., 1978

APPENDIX A - CROSS ASSEMBLER ERROR CODE INTERPRETATION

CODE INTERPRETATION

1 - OPERATION CODE SYNTAX ERROR

2 - MULTIPLE SYMBOL DEFINITION

3 - SYMBOL TABLE OVERFLOW (MAXIMUM 100 ENTRIES)

4 - NON-ASCENDING ORG SEQUENCE

5 - UNDEFINED SYMBOL

6 - ILLEGAL OPERAND FORM

7 - ILLEGAL OPERAND VALUE

8 - UNNECESSARY/ILLEGAL OPERAND

9 - NO END DIRECTIVE

171

172

APPENDIX B - SDK-85 DATA COMMUNICATION PROGRAM

8080/8085 CROSS ASSEMBLER, RELEASED 1982. E.E. OHIO U.

ADDR OP DATA SEQ SOURCE STAT~MENT

;*************************************.~***************************

;Initialization

SDK-8S DATA COMMUNICATION PROGRAM

;**~************

;************************* Main Routine *************************~

Program startin9 address
Pattern Fer ACIA Master r~set

Pattern For prOgraMMing ACIA
MasK pattern For CTS test
MasK pattern For RDRF test
MasK pattern For TDRE test
ACIA Status Re9.(Read Only)
ACIA Control Res.(Write Only)
ACIA TransMit/Receive Re9.

Try next

Yes, get cOMmand in
Set COMmand Table POInter
Set CO'J n t e or
Match?
Poini to COMMand Routine addr HI
Yes, Found it
Check iF end of table
Yes, invalid comMand
No, sKip address bytes

8227H
010101118
00010101B
000010008
000000018
00000010e.
8EH
STATUS
8FH

EGU
EGU
EGU
EGU
EGU
EGU
EGU
EOU
EGU

;This program resides perManentlY in the SDK-aS EPRO~ ~emorY loca
;tions startin9 FrOM address 8227H. It accepts cOMmands FrOM the
;OSI-C4P SysteM, and executes the correspondins cOMmand routines.

;Def'initions:

ORG BEGIN

WACOMO: CALL DATAIN
LXI H,TABLE
MVI 8,4

NEXT: CMP M
INX H
JZ FOUND
OCR B
JZ WACOMD
INX H
INX H
JMP NEXT

;ComMand 'J e r i F i cat ion

L>~ I SP,20C2H Initialize StacK Pointer
MVI A,RESET
OUT CONTRL Master reset ACIA
Mt..II A,PROGRM
OUT CONTRL Pro9ramMing ACIA, RTS l o u

NOTYET: IN STATUS Status Re9. to A
ANI MSKCTS ChecK if 051 r e a d y
JNZ NOTYET No, checK asain

;Re-entrY location for COMMand Routines
;Wait command input FrOM OSI-C4P

BEGIN
RESET

PROGRM
MSKCTS
MSKHRF
MSKTRE
STATUS
CONTRL
OSIC4P

2
3
4
S
G
7
8
9
10
11
12
13
14

8227 15
0057 16
0015 17
0008 18
0001 19
0002 20
008E 21
008E 22
008F 23

24
25

8227 26
27
28
29
30
31
32

8227 31 C220 33
822A 3E 57 34
8??r D3 8E 35
822£ 3E 15 36
8230 D3 BE 37

38
8232 08 BE 39
8234 E6 08 40
8236 C2 3282 41

42
43
44
45

8239 CD 8Ga2 46
823C 21 ca82 47
823F 06 04 48
8241 BE 49
8242 23 SO
8243 CA 4F82 Sl
8246 OS 52
8247 CA 3982 53
824A 23 S4
8248 23 5S
824C C3 4182 56

57
58
59

173

;TransFer control to the COMMand Routine

;*****************~********Routine RUN ****••***.******~*********

;************************ Routine TRANSM *************************

:************************* Routine RECEIV **4*********************

Send same COMMand to aSI-C4P

Load Routine address lo-~yte

Get starting address hi-byte

Receive a data "byte FrOM ACIA
Store the byte to speciFIed addr.
End of' data?
No, 90 For next
Yes, 90 to checK error

Wait until ACIA ready to transMIt
G~t a d a t a byte
T~ansmit data to osr-c~p

End of data?
No, 90 For next
Yes, wait until ACIA ready

Set MeMOry pointer & byte counter

Set memory pointer & byte counter

Get checKsum hig~-byte

Send to OSIC4P
Get response FrOM OSIC4P
OSI-C4P agree with?
No, gO to waiting For COMMand in
Yes, get checksu~ low-byte
Send to OSIC4P

Load Routine address hi-hyte
(D,E)= Routin~ address
Prepare Par P2ssins address to PC
Go to execute COMmand Routine

Get s tar tin <3 add res s 1 0 toJ - ~ y t e
(H,L)=Starting address

OSIC4P

A,M
E,A
H
A,M
D,A

A,B
OSIC4P
DATAIN
B
WACOMD
A,C
OSIC4P
WACOMD

DATAIN
H,A
DATAIN
L,A

MOl)
MOl.,J
INX
MOl.J
MOl.'
>~CHG

PCHL

MOt)
OUT
CALL
CMP
JNZ
MOt)
OUT
JMP

CALL
MOV
CALL
MOV

RUN:

CHECK:

FOUND: OUT

;Routine CHECK is shared by TRANSM and RECEIV For checKing the
;accuMulated checKsuM

;Set UP re-entry address For returning Fr~M the speciFied program
LXI D,WACOMO Re-entry is WACOMO
PUSH D ; WACOMD to StacK

;Routine TRANSM transmits a string of data bytes specified ~y the
;OSI-Ca.P to ACIA

TRANSM: CALL SETUP
;Start transmission procedure
NEXOUT: CALL EMPTY

MOt.J AyM
OUT OSIC4?
CALL CHKSUM
JNZ NEXOUT
CALL EMPTY

;Routine RUN transFers execution control to the pr09ram speciFie~

;by the OSI-C4P. The speciFied prOgraM is executed as subroutine.

RECEIV: CALL SETUP
;Start receiving procedure
NEXIN: CALL DATAIN

MOl) M,A
CALL CHKSUM
JNZ NEXIN
JMP CHECK

;Routine RECEIV receives a strin9 of data bytes FrOM the OSI-C4P,
:and locates the received data to the address speciFied by the osr

824F D3 8F GO
61
r"'"OL

63
8251 7E 64
8252 SF 65
8253 23 66
8254 7E 67
8255 57 68
8256 E8 69
8257 E9 70

71
72
73
74
75
76
77

8258 CD 9782 78
79

825B CD C082 80
82SE 7E 81
82SF D3 8F 82
8261 CD AC82 83
8264 C2 sea2 84
8267 CD C082 85

88
87
88
89

826A 78 90
8268 D3 8F 91
826D CD BGB2 92
8270 B8 93
8271 C2 3982 94
8274 79 95
8275 D3 BF 96
8277 C3 3982 97

98
99
100
101
102
103

827A CD 9782 104
105

8270 CD 8682 lOG
8280 77 107
8281 CD AC82 108
8284 C2 7D82 109
8287 C3 GA82 110

111
112
113
114
115
118

828A CD 8682 117
8280 67 118
828E CD 80682 119
8291 SF 120

121
122

8292 11 3982 123
8295 DS 124

174

8296 E9

82CO DB 8E
82C2 EG 02
82C4 CA C082
82C7 CS

82B6 DB BE
8288 EG 01
82BA CA 8682
828D DB 8F
82BF C9

82AC 81
82AD 4F
82AE 78
82AF CE 00
8281 23
82B2 18
8283 7A
8284 83
8285 C9

Add data to checKsuM low-byte

Go to execute the speciFied pr09.

Set or reset Z Flag

Pro~a9ate CY to checKsuM hi-byte
Point to next location
DecreMent byte counter by 1

TRANSMIT comMand byte
T~ANSM entry address
RECEIVE COMMand byte
REeEl t.' e n try a d dor e s s
RUN COMMand byte

Clear checKsuM hi-byte
Clear checKsuM low-byte

Load ACIA Status Register
Is TransMit Data Register busy?
Yes, keep checking
No

Get starting address hi-~yte

Set MemOry pointer hl-byte
Get starting address low~byte

Set Me~OrY pointer low-byte
Get byte-count hi-byte
Set byte counter hi-byte
G~t byte-count low-byte
Set byte counter low-byte

0, Load ACIA Status Register
Is a data received?
No, keep trying
Yes, get it

C
e,A
A,.B
o
H
D
A,D
E

DATAIN
H,.A
DATAIN
L,A
DATAIN
D,.A
DATAIN
E,A
A,.O
B,A
C,A

'0 '
TRANSM
, I '
RECEIt)
'R'

STATUS
MSKRRF
DATAIN
OSIC4P

STATUS
MSKTRE
EMPTY

PCHL

CALL
MOt.)
CALL
MOt)
CALL
MOl)
CALL
MOl.'
Mt.'I
MOt.'
MOt.'
RET

SETUP:

EMPTY: IN
ANI
JZ
RET

TABLE: DB
DW
DB
OW
DB

;Subroutine SETUP gets Starting address & Byte-count FrOM the oSI,
;and clears ChecKsum.

;Subroutine CHKSUM accuMulates ChecKsuM, increMents Memory Pointer
;and decreMents Byte Counter.

;*********************** Subroutine SETUP ************~***********

;**~******************** Subroutine EMPTY **********************.*

;*********************** Subroutine CHKSUM *************~*********

;Subroutine EMPTY checks the status of TORE bit until TDRE is set,
;which Means ACIA is readY to tranSMit another byte.

;*********************** Subroutine DATAIN ***********************

;------------------------- COMMand Table -------------------------

CHKSUM: ADD
MOV
MOt.'
ACI
INX
DCX
MOt.'
ORA
RET

DATAIN: IN
ANI
JZ
IN
RET

;Subroutine DATAIN checKs the status of RDRF bit, and loads the
:received byte to ACCUMulator.

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
IG8
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

4F
5882
49
7A82
52

8297 CD 8682
829A 67
829B CD 8682
829E 6F
829F CD BG82
82A2 57
82A3 CD 8682
82A6 SF
82A7 3E 00
82A9 47
82AA 4F
82AB C9

82CB
82C9
82CB
82CC
82CE

175

82CF 8A82 191 OW RUN RUN entry address
8.2D1 45 192 DB 'E' RESET C o mma n d b yt e
8202 0800 193 OW 08H t10n i t o r RST 1 ro IJ t i 1""1 e entry a d d r ,

194 END

SYMBOL TABLE:

BEGIN 8227 RESET 0057 PROGRM 001S MSKCTS 0008 MSKRRF 0001
MSKTRE 0002 STATUS 008E CONTRL 008E OSIC4P 008F NOTY=:T 8232
WACOMD 8239 NEXT 8241 FOUND 824F TRANS:,,! 8258 NE}(OUT 8258
CHECK 825A REC~ Il.' 827A NE>(I N 827D RUN 828A SETUP 8297
CHKSUM 82AC DATAIN 82B6 . EMPTY 82CO TABLE 82CB

OBJECT CODES

0 2 3 4 5 G 7 8 9 A e. c D E F
8220 31 C2 20 3E 57 D3 BE 3E 15
8230 D3 BE DB 8E EG 08 C2 32 8"" CD SG 82 21 C8 82 06c:
8240 04 2.E 23 CA 4F 82 OS CA 38 82 23 23 C3 41 82 D3
8250 SF 7E SF 23 7E 57 EB E9 CD 97 82 CD CO 82 7E D3
8260 8F CD AC 82 C2 58 82 CD CO 82 78 D3 SF CD 36 82
8270 2,8 C2 39 82 79 03 8F C3 39 82 CD 97 82 CD 88 82
8280 77 CO AC 82 C2 70 82 C3 SA 82 CD 8G 82 67 CD e.G
8290 82 SF 11 39 82 05 E9 CD S8 82 67 CD 86 82 6F CD
82AO B6 82 57 CD 96 82 SF 3E 00 47 4F C9 81 4F 78 CE
82BO 00 23 18 7A 83 C9 D9 3E ES 01 CA B8 82 DB 8F C9
82CO DB 8E EG 02 CA CO 82 C9 4F 58 82 49 7A 82 52 8A
8200 82 45 08 00

APPENDIX C - OSI-C4PMF DATA COMMUNICATION PROGRAM
176

;***~*******~*
2

aSI~C4P DATA COMMUNICATION PROGRAM

;**

;*************** Subroutine TRANSM ****************

;The Following procedures are shared bY TRANSM and
;RECEIV. It COMPares SDK-aS checKSUM to oSI checK
;sum, and generates status code to notiFy BASIC.

Get SDK-aS checksum hi-by
Agree wI OSI's?
No
Yes, r e 9 IJ e 5 t c h e c Ks fJ,rt Lo
Get SDK-8S ch~cksUM la-bY
A9 r e e t., / a5 I ' s ?
No
Yes, return to 9ASIC

Y points RECEIVE CO~Mand

Return wI SDK-8S entered
r-e c e i v i n a Mode
Return wI SDK-BS readY to
accept data bytes, & Y=O
Get a byte
Transmit the byte
Add CHECKSUM, inc pointer,
dec b Yt e - C 0 IJ n t
Data end?1 No, 90 For next
I Yes, checK CHECKSUM

P~ogra~ starting location
Local ~eMOrY pointr hi-~yt

Local MeMO~Y pointr lo-~yt

Status Register of ACIA
Control Register of AC!A
Pattern for testing CTS
Pattern For testing RDRF
Pattern For testing TDRE
ACIA Trans/Receiv Registe~

NE>{OUT

DATAIN
CHKHI
ERRHI
SDK8S
DATAIN
CHKLO
ERRLO

#$01
BEGIN

CMPLO) ,Y
DATAO
CHKSUM

SETUP

$SEOO
$8C
$98
$FCOO
$FCOO
%00001000
%00000001
%00000010
$FCOl

BNE

JSR

* START

JSR
CMP
BNE
STA
JSR
CMP
BNE
RTS

LDY
JSR

LDA
JSR
JSR

CHECK

;TRANSM is called by BASIC to iMPlement SEND COMM

;and of Extened Monitor. It orders the SDK-aS to
;enter the receiving Mode, and transmits the data
;blocK speciFied by BASIC to the SDK-SS.

NEXOUT

;DeFinitions:

;This 6502 assemblY language prOgraM is loaded From
;di5K whenever the Extended Monitor written in BASIC
;i5 executed. It occupies MeMOry FrOM SEOO through
;SEE9 and uses page ze~o locations 98 & 9C. It is
;co~posed of four Major subroutines called bY the
;BASIC routine LINK of the Extended Monitor prOgraM
;to tMPleMent the corresponding data communication
;coMmand with the SDK-8S SysteM.

START
MPHI
MPLO

STATUS
CONTRL
MSKCTS
MSKRRF
MSKTRE

SDK85

3
4
5
G
7
8
8

10
11
12
13
14
15
16
17
18
19
20 5EOO=
21 009C=
22 0099=
23 FCOO=
24 FCOO=
25 0008=
28 0001=
27 0002=
28 FC01=
29
30
31 5EOO
32
33
34
35
36
37
38
39
40
41 5EOO A001
42 SE02 20625E
43
44 SEOS 208ASE
45
48 SE08 B188
47 SEOA 20D05E
48 SEOD 20A15E
49
SO SE10 DOFG
51
52
S3
54
55
56
57 SE12 20C5SE
58 SE1S CDE3SE
59 SE1a DOOC
GO SE1A 8DOIFC
61 SEID 20CS5E
62 SE20 CDE25E
63 SE23 D007
64 SE25 60

177

5E G ADE35E ERRHI LDA CHKHI Wrong c h ec KS'JM hi-byte
SE 9 8DOIFC STA SDK85 No n e e d to send la-byte
SE C A803 ERRLO LDA #$03 Tr-an s mi 5S i on error lYle 5 sage

SE E 8DE45E STA MSG For inforMing BASIC
5£ 60 RTS

SE32 AOOO LDY #$00 y points TRANSMIT c ornrn a n d
5E34 20625E JSR BEGIN Return wI SDK-aS entered

TRANSMISSION mo d e
5E37 208A5E JSR SETUP Return wI SDK-8S ready to

send data b vt e s , & '1'=0
5E3A 20C55E NE>~ IN JSR DATAIN Get a b yt e ~roM SDK-8S
SE3D 919B STA (MP~O) , Y Allocate the b yt e
5E3~ 20A15E JSR CHKSUM Add checKsum, Inc pointer,

Dec b yt e - c 0 IJ n t
SE42 DOF6 BNE NE>(r~ Data end?/ No, 90 for next
5E44 4C12S'~ JMP CHECK Yes, 90 to checK CHECKSUM

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

:*************** SubrolJtine RECEIV ****************

;RECEIV is called by BASIC to iMPleMent ~ET cOMMand
:oF Extended Monitor. It orders the SDK-85 to en
:ter the transMission mode, and receiv~s the data
:blocK speciFied by BASIC FroM SDK-aS to the corre
:s?ondin9 siMulated meMOry locations in OSI-C4P.

92

SE47 AOO2
5E49 20825E

5E4C AOO4
SE4E 89005E
5E51 8001FC
SES4 88
SESS B9D05E
5E58 20005E
SESB 60

:*************** Subroutine RESET ****************

:*************** Subroutine BEGIN ****************

;***************** Subroutine RUN *****************

Y points RESET COMMand
Return wI SDK-aS reset
Return to BASIC

Y points RUN COMMand
.Return wI SDK-aS read
to accept address
Y points to STAHl
Y points to STAHl
Get address hi-byte
Send to SDK-85
Y points to STALO
Get address la-byte
Sen d t 0 SDK - 8 S
Return to BASIC

BYCLO-1,Y
DATAO

#$03
BEGIN

#$02
BEGIN

#4
#4
BYCLO-l.,Y
SDK85

LOY
JSR

LDY
LDY
LDA
STA
DEY
LDA
JSR
RTS

LDY
JSR

. RTS

:BEGIN is called to send the COMMand byte pointed
;by the calling subroutine to SDK-SS. IF SDK-8S
:returns a wrong echo, execution is return to the
; BASrc pr09'r'aM.

;RESET is called bY BASIC to iMPleMent RESET COM
:Mand of the Extended Monitor. It orders the SDK
:85 to enter the SysteM Monitor.

:RUN is called by BASIC to imple~ent RUN command of
;Extended Monitor. It orders the SDK-8S to execute
:a user speciFied 8085 pr09raM.

83
94
95
9G
97
98
99

100
101
102
103
104
105
lOG
107
108
109
110
111
112
113
114
115
118
11 7
118
119 SESC A003
120 SESE 20625E
121 5EGl 60
122
123
124
125
128
127
128
129
130

178

;ChecK iF SDK-BS ready to accept cOMmand

:*************** Subroutine CHKSUM ***************

:**************** Subroutine SETUP ***************

:CHKSUM accuMulates checKSUM, increments Memory
;inter, decreMents Byte-count

More to send?/ Yes, next

Test if Carry clear
Yes, propagate Carry
No, inc Mem ptr Lo e-b v t e
Test iF need inc hi-byte
Yes
Test iF need decreMen
both BYCLO & BYCHI bytes
No, only Lo r-b v t e
Yes

Memory pointer in Page 0
Clear DECIMAL bit

Clear Carry
AccuMulate data byte

Prepare For testing end
Set/reset zero bit

Send to SDK-8S

Set Y as counter/pointer

Point return to BASIC
Return to BASIC
Get COMMand byte
Send to SDK-8S
Get echo FroM SDK-aS
Risht COMMand?
Yes, 90 to RIGHT
No, prepare Err Message
For infOrming BASIC
Prepare return BASIC
Error-free return

Get ACIA STATUS Resister
ChecK CTS
SDK-85 ready?/ Yes
No, prepare Err Message
For inForMing BASIC

NE}·{r
IMLO
MPLO
IMHI
MPHI

NO DEC
BYCHI
BYCLO
BYCHI
BYCLO

#4
BYCLO-l,Y
DATAO

CHKLO
CHKLO
MP8YT
CHKHI
MPLO
THEN
MPHI
BYCLO

STATUS
MSKCTS
READY
#1
MSG

CMOTB,Y
SDK85
DATAIN
eMDTB,Y
RIGHT
#2
MSG
RETURN

LOY
LDA
JSR
DEY
BNE
LDA
STA
LDA
STA
CLD
RTS

BNE
DEC

NODEC DEC
LDA
ORA
RTS

SETUP
NEXT

CHKSUM CLC
ADC
STA
BCC
INC

MPBYT INC
BNE
INC

THEN CPY

:SETUP sends the Starting address & Byte-count to
:SOK-8S. It then loads the Memory pointer with it
;Image. It returns to the calling ~aJor subroutin
:with Checksum byte & DECIMAL bit cleared.

BEGIN LOA
AND
BE~

LDA
STA

RETURN TS}{
INX
INX
TXS
RTS

READY LOA
STA
JSR
CMP
BE£J
LDA
STA
JMP

RIGHT RTS

131
132
133 5EG2 ADOOFC
134 SEGS 2508
135 SE57 FOOA
136 SEG9 AB01
137 SEGB 80=:45E
138 5EGE BA
139 5~GF E8
140 5E70 E8
141 5E71 9A
142 5E72 GO
143 5E73 89E55E
144 SE7G 8D01FC
145 5E79 20C5SE
148 5E7C D9ES5E
147 SE7F F008
148 5E8l A902
149 5~a3 8DE45E
150 SEB8 4C6E5E
151 5E89 GO
152
153
154
1S5
156
157
158
159
160
181 5E8A A004
162 5E8e B9DDSE
163 5E8F 20D05E
164 5E92 88
165 5E93 DOF7
166 5E95 AODD5E
167 5E98 859B
1GB 5E9A AODD5E
169 5E9D 859C
170 5E9F 08
171 SEAO 60
172
173
174
175
176
177
178
179 SEAl 18
180 SEA2 6DE25E
181 SEAS 8DE2SE
182 SEA8 9003
183 5EAA EEE3SE
184 SEAD EGSS
185 SEAF 0002
186 5EBl ESSC
187 SEB3 CCDESE
188
189 5EB6 0003
190 5E88 CEDFSE
191 SEBB CEDE5E
192 SE8E AODFSE
193 SEC1 OODESE
194 SEC4 60
195

179

SECS ADOOFC DATAIN LDA STATUS ACIA Status r e a i s t e r in
SECa 2901 AND #MSKRRF MasK RORF bit
SECA FOF9 BEG DATAIN Data in ?/ No, try again
5ECC ADOIFC LDA SDK85 Yes, get data to A
SECF GO RTS

SEDO AA DATAO TA}{ Save data b yt e to x
SED1 ADOOFC TORE LDA STATUS Status res is t e r to A
SED4 2902 AND #MSKTRE MasK TORE bit
SEDG FOF9 BEG TDRE Busy?/ Yes, wait
5~D8 8EOIFC ST>{ SDK85 No, ready to senddata
5EDB 8A T}{A d a t a bacK to A
SEDe 60 RTS

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
21G
217
218
219
220
221

;*************** Subroutine DATAIN ***************

;Gets a data byte FroM ACIA and returns data in A.

;*************** Subroutine DATAO ****************

;Sends the data byte in A to ACIA for transmission

;************ Reserved MeMOry Bytes **************

;This area is initialized by BASIC prosraM

;**************** COMMand Table ******************

;***
END

TRANSMIT command byte
RECEIVE cOMmand byte
RUN COMMand byte
RESET cOMmand byte

IMage of' MPLO
I ma a e of' MPH I
Byte-count lo-byte
Byte-count hi-byte
SDK-8S start addr lo-byte
SDK-85 start addr hi-byte
ChecKsuM lo-byte
Ch e c k s um hi-b v t e
Message byte

CMDTB .BYTE '0'
.BYTE 'I'
.BYTE 'R'
.BYTE 'E'

IMLO *
IMHI *

BYCLO *
BYCHI *
STALO *
STAHl *
CHKLO *
CHKHI *

MSG *

223
224
225 SEDD
226 SEDE
227 SEDF
228 SEEO
229 SEE1
230 SEE2
231 S~E3

232 SEE4
233 SEES
234
235
236
237
238 SEES 4F
239 SEE7 49
240 SEE8 52
241 SEE9 4S
242
243
244

APPENDIX D - ENHANCEMENT SYSTEM EXECUTIVE PROGRAM

24 REM SETUP INFLAG & OUFLAG FROM DEFAUL
25 X=PEEK(10950): POKE 8993,X: POKE 8994,X
27 REM CHECK FOR EOOO MEMORY
28 FOR SC=lT030:PRINT:NEXT
29 IFPEEK(S7088)=223 THEN POKE8794,37
30 PRINT"SDK-85 E}{TENDED MONITOR & CROSS ASSEMBLER SYSTEM E~{ECUTI(.JE"

40 PRINT:PRINT" JULY 25, 1882 RELEASE": PRINT
48 POKE 64512,2: REM SET UP 300 BAUD FOR DECWRITER PRINT~R

50 GO TO 100
60 PRINT:PRINT: INPUT "SELECT FUNCTION (1-4)";A
70 ON A GOTO 500,800,300,10000
10 o PR I NT: PR I NT: PR I NT If FUN CT IONS A()AI LABLE : If : PR IN T : PRr NT
110 PRINT" (1) E.>{TENDED MONITOR - INTERCHANGE, MODIFY, & FILE DATA"
115 PRINT
120 PRINT" (2) EDITOR - EDIT THE 8080/8085 SOURCE LANGUAGE FILES"
125 PRINT
130 PRINT" (3) ASM85 - ASSEMBLE THE 8080/8085 SOURCE LANGUAGE FILE"
135 PRINT
140 PRINT" (4) FREE - FREE SYSTEM FOR USER PROGRAMMING"
150 GOTO GO
180 REM
300 REM ASM85 - ASSEMBLER
310 REM
330 REM CHANGES LOWER WORKING LIMIT TO $53FF
340 POKE 133,83
360 GoSUB 2000
370 RUN"ASM8S"
380 REM
500 REM EXTENDED MONITOR
510 REM
530 REM CHANGES LOWER WORKING LIMIT TO $S5FF
550 POKE 133,85
570 DISK!"CALL 5800=38,1": REM BRING ASSEMBLED DATA TO BUFFER
575 DISK!"CALL SEOO=39,1": REM 6502 PROG.IN
580 GOSUB 2000
590 RUN lOSI-85"

600 REM
800 REM EDIT
810 REM
8GO REM CHANGES LOWER WORKING LIMIT TO $57FF
870 POKE 133,87
880 GOSUB 2000
890 RUN"EDIT"
1890 REM
2000 REM ENABLE "REDO FROM START"
2010 POKE 2893,28:POKE 2894,11
2020 REM DISABLE "," & ":"
2030 POKE 2972,13: POKE 2976,13
2050 RETURN
3000 REM
10000 REM FREE THE SYSTEM FOR USER PROGRAMMING
10018 REM
10020 REM ENABLE "," & n:"
10025 POKE 2972,58: POKE 2976,44
10026 REM FULL WORKING SPACE
10028 POKE 133,95
10030 REM REPLACE "NEW" AND "LIST"
10040 POKE 741,76 : POKE 750,78
10060 REM DISABLE "REDO FROM START"
10070 POKE 2883,SS:POKE 2894,8
10090 REM ENABLE CONTROL-C
10100 POKE 2073,173
1 0 1 lOPR I NT : P R I NT II SYSTEM FREE": PRI NT: Pq I NT" 11 G4 5 BYTE 5 At) AI LA8 LE "
10120 NEW: END

180

APPENDIX E - SDK-85 EXTENDED MONITOR PROGRAM

PRI NT: PRI NT: PRI NT II *** SDK -95 E}{TENDED MON I TO::? *** fI

2 PRI NT: PRI NTII CIJ r r e n t da t a i n b fj FFer are r e I e a sed b y the Ass e Crt b ! e"f' "
7 REM Display & deFine pseudo MemOry ra~ge and cOMmand array
8 BS=22016:GOSUB 30500:GOSUB 40000
9 REM Recover User Directo"f'Y
10 DISK!"CALL 5FOO=39,Z"
11 A=24320: FOR }{=1 TO 5: T$="II
12 N=PEEK(A):A=A+l:IF N>7 GOTO 100
14 FOR Y=l TO N:T$=T$+CHR$(PEEK(A»:A=A+l:NEXT Y
16 F$(X)=TS:P(X)=PEEK(A):A=A+l:NEXTX
18 GOTO 502: REM To start COMMand "f'eco9nition
20 GOTO GOO: REM DUMP Routine entry
~~ GOTD 6S0: REM GET Routine entry
24 GOTO 700: REM RUN Routine entry
26 GOTO 750: REM RESET Routine entry
28 GOTO 800: REM EXAM Routine entry
30 GO TO 1600: REM SUBSTITUTE Routine entry
32 GO TO 2400: REM INSERT Routine entry
34 GOTO 3200: REM ERASE Routine entry
38 GOTO 4000: REM SAVE Routine entry
37 GOTO 4500: REM LOAD Routine entry
38 GO TO 4800: REM PRINT Routine entry
40 GOTD 5600: REM MOVE Routine entry
42 GOTO 6400: REM SEE/SET Routine entry
44 GOTO 1000: REM CREATE Routine entry
4S GOTO 3500: REM CHAIN Routine entry
46 GO TO 2000: REM GUIT Routine entry
90 REM
95 REM For uninitialized Directory
100 S=OR Y=}{ TO 5:F${Y) =1l???U :NEXT
110 REM
502 REM *~*** COMmand Recognition
504 PRINT
50S INPUT"CoMMandU;A$
510 N=LEN(A$):T=ASC(LEFT${A$,1»:IF T<6S OR T>SO GOTO 30000
515 REM Scan and isolate the leftMost 2 cOM~and characters
520 FOR K=l TO N
525 T=ASC(MID$(A$,K,l»
530 IF T>64 AND T<91 THEN NEXT
540 CMS=LEFT$(LEFT$(A$,K-l),2)
SSO J=N-(K-l):CHK=O
555 REM ChecK with COMMand Array entries
560 FOR X=l TO 15
570 IF CM$<>CT$(X) THEN NEXT
580 ON X GOTO 20,22,24,26,28,30,32,34,36,37,38,40,42,44,45,48
590 GOTO 30000: REM Syntax error
595 REM
600 REM ***** DUMP COMMand Routine
610 GDSUB 10000: REM Call PARSE
620 ON CHK GOTO 30000,30050,30100,30300
630 LO=O: GOTO 11500: REM To LINK
635 REM
650 REM ***** GET COMMand Routine
680 GOSUB 10000: REM Call PARSE
670 ON CHK GO TO 30000,30050,30100,30300
872 REM Extend the end of siMulatin9 range if necessary
875 IF EN>DN THEN DN=EN:D=DN:F=Z:GOSUB 20600
680 LO=50: GOTO 11500: REM To LINK
690 REM
700 REM ***** RUN COMMand Routine
702 REM Use deFault value iF no speciFication
705 IF J=O THEN NS=Sr:aOTO 720
710 GOSUB 20100: REM Use speciFication
715 ON CHK GOTO 30000,30050,30100

718 IF J-(K+3)<>0 GOTO 30000
720 LO=7!: GOTO 11500: REM To LINK
730 REM
750 REM ***** RESET Command Routine
760 LO=92: GO TO 11640: REM To LINK with only cOMmand
770 REM
900 REM ***** EXAM COMMand Routine
810 DP=I: REM Set flag For scre~n display
815 GOSUB 10000: REM Call PARSE
920 ON CHK GOTO 30000,30050,30100,30300
825 DS=NS: REM NS will be redeFined
828 GOSUB 7000: REM Call DISPLAY
830 PRINT: INPUT"Cont.inlJe next 256 bytes (YIN)" ;A$
940 IF ~EFT$(A$,l)<>"Y" GDTD 504
850 8C=256:GOTO 828
8GO REM
1000 REM ***** CREATE COMmand Routine
1010 REM Display the current Directory
1030 GOSUB 1200: INPUT"Are YOU s ur e (YIN) II ;B$
1040 IF LEFT$(3$,1)=IIN" GoTO 504
1050 PRINT:INPUTIIEnter net.., file na/'Y,e"~e:$:B$='-EFT$(8$,7)

1060 PR I NT: I NPUT If At t..J h i c h 5 tor a 9 e 1 0 cat i c n (1 - S) II ; A$

1070 T=VAL(A$):IF T=O OR T>S GoTO 1080
1075 REM DeFine FilenaMe to Directory & display updated Directory
1080 F$(T)=B$:GOSUB 1200:INPUT"Create arJother tile (Y/N)U;S$:GOTO 1040
1090 REM
1198 REM ***** DISPDIR Subroutine
1199 REM Display the current Directory on screen
1200 PRINT:PRINT H

-- DIRECTORY --":PRINT:PRINT" LOC.. FILE NAME":PRINT
1210 FOR X=l TO 5:PRINT X;" ";F$(X):NEXT
1220 PRINT:RETURN
1230 REM
1600 REM ***** SUBSTITUTE Command Routine
1605 IF J=O GO TO 30050: REM No speciFications
1610 P=2: GOSUB 20200: ON CHK GOTO 30000,30050,30100,30300
1520 IF NS-ST>2043 GoTD 30300
1625 REM Substitution
1630 POKE SA,D: SA=SA+l: IF NS<DN GOTO 1650
1635 DN=NS: D=DN: F=2: GOSUB 20600: REM Extend the simulatin9 ~ange

1640 IF NS-ST=2043 THEN PRINT:PRINT"The end of buFFer": GOTO 504
1650 NS=NS+l: D=NS: GOSUB 11200: REM For next P~Q~pt message
1660 PRI NT: ? RI NT" S tj b 5 tit IJ t e "; H~ >{ $;" !.01 i t hit;
1670 INPUT A$: IF LEFT$(A$,1)="N" GOTO 504
1690 J=LEN(A$): GOSUB 20700: ON CHK GOTO 30000,30050,30100
1700 GOTO 1630
1710 REM
2000 REM ***** gUIT COMmand Routine
200S REM Save the current Directory to disk beFore exiting
2010 A=24320:FOR X=l TO 5
2020 N=LEN(F$(X»:POKE A,N:A=A+1
2025 FOR Y=l TO N:PoKE A,ASC(MID$(F$(X),Y,l»:A=A+l:NEXT Y
2030 POKE A,P(X):A=A+1:NEXTX
2040 DISK! "SAl,,'E 39,.2=5FOO/l" :RUN"BE}{EC*1I
2050 REM
2400 REM ***** INSERT Command Routine
2 4 0 5 IF J=O GOTO 30050
2410 P=l: GOSU8 20200: ON CHK GOTO 30000,30050,,30100,30300
2420 IF DN+D-ST)2043 OR NS>DN GOTO 30300
2425 REM Move blocK down
2430 BC=(DN-NS)+l: SA=SA+(DN-NS): F=l: GOSUB Z0500
2440 REM Extend the end of siMulating range
2450 DN=DN+D: D=DN: F=Z: GOSUB 20800: GOTO 11890
2460 REM

3200 REM ***** ERASE COMmand Routine
3205 IF J=O GOTO 30050
3210 P=l: GOSUB 20200: ON CHK GOTO 30000,30050,30100,30300
3215 IF NS>DN GOTO 30300
3220 BC=(DN-N5-D)+I: IF BC<O GOTO 30000
3225 REM Move data blocK UP For deletion
3230 SA=5A+D: F=-l: D=-D: 'GOSUB 20500: GOTO 2450
3240 REM
3500 REM ***** CHAIN CO~Mand Routine
3510 GOSU8 8000:IF X>5 GO TO 30~OO

3515 REM Calculate the pages of the File in buFFer
35Z0 GOSUB 15000: IF P+P(X»8 GOTO 30300
3525 REM Load the speciFied disk File
3530 T$=RIGHT$(STR$(X+30),2): SA=8S+4+(DN-ST)+1: D=SA: GOSU9 11200
3540 DISK~"CA "+HE>~$+"="·T$+lf,lf1: BS=SA: F=O: GOSU9 20000: tJ=D
3545 REM Extend the simulatins range to include the disK Fil~

3550 F=2: GOSUB 20000: B5=22016: BC=D-V+l: D=DN~3C: F=Z: GOSUB 20500
3555 REM Delete the ranging bytes of the loaded disK file
3560 0=-4: SA=SA+4: F=-I: GOSUB 20500: GOSUS 30500: GOTO 11890
3570 REM
4000 REM ***** SAVE COMMand Routine
4020 GOSUB 8000:' IF }{)5 GOiO 30400
4030 GOSUB15000:T$=RIGHT$(STR$(X+30)F2):P(X)=P:P$=RIGHTS(STR${P),l)
40 4 0 DISK!"SA u+T$+" Fl=5600/"+P$:GOTO 11690
4050 REM
4500 REM ***** LOAD COMMand Routine
4520 GOSU8 8000:IF X>S GOTO 30400
4530 T$=R I GHT$(STR$ (}{+30) ,2) : D15K! II CA 5600= "+T$+ II r 1"
4540 GOSU8 30S00:GOTO 11890
4550 REM
4800 ~EM ***** PRINT COMMand Routine
48 10 0 P=2 : PR I NT: I NPUTIf Do YOU n e e d any tit 1 e (Y / N) " ; 8 $

4820 IF LEFT$(B$Fl)="N" GOTO 815
4830 PRINT:INPUT"Title";B$:PRINT#1,BS:PRINT#1:GOT081S
4840 REM
5500 REM ***** MOVE ComMand Routine
5610 IF J=O GOTO 30050
5620 GOSU9 20100:0N CHK GOTO 30000,30050,30100
5630 IF J-(K+3)=0 GOTO 30050
5640 MS=NS:J=J-(K+3):P=4:GOSUB 20200
5650 ON CHK GOTO 30000,30050,30100,30300
56GO EN=D:BC=(EN-NS)+l:D=MS-NS
5570 IF BC+(MS-ST»2044 OR EN>DN OR NS<ST GOTO 30300
5575 REM Check move upward or downward
5680 IF MS<NS THEN F=-I:GOSU9 20S00:GOTO 5700
5690 F=l:SA=SA+BC-l:GOSUB 20500:GOTO 5720
5895 REM For upward MoveMent only
5700 IF EN<>DN GOTD 11690: REM No need to reduce the end
5705 REM Change the end or siMulating range
5710 DN=MS+BC-l:F=Z:D=DN:GOSUB ZOGOO:GOTO 11690
5715 REM For downward Movement only
5720 IF MS+BC-l(DN GOTO 11690
5730 GOTO 5710
5740 REM
6400 REM ***** SEE/SET COMmand Routine
5410 GOSUB 30S00:PRINT:NS=ST:EN=DN
6420 INPUT"Change starting address";A$
6430 PRINT:IF LEFT«$(ASrl)="N" GOTO 6480
6440 GOSU8 6600:0N CHK GOTO 30000,30050,30100
6450 NS=D
8480 INPUr"Change ending address";A$
6490 IF LEFT$(A$,l)="N" GOTO 6520
6500 GOSU8 6600:0N CHK GOTO 30000,30050,30100
6510 EN=D
6520 IF EN-NS>2043 OR NS>EN GOTO 30300
8530 ST=NS:O=ST:F=O:GOSUB 20600:DN=EN:D=D~:F=2:GOSUB20GOO:GOTO 11690
6550 ~EM

8600 J=LEN(A$):P=4:GOSUB 20700:RETURN

GG10 REM
7000 REM ***** DISPLAY Subroutine
7080 NS=INT(DS/1G)*lS:8K=DS-NS:T=lG-BK
7090 PRINT
7120 IF DP=2 GOTO 7150
7130 PR!N~" 0 1 ,., 3 4 5 G 7 8 9 A e. C D E F"
7140 GOTO 7160
7150 P~!!\IT# 1 , II 0 2 3 4 5 G 7 8 9 A 8 C !) E F I'

7155 REM Fer the Fi~st row only
7 1GO e, ~ $ = II " : D=NS : GO5 UB 11 2 o0 : DS P'$=HE~{$

7170 REM Fill blanKs
7180 FOR X=l TO T
7190 IF 8~=0 GOTO 7220
7200 DSP$=DSP$+8K~:BK=9K-1:GOTO7190
7220 0 = PEE;.((5 A) : GO SUB 1 12 o0 : DS P$:: DS P$ + II " +RIG HT$ (HE}{ $, 2)
7240 DS=DS+!:SA=SA+l:SC=BC-l:IF BC=O GOTO 7270
72GO NE){T x
7270 GOSUg 7S00:NS=NS+1S:IF BC=O THEN RETURN
7280 REM For the rest of rows
7310 D=NS:GOSUB 11200:DSP$=HEX$
7330 FOR X=l TO 16
7340 D=PEEK(SA):GOSU9 11200:nSP$=DSP$ 1I "+R!G~T$(HEX$,2)

7360 DS=DS+l:SA=SA+l:BC=BC-l:IF BC=O GOTO 7380
7380 NE)-{T x
7380 GOSUS 7S00:IF BC=O THEN RETURN
7410 NS::NS+16
7420 GOTD 7310
7430 REM
7500 IF DP=l THEN PRINT DSPS:RETURN
7530 PRINT#l,DSP$:RETURN
7540 REM
8000 REM ***** GETFILE Subroutine
8005 IF J=O GOTD 8018: REM No filename speciFied
8008 REM Get FilenaMe speciFication
8010 8$=RIGHT$(A$,j) :FOR X=l TO J:IF MID$(9$,;{,1><>" " GOTO 8020
801 S NE~<T

8018 X=G:RETURN
8020 B$=RIGHT$(B$,J-(X-l»
8025 REM ChecK with Directory
8030 FOR X=l TO S:IF 8$<>F$(X) THEN NEXT
8040 RETURN
10000 REM ***** PARSE Subroutine
10005 REM Parse the address speciFication Field to return either the
10008 REM speciFied value(s) or the deFault value(s)
10010 IF J<>O GOTO 10040
10020 SA=BS+4:NS=ST:BC=(DN-ST)+1:EN=DN:GOTO 10150
10040 GOSUB 20100:IF CHK<>O THEN RETURN
10060 IF j-(K+3)<>0 GOTO 10080
10070 8C=(ON-NS)+1:EN=DN:GOTO 10130
10080 J=J-(K+3):I=4:GOSUB 10500:IF CHK<>O THEN RETURN
10100 IF j-(K+3)<>O THEN CHK=l:RETURN
10110 HEX$=DG$:GOSU9 11000:EN=D:8C=(D-NS)+1
10130 SA=BS+4+NS-ST
10140 IF EN-ST>2043 OR NS-ST<O THEN CHK=4:RETURN
10150 IF BC<O THEN CHK=l:RETURN
10160 RETURN
10180 REM
10500 REM ***** GETDG Subroutine
10502 REM Get I di9its From speciFication Field
10510 8S=RIGHT$(A$,J)
10520 FOR K=l TO J
10530 T=ASC(MID$(8$,K,1»
10540 IF T>47 AND T<SB GOTO 10580
10550 IF T>G4 AND T<71 GOTO 10580
10560 NE}{T K
10570 CHK=l:RETURN

184

10580 DG$=MIDS(BS,!-<,I):T=!...EN(DG$):rF T<I THEN CHK=Z:RETURN
10580 FOR N=l TO !
10600 T=ASC(MID$(DG$,N,l»
10610 IF T<48 OR T)70 THEN CHK=3:RETURN
10620 IF T>S7 AND T<65 THEN CHK=3:RETURN
10630 NE}{T N
10640 RETURN
10650 REM
11000 REM ***** HTOD Subroutine
11005 REM Convert input HEX$ to the equivalent d~ciMal output in D
11010 L=LEN(HEX$):D=O
11020 FOR 1=1 TO L
11030 N=L+l-r:T=ASC(MID$(HEX$,N,1»
11050 SI=D+IG~(r-l)*(T-55):S2=D+16ft(!-!)*(T-48)

11070 IF T>G4 THEN D=51
11080 IF T<64 THEN 0=52
11090 NEXT I
11100 RETURN
11110 REM
11200 REM ***** DTOH Subroutine
11205 REM Convert the input D to the equivalent 4-di9it hex in HEX$
11210 TD(O)=D
11220 FOR 1=1 TO 4
11230 TD(I)=INT(TD(I-l)/18):TP(I)=TD(!-!)-TDCI)*lG
11250 N=!:IF INT(TD(I»=O GOTO 11280
11270 NE~{T

11280 FOR 1=1 TO N
11290 TE${N+!-I)=CHR$(48+TPCI»
11300 IF TPC!»9 THEN TE$(N+1-I)=CHR$(S5+TP(I»
11310 NE){T
11320 HE}{$=""
11330 FOR 1=1 TO N
11340 HEX$=HEX$~TE${I):NEXT

11370 IF N=4 THEN RETURN
11380 HE>'$="O"+HE}{$:N=N+l :GOTO 11370
11390 REM
11500 REM ***** LINK Routine - A linKage between BASIC & Machine subs
11508 REM Place the SDK-85 startin9 address
11510 D=NS:GOSU8 11800:SH=DH:SL=DL:IF LO=71 GOTO 11630
11540 REM Place the byte-count
11550 D=8C:GOSU8 11800:POKE 24288,DH:POKE 24287,DL
11560 REM Place the oSI local start~n9 address
11570 D=SA:GOSUB 11800:POKE 24Z9S,DH:POKE 2428S,DL
11820 POKE 24291,O:POKE 24292,0: REM Clear CHECKSUM bytes
11630 POKE 24289,SL:POKE 24290rSH
11635 REM Zero MSG byte and Set UP machine subroutine entry address
11640 POKE 24293,O:POKE 8955,LO:POKE 8956,94
11650 REM Call the correspondin9 machine subroutine
11860 POKE 64S12,21:X=USReX):POKE 64512,2
11870 CHK=PEEK(24293): REM ChecK cOMMunication error status in MSG
11880 ON CHK GOTD 30120,30140,30160
11690 PRINT:PRINT"Oone":GOTO 504
11700 REM
11800 REM ***** SPLIT Subroutine
11805 REM Split input D to two decimal-byte, DH and DL
11810 GOSUB 11200:T$=HEX$
11820 HEX$=LEFT$(T$,2):GOSUB 11000:DH=D
11830 YEX$=RIGHT$eTS,Z):GOSU8 11000:0L=O:RETURN
11840 REM
15000 REM ***** CALCPAGE Subroutine
15010 P=INTC{(ON-ST)+3)/ZSG):IF P+2SG=CDN-ST)+3 THEN RETURN
15020 P=P+l:RETURN
15050 REM

20000 REM ***** STEND Subroutine
20005 REM G~t simulating start or end address value in D
20010 D=PEEK(8S+1+F):GOSU8 11200:SE$=RIGHTS(HEXS,Z)
20020 D=PEEK(BS+F):GOSUB 11200:HEX$=SE$+RIGHT$(HEX$,2)
20030 aosus 11000:RETURN
20040 REM
20100 REM ***** GETNS Subroutine
20105 REM Get the sp~ciFied s t a r tt na address va Lus in NS
20110 I=4:GOSUB 10500:IF CHK<>O THEN RETURN
20120 HEX$=OG$:GOSU8 11000:NS=O:RETURN
20130 REM
20200 REM ***** SCAN Subroutine
20205 REM Translate speciFication Field with no deFault options
20210 GOSU8 20100:rF CHK<>O THEN RETURN
20230 IF NS<ST THEN CHK=4:RETURN
20240 IF J-(K+3)=O THEN CHK=2:RETURN
20250 J=J-(K+3):GOSUB 20700:IF CHK<>O THEN RETURN
20260 SA=BS+4+(NS-ST):RETURN
20270 REM
20500 REM ***** UPON Subroutine
20505 REM M0 \.1e a b I 0 c K 0 Fda tau P war d 0 r d 0 l-Jn t-l a r d
20510 FOR X=1 TO BC
20520 T=PEEK(SA):POKE SA+D,T
20530 SA=SA-F:NEXT
20540 RETURN
20550 REM
20600 REM ***** CHANGE Subroutine
20805 REM Change siMulating start or end boundary to D
20510 GOSUB 11800
20620 POKE BS+F,DL:POKE BS+F+l,DH:RETURN
20630 REM
20700 REM ***** GETDATA Subroutine
20705 REM Get P-digit of data FroM specification Field & return value
20710 I=P:GOSUB 10S00:IF CHK<>O THEN RETURN
20720 IF J-(K+(!-l»<>O THEN CHK=l:RETURN
20730 IF P=l THEN D=VALCDG$):RETURN
20740 HEX$=DGS:GOSUB 11000:RETURN
20750 REM
29999 REM ***** Error Display Procedures
30000 PRINT:PRINTU?Syntax error lf : GOTOS0 4
30050 pqINT:PRINTU?Lac~~ of' data tl : GOTOS0 4
30100 PRINT:PRINTU?Non-hex error lf : GOTOS0 4
30120 PRINT:PRINTItGo to initialize SDK-8s u:GOTO 30200
30140 PRINT:PRINT"Reset & initialize SDK-8s u : GOTO 30200
30 160 PRI NT: PRI NTU Tran s miss ion e or or a r II

30200 PRINT:INPUTItExeclJte again CY/N)u:S$
30210 IF LEFT$(BS,l)=uy" GOTD 11500
30230 GOTD 504
30300 PRINT:PRINTU?Exeeds liMits u : GOTOS0 4
30400 PRINT:PRINTU?UndeFined f'ile ll : GOT0 5 0 4
30450 REM
30500 REM ***** SHOW Subroutine
30505 REM DeFine & display the siMulating ranse by the 1st 4 bytes of
30508 REM the buFFer contents
30510 F=O:GOSUB 20000:ST=D
30530 PRINT: PRINTuSiMuiated SDK-8S MeMOry Start i n a Address - II ;HE~{$

30540 F=2:GOSUB 20000:DN=D
30550 PRINT" Endin9 Address - ";HEX$:RETU~N

30560 REM
40000 REM ***** DeFine COMMand Array Subroutine
40010 DIM CT$(lS)
40020 FOR X=1 TO 16
40030 READ CT$(X)
40040 NEXT X
40045 RETURN
40050 DATA "DU", "GE", "RU", uRE", tfEX", "SUfi," IN", "~Ru
40060 DATA "SA", II LO" , " PR" , " MO" , lf SE" , "CRtf , " CH" , I f)U"

186

APPENDIX F - TEXT EDITOR PROGRAM

5 REM Text File Editor Pro9ram
10 REM
20 PRINT:PRINT:PRINT"-- TEXT FILE EDITOR __ "
30 V=O:GOT040: REM Clear Extended mode eRe-run entry For NEW COMM2nd)

35 V=l: REM Set Extended Mode (Re-run entrY For EXTEND cOMmand)
36 REM
38 REM DeFinitions
400IMI$(281),I(280):FORX=lTOS:READT$:C$(X)=TS:NEXT
80 DATA "I","N",IIF","C","L","P","D","E","Q"
90 REM
100 REM ***** COMmand Recognition
105 I=O:C=O: REM Initialize line-count & data count
110 PRINT:INPUTIfCoramand";A$:N=LEN(A$)
112 REM
115 REM Test iF the leFtMost character is a letter
120 T=ASC(LEFT$(A$,1»:IFT<65CRT>80GOT020000
122 REM
125 REM Isolate the leftmost character of the syntax Field
130 FORK=lTON:T=ASC(MID$(AS,K,1»:IFT>G4ANDT<91THENNEXT
150 M$=LEFTS(LEFT$(AS,K-l),I):J=N-(K-l):R=O
iSS REM
150 REM Chec~ with the COMmand array
170 FORX=lTOS:IFM$<>C$(X)THENNEXT
190 ONXGOT0200,500,GOO,800,1000,2000,3000,4000,4S00
195 GOT020000: REM Syntax error
198 REM
200 REM ***** INPUT COMMand Routine
205 PRINT
210 IFI=280GOT020300: REM Test iF reach maxiMU~ line limit
220 INPUTA$:N=LEN(AS):IFVAL(LEFT${AS,1»=OGOT0120: REM May be ccmm2nd
222 REM
225 REM ShrinK the entered line
230 X=I+l:IS(X)=A$:GOSUB9000:IFR=lGOTOZ0400: REM Violate space liMit
232 REM
235 REM Fill the line nUMber array
240 GOSUB5000:IFI=OOR!(X»I(!)GOT0300: REM No ne~ ·~inq

242 REM
245 REM Sorting Procedures - either replaceMent or insertion
250 FORY=lTOI:IFI(X)<>I(Y)GOT0270
255 R~M Replace line Y with the n~w line
Z80 C=C-LENCI$(Y»-1:I(Y)=I(X):I$(Y)=I$(X):GOT0310
270 IFI(X»ICY)GOT0290
275 REM Insert the new line at Y and reposition the rest of lines
280 T=I(X):T$=!$(X>:A=(I-Y)+I:S=X:E=S:F=-I:GOSUB3S00:I(Y)=r:I$(Y)=T$
290 NEXTY
300 !=I+l
305 REM Test iF data-count overFlowed
310 C=C+N+l:IFC(4086GOT0210
320 REM Adjust the File by deleting the hi9hest-nuMber~d line
330 C=C-LEN(!$(!»-1:I$(!)=III1:I=I-l:R=Z:IFC>4095GOT0330
350 GOT020300: REM To inforM the user that File ~nds

360 REM
500 REM ***** NEW COMmand Routine
510 PRINT:?RINT"OK":RUN30: REM Clear all variables
520 REM
600 REM ***** FILE COMMand Routine
GOS PRINT:PRINT"DuMPin9 ••• II : A=2 25 2 8 : P=1 : FORX= l TOI
608 REM Coad the character-count of that line
810 N=LENCI$(X»:POKEA,N:A=A+l:GOSUB700: REM Test t~ n~ed 2nd tracK
615 REM Load characters of that line
620 FORY=lTON:T=ASCCMIDSC!$(X),Y,1»:POKEA,T:A=A+l:aOSUB70O:NEXTY
630 NEXTX: REM Continue the next line
832 REM
635 REM Install the file-end mark

188

G40 POKEA,O:IFP=lTHENGOSU87S0:GOT020S00
645 R~~ Stare the current bufFer to ~rQPer ~ile tracK
6:50 I F l) =0 THENDIS K ! If SAl) E 38, 1 =58 o0 I 8 It : GOT0 20500
660 DISK!" SAl~JE 30, 1 =5800/8" : GOT020S00
670 REM
700 RE~ ****~ CHKFULL Subroutine
701 REM Store the buFFer to th~ 1st tracK of the aorres?~ndin9 File
702 REM land initialize bufFer pointer iF the current buFFer Full
70S IFA<>2457GTHENRETURN: REM Not Full yet
710 GOSU8750:P=2:A=22528:RETURN
720 REM
750 REM ***** SAVEFIRST Subroutine
751 REM Filemode Fla9 ~uides the bufFer to be saved to track 37 or 29
755 IFV=OTHENDISK!IfSAVE 37,1=5800/S":RETURN
760 DIS ~ ~ "s A l.,1 E 29, 1 ;:5800/8" : RET IJRN
770 REM
800 REM ***** CALL Subroutine
801 REM Load either tracK 37 or 29 to buFFer
802 !Fl~j=OTHENDISK!"CALL 5800=37,1" :GOT0810
804 DISK!"CALL 5800=29,1 11

8 10 PRI NT: PRI NT If Re CO'} e." i n 9 • • • II : I =0 : C=<) : ~< = 1 : A=22528
812 REM
815 REM Test iF the character-count byte is the end MarK (0)
820 I $ (~{) =" II : N=PEEK (A) : I FN=OGOT020S00
830 C=C+N+1:A=A+l:GOSUBSOO:FORY=lTON
840 T$=CHR$(PEEK(A»:I$(X)=I$(X)~T$:A=A+l:GOSUB900:NEXTY

850 GOSU85000:I=I+1:X=X+l:GOT0820
860 REM
900 RE;"f ***** CHKEMPTY Subroutine
901 REM Load the 2nd tracK of corresponding File iF necessary
90S IFA<>2 4 5 7 6 THENRE TURN
9 1o I F (.I =I) T!-i=: ND ! SK ! "C ALL 580o=38 1 1 II : GOT0930
920 DISK!UCALL 5800=30,1"
830 A=2252S:RETURN
840 REM
1000 R~M ***** LIST COMMand Routin~

1005 F=1: REM Set Flag For scre2n display
1010 IFI=OGOTOI10: REM Not~ing to display
1020 IFJ=OTHENS=1:E=I:GOTOI0S0: REM DeFault to all lines
1025 REM Call STEND to return the proper display ranse
1030 O=0:GOSUB8000:0NRGOT020000,20200
1050 GOSU8GOOO:GOT020500
lOGO REM
2000 REM ***** PRINT COM~and Routine"
2010 F=2:GOT01010: REM Set Flag For printer & Join LIST
2020 REM
3000 REM ***** DELETE COMMand Routine
3010 IFI=OORJ=OGOTOI10: REM Do nothin9 when no speciFications
3015 REM Call STEND to return the exact deleting range
3020 O=2:GOSUB8000:0NRGoT020000,20200
3030 REM Prepare For deletion
3040 A=I-E:V=I:I=I-CE+l-S):FORX=SToE:N=LENC!$(X»:C=C-N-l:NEXT
3090 REM Call MOVE For deletion and cle3r useless lines
31 00 F =1 : GaS UB3 5 0 0 : FOR x =I + 1TOY: ! $ (X) =If .. : NEx T
3110 GOT020S00
3120 R~M

3500 REM ***** MOVE Subroutine
3502 REM Move a block of lines upward or downward
3505 IFA:OTHENRETURN: REM A is the count For how many lines to be Move
3510 ICS)=ICE+F):I$(S)=I$(E+F):S=S+F:E=E+F:A:A-l:00i0350S
3520 REM
4000 REM ***** EXTEND Command Routine
40 lOPRI NT: PR I NT II 0.\ If : RUN35: REM Got 0 c I e 3 r all I.' a ria b 1 e s & e n t erE >< ten ,1 M 0 oj e
4020 REM

4500 REM ***** QUIT COMMand Routine
4510 RUN"BE~<EC*II: REM Exit Editor
4520 REM
5000 REM ***** PUTID Subroutine
5001 REM Isolate the line number & place it to line nUMber array
50 10 FORK =1 TON: T=ASC{MID$ (I $ (X) , K, 1)) : 1FT> 47AND T<: 58THENNE}~T
5040 !(X)=VAL(LEFT$(I$(X),K-l»:RETURN
5050 REM
5999 REM ***** DISPLAY Subroutine
6000 ?RINT:FORX=STOE:GOSU9S600:IFF=lTHENPRINTT$:GOT06020
6010 PRINT#l,T$
6020 NE}~T

6050 RETURN
6060 REM
7000 REM ***** GETPOSITION Subroutine
7005 REM R~turn the speciFied line position in the line nUMb~r array
7010 REM
7020 REM Isolate a line speciFication
7030 FORK=lTOJ:T=ASC(MID${B$,K,1»:IFT>47ANDT<SBGOT070GO
7040 NE>{T
7050 R=l:RETURN
7060 A=K:FORK=ATOJ:T=ASC(MID${B$,K,1»:IFT>47ANDT<S8THENNEXT
7070 REM Get spec if' i cation \)a IIJ e and start sea ·l~ h i n 9

7100 J=J-(K-l):L=VAL(MID$(B$,A,(K-A»):T=I:FORX=lTOI
7130 ONOGOT071GO,7180,7180
7140 IFL{=I(X)THENRETURN
7150 GOT07190
7160 IFL>=I(T)THENRETURN
7170 T=T-l:NEXT
7175 GOT07200
7180 IFL=!(X)THENRETURN: REM For DELETE only
7190 NEXT
7200 R=2:RETURN: REM Not in the File
7210 REM
8000 REM ***** STEND Subroutine
8005 REM Interpret the speciFication Field with default value(s)
80109$=RIGHT${A$,J):FORK=lTOJ:T=ASC(MIDS(B$,K,1»
8040 IFT=4STHENS=1:GOT081GO
8050 IFT>47ANDT<S8GOT08080
80GO NE>~T

8070 R=l:RETURN
8080 GOSU87000:IFR<>OTHENRETURN
8090S=X:IFJ=OTHENE=S:RETURN
8100 B$=RIGHT${A$,J):FORK=lTOJ:T=ASC(MID$(8$,K,1»:IFT<>45THENNEXT
8150 IFJ-K=OTHENJ=O:E=I:GOT08190
8160 O=O+1:GOSUB7000:IFR<>OTHENRETURN
8170 IFO=3THENE=X:GOT08180
8175 =:=T
8180 IFJ<>OORE-S<OTHENR=l:RETURN
8190 RETURN
8200 REM
9000 REM ***** SHRINK Subroutine
9010 T$=t1":A=l
9015 REM Search space and collect those prece~ing non-space characters
9020 GOSUB9200:T$=T$+MID$(I$(X),A,(K-A»
9040 REM Test iF line ends
9050 IFK-l=NTHENI$(X)=T$:N=LEN(T$):RETURN
90GO REM Search non-space character
9070 A=K:GOSU8S400:IFK-A>ZGTHENR=1:RETURN
9080 IFK-l=NGOT09050: REM Ignore the spaces at the end
9085 REM Collect one space and a rep~at-count

9090 T-$=T$+" II+CHR$«K-A)+64):A=K:GOT090Z0
9100 REM
9199 REM ***** SEARCHSPACE Sybroutine
9200 FORK=ATON: IFMID$(I$(X) .x . 1)<)" lfTHENNE}{T
9230 RETURN

9250 REM
9399 REM ***** SE~RCHARAC Subroutine
9400 FORK=ATON: IFM I D$ (1$ (>~) , K, 1) =" "THE!\fNE}~T

9430 RETURN
9440 REM
9598 REM ***** RECOVER Subroutine
9599 REM Recover a line to its original shape
9600 T$= :A=l:N=LEN(!$(X»
9620 GOSU89200:T$=T$+MIO$(!$(X),A,(K-A)}:IFK-l=NTHENRETURN
9650 REM Recover the space FrOM the re~eat-count

9670 A=ASC(MID$(I$(X) ,K+l, 1))-G4:FORB=lTOA:T$=T$+" II :NE>~T

9720 A=K+Z:GOTOSG20
9730 REM
19989 R~M Error Procedures
20000 PRINT: P~INT"?SYntax e r-r o r " :GOTOI10
20200 PRINT:PRINT"?Not in listin:3":GOT0110
20300 PRINT:PRINT"3uFFer ends at line";!CI):GOT0110
2 0 4- 0 0 PRI NT: PRI NT" ? 0\.1 e r 25 5 pac e 5 .. : P!~ I NT: R=0 : GOT02 10
20500 PRINT:PRINTIiDone ll:GOT0110

190

191

APPENDIX G - 8085 CROSS ASSEMBLER PROGRAM

USER SELECTS PRINTER OR SCREEN, SET DISPLAY FLAG (0)

BRING IN ALL ASCII DATA FOR THE TABLES
AND BUILD TABLES

P= PASS FLAG E= ERROR COUNTER Y= SYMBOL PTR
A= SOURCE MEMORY PTR S= BUFFER MEMORY PTR
U= PROGRAM COUNTER F= ORG FLAG
F2= EXTENDED FILE FLAG

This AsseMbler assembles the source pr09raM FrOM the
Editorr and stores the object codes to tracK 38. IF
any e r-r o r- is detected, a corresponding error code is
displayed. The AsseMbler would not prepare the File
listing unless the source File is error Free.

MA>(. 100 SYMBOLSREM

SET UP MEMORY LAYOUT AND DEFINE SYMBOLS
FILL MEMORY WITH OPCODES AND DATA

INITIATES FLAGS AND POINTERS

PASS
PASS 2

9 REM
10 REM
11 REM
12 REM
13 REM
15 REM•.•......................•..............
16 REM
17 REM
18 R=:M
19 REM
20 DIS!<.!flCALL 5400=39,4"
21 DIM BS(78) ,C(7S) ,T$(100) ,T(1(0)
22 A=21S04 : REM INIZ MEMORY PTR
23 REM
24 REM gUILD INSTRUCTION AND BASE-OPCODE TAe·LES
25 FOR X=O TO 79: GOSUB 6000: BS(X)=Tt: C(X)=T: A=A+l: NEXT
27 REM
28 REM BUILD ~EGISTER TABLE CB,C,D,E,H,L,M,A)
30 FOR X=O TO 7: GOSUB 6000: R$(X)=T$: NEXT
31 REM
32 REM BUILD REGISTER PAIR TABLE (B,D,H,S?)
34 FOR X=O TO 3: GOSU8 6000: RP$(X)=TS: NEXT
3S REM
3G R~M BUILD DIRECTIVE TABLE
38 FOR X=l TO 6: GOSU8 6000: D$(X)=TS: NEXT
39 REM
40 REM
45 REM
48 REM
50 PRINT : PRINT
55 I NPUT II Lis t err 0 T' son or i n t e T' ins t e 2 .j 0 f' s C r e e 11 (Y / N) II ; A $

GO IF LEFT$(A$,l)="Y" THEN 0=1 : GOTO 80 : REM PRINTER
63 0=2 : REM SELECT SCREEN
80 PRINT: PRINT "This is a s l o u a s s e mb Le r L'"; PRINT
81 PRINT "Begin a s s e mb 1 i ns ••••• It: PRINT
82 REM
84 REM
85 REr1
86 REM
87 REM
80 REM
91 REM
92 REM
93 REM
94 REM
9S REM
96 REM **** PASS 1 ENTRY
97 REM
98 REM
99 REM
105 P=l : Y=O : E=O
lOG REM
107 REM **** PASS 2 ENTRY
108 REM
110 DISK!"CALL S800=37rl lt

: REM BRING THE 1ST SOURCE TRAC" IN
111 A=22S28: 5=21508: F=l: F2=1: U=O: REM RESET FLAG AND PTR.
112 REM

192
!13 REM **** ENTqy OF SCANNING EACH SOURCE LINE
114 R~M

115 R=O : REM RESET LINE ERROR CODE (E IS ERROR COUNTER)
116 N=PEEK(A) A=A+1
117 IF N=O GOTD 700: REM HITS END MARK OF FILE
118 GOSU8 950 REM CHECK IF NEEDS 2ND TRACK
119 1$=1111 REM INI2
120 REM
122 REM RECOVER STATEMENT BEFORE ';' AND RECOVER ONE SPACE
123 REM ONLY EVEN IF TYERE ARE SEVERAL SPACES
124 REM
125 FOR X=1 TO N: I=PEEK(A): A=A+l: GOSU8 950
130 I~ 1=59 GOTD 150 : REM STOP IF HITS SEMICOLON
135 I~=I~+CHR$(I)

136 REM
137 REM CHECK IF SPACE THEN SKIP REPEAT-COUNT
138 REM
140 IF 1=32 ~HEN X=X+1 : A=A+l : GOSU8 950
142 NE>~T x
144 REM
145 REM ADJUST SOURCE MEMORY PTR FOR NEXT LINE
146 REM
150 IF X-1=N GOTO 160 : REM NO ADJUSTING NEEDED
i5S A=A+(N-X) : GOSUB 950 : REM A POINTS THE START OF NEXT LN
156 REM
158 REM GET LINE NUMBER
159 REM
160 N=LEN(I$)
162 REM LOOPING UNTIL HITS NON-NUMBER
164 FOR X==l TO N
165 T=ASC(MID$(I$,X,l» : IF T)47 AND T<58 THEN NEXT
172 L=VALCMID$(I$,1,(X-l») : REM L IS LINE NUMBER
176 REM
180 REM **** ENTER THE FIRST FIELD SCANNING PROCEDURE
182 REM
185 GOSUB 900 REM GET THE 1ST FIELD OF CHAR.
190 IF R=l GOTO 115 : REM NO CHAR. BACK FOR NEXT LINE
192 REM
194 REM CHECK IF IT'S DIRECTIVE ('EGU' IS NOT ALLOWED IN
195 REM THE 1ST.FIELD)
19G REM
200 GOSUB 980 ON I GOTO 500,9000,280,3500,4000,4500
202 REM
203 REM CHECK IF IT'8 INSTRUCTION
204 REM
210 GOSUB 8500
211 REM
212 REM ONLY PASS 2 NEEDS SCANNING DATA FIELD
213 REM
215 IF P=2 THEN ON Z GOTO 1000,2000,2500
218 S=S+Z : U=U+Z REM NO EFFECT EVEN Z=O
217 IF 2>0 GOTD 115 REM !T'S AN INSTRUCTION, NO SCANNING IN PASS 1
218 IF P=2 GOTO 240 REM NO SYMBOL BE DEFINED IN PASS 2
219 REM
222 REM DEFINE SYMBOL (THE IST.FIELD AND PASS 1 ONLY)
224 REM
225 GOSUB 8600 : REM CHECK IF MULTI.DEFINED
228 IF T<Y THEN R=2 : GOTO 8700 : REM YES, ERROR!
230 IF Y>100 THEN R=3:GOTO 8700 : REM SYMBOL TB OVERFLOW!
232 T$(Y)=LEFT$<G~,S) REM TAKE FIRST G
233 T<Y) =U REM DEFINE VALUE (CURRENT ADDR.>
234 Y=Y+l REM INCREMENT SYMBOL PTR
235 REM
236 REM
237 REM **** ENTER THE SECOND FIELD SCANNING PROCEDURE
239 REM
240 GOSUB 900 : IF R=l GOTO 8700 : REM NO CHAR.SYNTAX ERROR

244 REM
245 REM CHECKIF IT'S DIRE CTIt.'E (' 0 RG' & ' END' ARE NOT
246 REM ALLOWED TO 8E PRESENTED)
247 REM
250 GOSUB 980 : ON GOTO 280,280,3000,3500,4000,4500
254 REM
255 REM CHECK IF IT'S INSTRUCTION
256 REM
280 GOSU2. 8500
265 IF P=l AND Z>O THEN 5=5+Z: U=U+Z: GOTD 115
270 ON Z GOTO 1000,2000,2500 : REM PASS2 OR NON-MNE AT PASS1
280 R=l : GOTO 8700 : REM CAN NOT RECOGNIZE
285 REM
29() REM•............................. II •••••••••••

295 REM
300 REM
310 REM
500 REM ------------ DIRECTIVE: ORG -----------
501 REM
502 REM SET MEMORY POINTER TO NEW VALUE.
503 REM NEW START LESS THAN LAST ORG IS
504 REM NOT ALLOWED.
505 REM --
50G REM
510 2= 1 : REM SET FLAG TO I ND ICATE ASC I I ARE NOT ALLO!,.,jED
520 GOSUB 5000 : REM GET DATA FIELD VALUE
525 IF R>O GOTO 8700
528 REM
530 REM CHECK NEW START VALUE
532 REM
535 T=D-U : IF T<O THEN R=4 : GOTO 8700 REM NOT ALLOWED
538 REM
540 REM CHECK IF IT'S THE FIRST ORG
542 REM
545 IF F=l THEN U=D : F=2 : GOTD 560 REM THE 1ST
550 U=U+T : S=S+T REM THE OTHERS
555 REM
560 GOTO 1090 : REM TO CHECK ERROR AND EXIT
565 REM
570 REM
700 REM ------------ CHECK EXTEND -----------
701 REM
702 REM CHECK EXTEND ~LAG. IF IT WAS SET, TH~N

703 REM IT'S NO 'END' ERROR OTHERWISE SET FLAG
704 REM ENTER EXTEND MODE.
705 REM --
706 REM
710 IF F2=2 THEN R=9: L=O: GOTO 8700: REM NO 'END'
715 F2=2 : REM SET EXTEND FLAG
720 DISK!"CALL 5800=29,1"
730 A=22528: GOTO 115: REM RESET PTR AND CONTINUE
735 REM
740 REM
750 REM
899 REM
900 REM ---------- SUBROUTINE: ISOLATE ---------
901 REM
902 REM SCANNING 1$ UNTIL HITS THE DELIMITER THEN
903 REM RETURNS WITH CHARACTERS OR ERROR MESSAGE.
904 REM
905 REM ENTRY: X= THE POSITION OF START
90G REM RETURN:X= THE POSITION OF DELIMITER
907 REM R= ERROR CONDITION
908 REM G$
909 REM ---
910 IF X>N GOTO 821 : REM THE END OF I$ ALREADY

193

THE REST OF ONE-BYTES

'MOl) ,
'RST'

'POP' & 'PUSH'
'INR' & 'OCR'
ARITH.& LOGIC
RP FAMILY

RETURN

POKES OPCOOEREM

CLASSIFICATION

GOTO 1100 : REM
GOTO 1200 : REM

GO""fO 1300 REM
GOTO 1400 REM
GOTO 1130 REM
GOTO 1320 REM

911 R~M

912 REM LOOPING UNTIL HITS NO.r LETTER, ~UOTATION MARK, OR MINUS SIGN
913 REM
915 ~OR =X TO N : I=ASC(MI $(I$rK,l»
916 IF I 47 AND 1<58 GOTO 9 G REM NUMBER
918 IF I 64 AND 1<91 GOTO 9 G REM LETTER
919 IF 1=39 OR I=45 GOTO 9 G REM ASCII OR MINUS SIGN
920 NE>~T K
921 R=l : RETURN: REM NO CHAR. INDICATED
922 REM
9~~ REM LOOPING UNTIL HITS DELIMITER (EITHER COMMA7 COLON, OR SPACE)
925 REM
926 X=K : REM K MARKS THE START OF CHAR.
928 FOR X=K TO N : I=ASC(MIDS(!S,Xrl»
930 IF 1=58 OR 1=44 OR 1=32 GOTO 948 : REM HITS DELIMIT~R

932 NE}~T x
942 REM
94G G$=MID$(ISrK,X-K)
947 REM
948 REM
949 REM
950 REM --------- SUBROUTINE: CHKBUFF ---------
951 REM
952 REM CH~CK IF NEEDS TO BRING THE 2ND. TRACK TO
953 REM SUFFER. IF SO, RESET SOURCE MEMORY PTR.
954 REM --
955 REM
960 IF A<24576 THEN RETURN : REM NO NEED
962 IF F2=1 THEN DISK~"CALL 5800=38rl 11

: GOTO 970
9GS D!SK!"CALL 5800=30,1" : REM EXTENDED MODE
970 A=22528+(A-24576) : RETURN
971 REM
872 REM
973 REM
980 REM ---------- SU8ROUTINE: CMPDIR ---------
981 REM
982 REM COMPARE CHARACTERS (G$) WITH DIRECTIVE
983 REM TABLE. RETURN WITH I (1-7)
984 REM --
985 REt1
990 FOR 1=1 TO G: IF G$<>D$(I) THEN NEXT
992 RETURN
993 REM
994 REM
995 REM
1000 REM ---------- ONE-BYTE INSTRUCTION ---------
1001 REM
1002 REM FILLS MEMORY BUFFER WITH OPCODE.
1003 REM ENTER WITH T POINTS THE FOUND MNEMONIC
1004 REM ---
1006 REM
1010 B=C(T) : REM GET BASE OPCODE
1011 REM
1012 REM
1013 REM
1015 IF T=O
1020 IF T=l
1030 IF T<4
1040 IF T<6
1050 IF T<14
1060 IF T<19
1062 REM
lOGS REM
1070 REM
1080 D=B
1085 GOSUB 4700
1086 REM

1087 REM ENTRY OF CHECKING UNNECESSARY (EXTRA) OPERAND
1088 REM
1090 GOSU8 ~OO : IF R=l GOTO 115 : REM NO MORE
1095 R=8 GOTO 8700 : REM ERROR
1()9G REM•............•.......
1097 REM
1100 REM ENTRY OF 'MOV' (OPCODE=8+Rl*8+R2)
1101 R~M

1102 GOSU8 1900 : REM 8=8+R1*8
1105 IF R>O GOTO 8700
1110 REM
1120 REM ENTRY OF ARITH.& LOGIC (OPCODE=B+R)
1125 REM
1130 GOSUB 1700
1135 IF R>O GOlD 8700
1150 D=B+~ : GOTD 1085 : REM EXIT OF 'MOV' AND A&L
1155 REM•......••......
1160 REM
1200 REM ENTRY OF 'RST' (OPCODE=B+(O-7)*8)
1201 REM
1210 GOSU3 5000 : REM GET DATA (0-7)
1215 IF ~>O OR D>7 THEN R=8 : GOTD 8700 : REM ILLEGAL
12:0 D=8+D*8 : GOTO 1085 : REM REE~TER ONE-9YTE
123() REM ••
1240 ~EM

1300 REM ENTRY OF 'POP' & 'PUSH' (OPCODE=B+RP*1G)
1301 REM
13 <)5 RP$ (3) = II P S~" II : REM TEMP • CHAN GESP TOP S f..J FOR HEREONLY
1310 REM
1315 REM ENTRY OF RP FAMILY (OPCODE=8+RP*lG)
131G REM
1320 GOSUS 1800 : REM 8=B+RP*lG
1330 RP$(3)="SP" : REM PUT SP BACK
1340 IF R>O GOrO 8700 : REM DATA FIELD ERROR
1350 GoTO'1080 : REM EXIT OF 'POP' & 'PUSH' AND RP FAMILY
1355 REM•.................•....•......••......
1360 REM
1400 REM ENTRY OF 'INR' & 'DCR' (OPCODE=8+R*8)
1401 REM
1410 GOSUS 1900 : REM B=B+R*8 BACK
1420 IF R>O GOTO 8700
1430 GOTO 1080 : REM REENTER ONE-BYTE
144() REM ..•..
1445 REM
1450 REM
1460 REM
1700 REM ---------- SUBROUTINE: CHKRGTR ---------
1701 REM
1702 REM GET NEXT FIELD OF CHARACTERS AND COMPARE
1703 REM WITH REGISTERS TABLE. RETURN WITH T POINTS
1704 REM THE FOUND REGISTER, OR ERROR BACK.
1705 REM ---
1706 REM
1710 GOSUS 900 : IF R=O GO TO 1720
1715 R=8 RETURN: REM NO CHAR.OR NOT MATCH ERROR
1716 REM
1717 REM COMPARE WITH TABLE
1718 REM
1720 FOR T=O TO 3 : IF GS=R$(T) THEN RETURN
1740 NEXT T
1750 GO TO 1715 : REM CAN NOT FIND
1760 REM
1765 REM
1770 REM

195

1800 REM ---------- SUBROUTINE: GETRP ---------
1801 REM
1802 REM GET REGISTER-PAIR VALUE (B=0,O=1,H=2,S? OR PSW=3)
1804 REM RETURN WITH B=BASE+RP*1G
1805 REM ---
1806 REM
1810 GOSUe 900 : IF R=1 GoTO 1840 : REM NO CHAR. ERROR
1815 REM
1818 REM COMPARE WITH TA8LE
1817 REM
1820 FOR T=O TO 3
1825 IF G$=RP$(T) THEN B=B+T*16 : RETURN REM FOUND
1835 NEXT T
1840 R=8 : RETURN : REM CAN NOT FIND
1845 REM
1850 REM
1855 REM
1900 REM ---------- SUBROUTrNE: GETRGTR ---------
1901 REM
1902 REM GET REGITER VALUE BACK (B=O,C=1,D=2, ... ,A=7)
1903 REM RETURN WITH B=8ASE+R*8
1804 REM ---
1905 RE!"'!
1910 GOSUe 1700 : REM GET T OR ERROR
1920 IF T>7 THEN R=8 : RETURN
1940 8=B+T*8 : RETURN
1945 REM
1850 i~EM

1955 REM
2000 REM ---------- TWO-BYTE INSTRUCTIONS ---------
2001 ~EM

2002 REM FILLS MEMORY 8UFFER WITH OPcaDE AND I-BYTE
2003 REM DATA. ENTER WITH T POINTS THE POSITION OF
2004 REM THE MNEMONIC IN THE TABLE.
2005 REM ---
2006 REM
2010 B=C(T) REM GET BASE OPCODE
2020 IF T)46 GOTO 2070 REM NOT 'MVI'
2025 REM
2030 REM ' Ml.' I ' ONLY
2035 REM
2040 GOSUB 1900 REM B=8+R*8
2050 IF R)O GOTD 8700
2055 REM
2060 REM REENTRY OF ALL 2-BYTES
2065 REM
2070 0=8 GOSUB 4700 REM POKE OPCODE
2080 GOSUB 5000 REM GET OPERAND
2090 IF R=l THEN R=G REM NO OPERAND ERROR
2100 IF R>O GOTO 8700 REM OTHER ERROR
2110 IF G$=",n GOTO 1080:REM ASCII DATA BEEN POKEN ALREADY
2120 IF D>255 OR 0<-128 THEN R=7 : GOTO 8700 : REM ILLEGAL VALUE
2130 IF D<O THEN D=2SS+D:REM GET 2'S COMP.
2140 GOTO 1085 : REM EXIT
2150 REM
2160 REM
2170 REM
2500 REM -------~-- THREE-BYTE INSTRUCTIONS ---------
2501 REM
2502 REM FILLS MEMORY BUFFER WITH OPCODE AND 2-BYTE
2503 REM DATA (ADDRESS). ENTER WITH T POINTS THE FOUND
2504 REM MNEMONIC.
2505 REM ---
2506 REM
2510 B=C(T) REM GET BASE OPCOD~

2520 IF T>57 GOTO 2580 REM NOT 'LXI'

196

191

REM ILLEGAL VALUE

SET :=LHG TO PRE\.~~N r HSC r I
GET FIRST DATA (WORD)

NO ACTION AT PASS 2
SET ~LAG TO PERMIT 1 ASCI!
GET OPERAND IN DEC!MAL
ERROR

U=U-1: REM ASCII HAD BEEN POKED
Y WAS INCREASED BY SYMBOL DEF.
CHECK NO MORE
ERROR FREE E}{ IT
ERROR EXIT

REM
REM

REM SET FLAG TO PREVENT ASCII
REM GET D
REM ERROR

GOTO 8700: REM !LLEGAL VALUE
REM INCREMENT MEMORY POINTERS

: REM CHECK NO MORE, EXIT

2=1
GOSUB 5000
IF R>O GOTO 8700
IF D<O THEN R=7:
S=S+D : U=U+D
GOTO 1090
REM
REM
REM ---------- DIRECTIVE: D~ ---------
REM
REM GETS DATA WORDS FOLLOWING THE DW
REM AND FILLS THOSE WORDS TO MEMORY.
REM WORD FORM CAN BE EITHER DECIMAL,
REM HEXr BINARY, OR SYMBOL. NO ASCII
REM WILL BE ACCEPTED.
~EM -----------------~-----------------
REM
:=1
GOSUB 5000
IF R>O GOTO 8700
REM
~EM REENTRY OF THE NEXT WORD (IF MORE THAN ONE IN A LINE)
REM
IF D>65535 OR D<-2048 THEN R=7 : GOTO 8700 : REM ILLEGAL VALU~

REM ' Lx r : ON LY
REM
GDSU8 1800 : REM 8=B+RP*lG
IF R>O GOTD 8700 : REM ERROR
REM
REM REENTRY OF ALL 3-BYTES
REM
D=B G05UB 4700 : REM POKE OPCODE
GOSU8 5000 : REM GET 2-8YTE DATA
IF R=l THEN R=6 : GOTO 8700 : REM NO DATA
IF R>O GOTO 8700 : REM OTHER ERRORS
IF D>65535 OR D(-2048 THEN R=7 : GOTD 8700
GOSU8 4600 REM POKE 2-BYTE
GDTO 1090 : REM EXIT
REM
REM
REM
REM ---------- DIRECTIVE: EQU ---------
REM
REM GIVES VALUE TO THE SYM80L JUST DEFINED
REM OPERAND CAN BE A DECIMAL, HEX, BINARY,
9E~ DEFINED SYMBOL, OR AN ASCI! DATA.
~EM Ei{ECUTES AT PASS 1 O!'1L Y, ALL ~RRaRS

REM WILL 3~ DISPLAYED IN ERROR 1.
REM ------------------------------------
REM
IF P=2 GOTD 115 REM
Z=2 REM
GOSU9 5000 REM
IF R>O GOTD 3070: REM
IF G$=II' .. THEN 5=5-1:
TCY-l)=D REM
GOSUB 900 REM
!F R=l GOTD 115 REM
R=l : GOTD 8700 REM
REM
REM
REM ---------- DIRECTIVE: os ---------
REM
REM RESERVES D BYTES OF MEMORY BUFFER
REM -----------------------------------
REM

2525
2530
2540
2550
:550
2565
2570
2580
2590
2600
2810
2815
2620
2630
2640
2650
2670
3000
3001
3002
3003
30')4
3005
3006
3007
3008
3010
3020
3030
3040
3050
30GO
30GS
30G8
3070
3030
3090
3500
3501
3502
3305
3508
3510
3520
3330
3535
3540
3550
3560
3570
4000
4001
4002
4003
4004
4005
4005
4007
4008
4'=,! f)

4020
4025
4026
4027
4028
4029

ENTRY : D= DATA WORD
RETURN: 5=S+2, U=U+2

ENTRY : 0 = DATA BYTE
RETURN: 8=5+1 & U=U+l

GETS DATA 8YTES FOLLOWING THE DB
AND FILLS THOSE DATA INTO MEMORY.
DATA FORM CAN 8E A CO~8INATION OF
DECIMAL, HEX, BINARY, DEFINED SYMBOL,
AND A STRING OF ASCI!. AS LONG AS,
BYTE VALUE IN THE RANG~ OF -127 TO 255

GET HI-BYTE VALUE
POKE HI

POKING
INCREMENTS MEMORY POINTERS

R~LEASE FLAG TO ALLOW ASCI!
GET DATA

POKE WORD
CHECK IF MORE
NO MORE, E}{IT
ERROR E>~ IT

REM
REM

REM
REM

REM
REM

REM
REM
REM
REM

GOSUB 4800
GOSUB 5000
IF R=l GOTO 115
IF R>l GOTO 8700
GOTD 4029
REM
REM
~EM ---------- DIRECTIVE: DB ---------
REM
REM
REM
~~M

REM
REM
REM
REM -----------------------------------
REM
2=80
GOSUB 5000
IF R>O GOTO 8700
REM
REM REENTRY OF THE NEXT DATA (MORE THAN ONE)
REM
IF G$=tl/ll GOTO 45 40: REM ASCII HAD BEEN POKED
IF D>255 OR D<-128 THEN R=7 : GOTD 8700 : REM ILLEGAL VALUE
IF D{O THEN D=258+D: REM GET 2'5 COMP.
GOSU9 4700 REM POKE DATA BYTE
GOSU9 5000 REM CHECK MORE, AND GET IT
IF R=1 GOTO 115 REM NO MORE, EXIT
IF R>O GOTO 8700 REM ERROR EXIT
OOTO 4520 REM MORE THAN 1 DATA
REM
REM
REM ---------- SUBROUTINE: POKWORD ---------
REM
REM SPLITS INPUT 0 TO 2 BYTES AND POKES LOW,
REM HIGH BYTE INTO MEMORY BUFFER IN SEGUENCE.
REM
REM
REM
REM ---
REM
GOSUS 8100 : REM CONVERTS D TO 4 DIGITS HEX
T$=H$: H$=R!GHT$(T$,2)
GOSU8 8000 REM GET LOW-BYTE VALUE
GaSUB 4700 REM POKE LOW
H$=LEFT$(T$,Z)
GOSU8 8000
GOSU8 4700
RETURN
REM
RE!'1
REM ---------- SUBROUTINE: POKEBYTE ---------
REM
REM POKES A INPUT BYTE <0> INTO NEXT AVAILABLE
REM MEMORY BUFFER LOCATION THEN INCREMENTS THE
REM POINTERS FOR NEXT POKING.
REM
REM
REM
REM --
RE!'1
POKE S,O
S=5+ 1 : U=U+ 1
RETURN

4532

4030
4040
4050
4060
4070
4080
4090
4500
4501
4502
4503
4.504
4505
4505
4507
4508
4508
4510
4512
4515
4516
4518
4519
4520
4530

4535
4540
4550
4560
4570
4580
4590
4600
4601
4802
4803
4804
4605
4806
4607
4608
4810
4620
4630
4640
4645
4650
4655
4680
4670
4680
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4720
4730

199

POKE EACH ASCII INTO MEMORY 8UFF~R

C~ECK EACH CHARACTER !F VALID DECIMAL

CHECK ASCII PERMITT!NG FLAG AND SYNTAX ERROR

NC " T r. _1\. ..

ALL VALID NUMBERS
ILLEGAL l"lALUE
Ex ITOFOECI 1'1 AL

rtEM
REM
REM

NO COUNT ON

TAKE 2 ", .. OFF: REM

: REM

REM GET DATA CHARTERS
REM EXIT WITH NO DATA

. REM FOR ARITH.ONLY
REM CHECK IF ARrT~METIC

REM YES, GO CPLCULATING
GOTO 5200:REM ASCII DATA

--- ASCII DATA ---

--- ARITHMETIC OP~RAT!ON

SET ASCII MESSAGE FOR RETURN

D=t,,'AL (G~)
IF D>65535 THEN R=7
RETURN
REM
REM
REM
REM DO ADD!TION OR SUBTRACTION FROM LEFT TO RIGHT
REM * NOT ALLOWED TO HAVE SPACE BETWEEN SIGN AND OPERAND
REM
S(O)=O: V=l: C=2 : REM INIZ.
IF '_EFT${A$,l):II-tl GOTO 5120: ~EM HAS MINUS SIGN ~LRE~DY

A$="+II+A$: M=M4-1: REM DEFAULT NO SIGN TO PLUS SIGN
GOSU9 5500: G=M: M=K-C: REM ~!S !MAGE OF M
G$=MID$(P$,C,M): REM C MARKS START OF CHAR.
GOSU8 5<)40: REM GET OPERAND VALUE
IF ~>O THEN RETURN
IF MID$(A$,C-l,l)="-" GO TO 5150: REM SUBSTRACT?
S(V)=S(V-l)~D: GOTO 5155
5 (V) =S (l..' - 1) - D
IF K<O THEN C=K+l: V=V+l: M=O: GOTO 5120: REM MORE
D=Srv i : RETURN
REM
REM
REM
M=M-2
REM
REM
REM
IF M>Z-l OR RIGHT$(G$,l)<>II/l1 THEN R=S: R£TURN
REM
G$=MID$(G$,2pM)
R~M

REM
REM
FOR 1=1 TO M: D=ASC(MID$(G$pI,I»): Gasus 4700: NEXT I
REM
REM
REM

REM
REM
REM ---------- SUBROUTINE: GETDATA ---------
REM
REM G~T A CHARACT~R FrL~D FROM THE REMAINING
REM STATEMENT AND RETURN WITH ITS DEC!MAL VALUE
REM IN D OR ERROR IN R.
REM ---

GOSU2, 800
IF R=l THEN RETURN
M=)<-K : A$=G$: C=l
GOSU8 5500
IF ~<M GOTO 5100
IF L=:F"'f$(G$pl)=lf/tl
!~EM

REM -- NESTED SUBROUTINE FOR ARITH.OP~RATION

REi'1
GOSU8 8800 : REM CHECK IF SYM80L
IF T<Y THEN D=TCT): RETURN: REM EXIT OF SYMBOL
IF R IGHT$ CG$, 1) = ffH" GOTO 5300 REM HE>{ DATA
IF RrG~T$(G$,l)="e." GOTO 54<)<) REM 6INARY DATA
REM
REM
REM
FOR I=l TO M: T=ASCCMID$(G$,!,!»
IF T)S7 OR T<48 TH~N R=S:RETURN: REM UNDEFINED SYMBOL

4740
4750
5000
5001
5002
5003
5004
5008
5009
5010
5012
5015
5020
5025
5030
5032
5035
5038
5040
5042
5045
5050
5052
5054
5055
5060
5065
5070
5075
5080
5085
5094
5095
5096
5097
5098
5099
5100
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5180
5200
5201
5210
5215
5220
5225
5230
5235
5240
5243
5250
5255
5260
5265
5270
5275

5280 G$=fl/ll : RETURN
5290 REM
5300 REM --- HEXADECIMAL DATA
5301 REM
5302 H$=LEFT$CG$,M-l) REM GET RID OF TAIL ItHfl

5305 REM
5306 REM CHECK EACH CHARACTER IF VALID HEX
5308 RE:M
5310 FOR 1=1 TO M-l : T=ASCCMID$(H$,I,l»
5315 IF T<48 OR T>70 GOTD 5350
5320 IF T>57 AND T<G5 GOTD 5350
5330 I\lE>~T r
5340 IF !>5 THEN R=7 : RETURN REM 4 DIGITS AT MOST
5345 GOSU8 8000 : RETURN REM GET DEC.AND EXIT
5350 R=G RETURN REM ERROR EXIT
5380 R~M

5400 REM --- BINARY DATA
5401 R:::M
5410 M=M-l G$=L.EFT$(G$,M): REM GET RID OF TAIL "~It

5415 REM
5420 REM CHECK EACH CHARACTER IF 1 OR 0
5425 REM
5430 FaR I=l TO M : T=ASCCMIDS(GS,!,l»
5435 IF T<48 OR T~49 GOTO 5350 REM S~ARE WITH HEX
5Ll40 NE~<T

5450 IF !)9 THEN R=7 : RETURN REM 8 DIGITS AT MOST
5455 GOSU8 8200 : RETURN REM ERROR FREE EXIT
5470 REM
5480 REM
5500 REM ---------- SUBROUTINE: CHKSIGN ---------
5501 REM
5502 REM SCANNING A$ FOR PLUS OR MINUS SIGN
5503 REM CALLED BY ARITHMETIC OPERATION ONLY
5504 R~M

5505 REM ENTRY: C= POSITION OF STARTING
5506 REM RETURN: K= POSITION OF SIGN OR ENDING
5507 REM ---
5508 REM
5510 FOR K=C TO M
5520 T=ASC{MID${A$,K,l»
5530 IF T<>43 AND T<>45 THEN NEXT K
5540 RETURN
5550 REM
5560 REM
GOOO REM ---------- SUBROUTINE: RECOVER ---------
GOOl REM
6002 REM RECOVER THE INSTRUCTION MNEMONICS, 8ASE OPCODES,
6003 REM AND THE DIRECTIVES FOR TABLE BUILD-UP
5005 REM
6006 REM ENTRY: A= POSITIQN OF NEXT CHARACT~R

8007 REM RETURN: T$=CHARACTER T=9ASE OP CODE
6008 REM ---
6009 REM
6010 T$="": REM INIZ
6020 T=PEEKCA): A=A+l: IF T=O GOTO 6040: REM END FOR CHAR.
6030 T$=T$+CHR$CT): GOTO 6020: REM RECOVER CHAR.
6040 T=PEEKCA): RETURN
6050 REM
60GO REM
8000 REM ---------- SUBRO~TINE: HEX-DEC ---------
8001 REM
8002 REM CONVERT INPUT HEX TO DECIMAL OUT
8003 REM
9004 REM ENTRY: H' RETURN : 0
8005 REM ---

200

201

CONVERT INPUT DECIMAL TO 4 DIGITS HEX

t:" Q9 ! = 1 TO J : H$ =H$ +E $ (I > : NE}{ T
IF J=4 THEN RETURN
H$="O"+H$: J=J+l : GoTO 8170
REM

FOR !=1 TO J
~$(J+l-!)=CHR$(48+p(r»

IF P(I)S THEN E$(J+l-I)=CHR$(55+P(I»
NE)(T I
~$="11

1-8YT~

2-BYTE
3-e·YTE
NOT F!ND

REM
REM
REM
REM

RETURN : H$

RETURN
RETURN
RETURN

ENTRY : D

REM
REM
REM ----- SUBROUTINE: SYMBOL SEARCH ----
REM
REM COMPARE G$ WITH DEFINED SYMBOL TABLE.
REM RETURN WITH T.
REM -------------------------------------

RETURN
REM
REM
REM ------- SU9ROUTINE: SEARCH MNE ------
REM
REM COMPARE G$ WITH ALL ENTR!ES OF THE INSTRUCTION MNEMO~JrC

REM TABLE. RETURN Z AND T
REM ---------------------------------~----
REM
FOR T=O TO 79 : IF G$<>B$(T) THEN NEXT T
REM
IF T<48 THEN 2=1
IF T<S7 T~EN 2=2
IF T<80 THEN 2=3
2=0 : RETURN

REM ---------- SU8ROUTINE: BIN-DEC ---------
REM
REM CONVERT BINARY INPUT TO DECIMAL OUT
REM ----------------------------~------------
REM
D=O
FOR I=l TO M
D=D+2A(I-l)*VAL{MID$(G$,M+l-!,1»

NEXT I

:?Er1
R~M

~EM

~EM

REM
D(O}=D
FOrt 1=1 TO 4
D{I)=INT(D<!-1)/lS) : P(!)=D(I-l)-D<!>*lG J=I
IF INT(D(I»=O GOTO 8140

J=LEN(H$) : D=O
~OR I=l TO J : T=ASC(MID$(H$,J+!-I,l)
Sl=D+IG h(I-l>*(T-SS)

IFT<G4THE~D=S2

S2=DT1G h (I - l) * (T- 4 8)
RETURI\J
IF T>G4 THEN 0=51
IF T(G4 THEN D=52
NE>~T

RETURN
REM
REM
REM ---------- SUBROUTINE: D~C-HEX ---------
REM

8010
8020
8030
8035
8040
8045
8050
80GO
8070
8080
80B5
8090
810c)
8101
8102
8103
8104
8105
8108
811 o
8120
8130
8135
8138
8140
B1 AS

8150
8155
81GO
81G5
8170
8175
8180
8185
8200
8201
8202
8203
8204
8210
8220
8230
8240
8250
8250
8270
8500
8501
8502
8503
8505
8508
8510
8515
8520
8530
95.10
6550
8560
8570
8GOO
8G01
8G02
8G03
8G05

202

ERROR-FREE EXIT,. STORE OBJECT CODES TO DISK

SAt.IE PO! NTERS
PREPARE FOR ST. & =:!\~D ADDR.
PO~E STARTING ADD9ESS
POKE ENDING ADDRESS
lK 9UFF£R TO TR~C~ _~

P=2 -EXIT ASSEM8LER

LOJK G C~ARACTE~S ONLY

REGUEST DESTINATION

REM

EXIT,.

REQUEST DESTINATION

ERROR

CHECK PASS CONDITION

T$=LEFT$(G$,G)
REM
FOR T=O TO Y REM Y IS NUM9ER OF DEF!NED SYM80L +
IF ~$<>T$(T) THEN NEXT T
RETURN
i""EM a a a a •••• a •• a a a a •• a ••••• a a a a •• a •• a. a ••••••••••••

REM
REM **** ERROR DIS?LAY PROCEDURE
REM
REM DISPLAYS ERROR CODE AND LINE ~UMg~R.

REM ALWAYS BACK TO NEW LINE SCANNING.
REM
IF 0 = 1 AND R>4 GOTO 115 i~EM PASS 1 D! S?!.-~YS ERRO;~ 1-4
IF P=2 AND R<5 GOTO 115 REM PASS 2 DISPLAY ERROR 5-8
E=E~l REM INCREMENT ERROR COUNTE~

IF 0=2 THEN PRINTIIError #";R: II in linell;L : GOTO 8750
PR I NT # 1 , II Err 0 T' #"; ~ ; If i n 1 i n e fl ; L
IF R<9 GO TO 115: REM NOT 'NO END ERR', GO NEXT LINE
REM 'NO END ERR', ENTER THE ENDING PROCEDUR~

REM
REM
RE~ ~*** ENDING PROC~DURE (OPERATION FOR 'SND')
REi'"
REM P=1 -ENT~R PASS ~

REM
R~M EITHER 'END' OR HITS THE ENDING MARK
REM SET BY THE EDITOR, WILL END ASSEM9lING.
REM IF DURING ASSEMBLING, THERE IS ANY ERROR
REM HAPPENS, NO LISTING WIL~ BE PREPARED.
REM
IF 8<22528 GOTO 9020 : RE~ NOT EXCEEDS THE BUFFER YET
PRINT: PRINT "Exceeds butter capacity": GOTO 9040
REM
REM
REM
IF ?=2 GOTO 9025
P=2: PRINT: PRINT E;"~rrQrs in PASS 1": PRINT
PRINT "Continue PASS 2 •.... ": PRINT: GOTO 110
REM
PRI NT: PRI NT" End ass e f'T! b 1 i 119 • Tot a 1 If ; E ; It e 'r 'r 0 r s fI

IF E=O GOTO 8080
REM
REM
REM
PRI NT: I NPUT"Gob a c K toE ,j ito ro f' 0 reo r r e c t ion s (Y/ N) t4 ; A$

I F L EFT $ (A $, 1) = " N " THE N RUN ..BE){EC* It

PQ~E 133,87 : RUN "EDIT"
REM
R~M

REM
REM
A=U B=S : REM
5=21504 : REM
D=U-(B-21508):GOSUB 4600:REM
D=A-l: GOSUB 4GOO:~EM

DISK~"SA(.JE 36,1=5400/4": REM
PRINT "Done!": PRINT
REM
REM
REM
I NPIJT If 0 0 Y 0 IJ t-I d n t a c o mpIe t e .j 1 i s tin 9 (Y / N) " ; A <$
IF lEFT$(A<$,l)="Y" THEN RUN "SCRIBE"
RUN "BE~{EC*"

REM
REM

8610
8615
8520
8630
8840
8650
8GGO
8700
8701
8702
8703
8708
8720
8730
8735
8740
8750
87130
8770
8775
8780
9000
9001
9002
9003
9004
9005
9006
9007
9009
8010
9012
9014
9015
9018
9020
9022
9023
9024
9025
9025
9030
9035
9038
9040
9050
90GO
9 ()l32
90G5
90G6
90G8
9080
9085
9090
9095
9100
9110
9120
9125
9130
9135
9140
9150
9180
9170

APPENDIX H - ASS~LED FILE LISTING PROGRAM (SCRIBE)

REM SCRIBE - Listing Program For Assembled 8080/8085 ObJec~ File
_ REM
3 0 15K ! "C ALL 5400 == 39 , 4 ": REM Loa ,j reF ere nee tab lei n For m2 t i on
4 DIM 8$(79) ,T$(1(0) ,T(100)
5 REM
6 REM Recover the Mnemonic table only
10 A=21S04
12 FOR }{=O TO 79
14 B $ (>~) = It "

16 T=PEEK(A): A=A+1
18 IF T>O THEN BS(X)==B$(X)+CHR$(T): GOTO 16
20 A=A+l
~,., NE>~T

2S REM
28 REM Load the First tracK of' sOljrc~ File and object code File
30 DISK!"CALL 5400=36,l u : DI SK! "CALL 5800=37,1"
32 REM
35 REM Re9uest listin9 destination & list the head message
40 8$="8080/8085 CROSS ASSEMBLER, RELEASED 1982. ~.E. OHIO U.ll
45 C$="AODR OP OATA SEG SOURCE STATEMENT II
50 P~INT:PRINT:INPUTlIList on printer instead or screen (Y/N)";P$
55 IF LEFT$(A$,l)="YII THEN 0=1: GOTO G5: REM PRINTER
GO 0=2:PRINT:PRINTB$:PRINT:PRINT:PRINTC$:PRINT:GOTOI00
65 PRINT#1:PRINT#1,8$:PRINT#1:PRINT#1:PRINT#1,C$:PRINT#1
70 REM
80 REM Initialization
100 A=22528 : S =2 1508 : U=0 : F == 0 : Y=0 : F2 =1 : x$ = If fI : Y$ = II

101 REM
102 REM Entry of recovering a source statement
105 O$="II:R=O:P=O:N=PEEK(A):IF N=O DOTO 700
110 A=A+l: GOSUS 950: REM Update source buFFer iF need
112 !=O
115 T=PEEK(A): A=A+l: GOSUB 950: REM Update source ~urF~r if need
120 IF T<>32 GOTO 140
17 7 RE~ Recover s?aces
125 FOR X=l TO PEEK(A)-64
130 0$=0$+" II: NEXT x
135 A=A+l:GOSUB 950:I=I+2:GOTO 115
138 REM Recover non-space characters
140 D$=D$+CHR$(T):I=!+l:IF I<N GOTO 115
145 N=LEN(D$)
146 REM
148 REM Isolate stateMent between line number and comments
150 FOR X=l TO N: REM Search COMMents
ISS IF MID$(D$,X,l)<>":" THEN NEXT
160 N=X-l: I$=LEFT$(D$,N): REM Exclude comments
iSS FOR X=l TO N: REM Pass number characters
170 T=ASCCMID$(If,X,l»: IF T>47 AND T<58 THEN NEXT
172 REM X points the First non-number character
180 REM
190 REM First Field scannin9
200 GOSUB SOO:IF R=1 THEN A$=Y$:B$=X$:C$=Y$:GOTO 8700: REM COMMents
202 REM ChecK iF directives
205 IF G$="ORG" GOTO 500
210 IF G$=IfENO II GOTO 9000

203

204

215 IF G$="DP" GO TO 4500
220 IF G$="DS" GOTO 3500
225 IF G$ = II D!~" GOTO 4000
228 REM ChecK iF mneMonics
230 GOSUB 8~OO: IF Z>O GOTO 1000
232 REM Rebuild SYMbol table
235 T$(Y)=LEFT${GSpG):T(Y)=U:Y=Y~l

236 REM
238 REM Second Field scanning (must be either directive or mneMonic)
240 GOSU8 900: GOSUS 8500: IF Z>O GOTD 1000: REM Mnemonic
242 REM Either one of the Following
245 IF G$="EGU II GOTO 3000
250 IF G$="DS" GOTO 3500
255 IF G$="DW" GOTO 4000
260 GGTO 4500: REM Then (ylUSt be DB directive
265 REM
500 REM ***** ORG Operation
505 REM Scan source statement and evaluate the Program Ccu~ter

510 GOSUB 5000:IF F=O THEN U=D:F=1:GOTO 530
520 S=S+(D-U):U=U+(D-U)
530 D=U:L=4:GOSUB 8100:A$=H~:B$=X$:C$=Y$:GOTO8700
540 REM
700 REM ***** EXTEND Routine
705 REM Set Extended Flag, reinitialize buFFer wI ~xtended sourc~ File
710 F2=Z:DISK!"CALL 5800=29,1":A=2252S:GOTO 105
720 REM
900 REM ***** ISOLATE Subroutine
905 R~M Collect a Field of characters From source stat~~ent

910 IF X>N GOTO 922
912 FOR K=X TO N: REM Search valid star~ character
914I=ASC(MIDS(!$,K,1»
915 IF 1>47 AND 1<58 GOTO 925
916 IF !>64 AND 1<91 GOTO 925
918 IF !=38 GOTO 925
920 NE>~T

9"" R=l:RETURN
925 X=K: REM MarK the start position
830 FOR X=K TO N: REM Search delimiter or line end
932 !=ASC(MIO$(!S,X,l»
935 IF I=58 OR !=44 OR 1=32 GOTO 946
940 NEXT
946 G$=MID$(IS,K,X-K):RETURN
948 REM
950 REM ***** CHKBUFF Subroutine
955 REM ChecK iF the buFFer needs the 2nd tracK File
960 IF A<24S76 THEN RETURN
962 REM FiletYP~ Flag designates the disk access
965 IF F2=1 THEN DISK!"CALL 5800=38,1":GOTO 970
968 DISK!"CALL 5800=30,1"
970 A=22528:RETURN
980 REM
1000 REM ***** INSTRUCTION Collection Routine
1005 REM Use the opcodes in opcode buFFer
1010 O=U:L=4:GOSUB 8100:A$=HS
1020 GOSUB 4700:B$=H$
1030 IF Z>1 GOTO 1050
1040 C$=Y$:GOTO 8700
1050 IF Z>2 GOTO 1070
1060 GOSUS 4700:C$=H$+XS:GOTO 8700
1070 GOSUB 4GOO:C$=H$:GOTO 8700
1080 REM
3000 REM ***** EOU Operation
3005 REM Reb~ild the deFinition to symbol table
3010 GOSUB 5000:T(Y-l)=O:L=4:GOSUB 8100:C$=H~:A$=Y$:B$=X$:GOTO8700
3020 REM

3500 REM ***** DS Operation
35 I) 5 REM Inc r e (f' e Ii t Pro 9 r arn C0 u n t e r t 0 a n e ~&I set tin 9

3510 GOSUB 5000:C=D:D=U:L=4:GOSUB 8100:A$=HS:D=C:GOSU8 8100
3520 C$=HS:8S=X$:S=S+C:U=U+C:GOTO 8700
3530 REM
4000 REM ***** DW Directive Data-Collection Routine
4005 REM Collect word(s) FroM the object code bufFer
4010 GOSUS 5GOO:D=U:L=4:GOSU8 8100:A$=H$:GOSU8 4600:C$=H$
4020 8$=X$:P=1:GOSU8 8700
4030 C=C-l:IF C=O GOTO 105
4040 D=U:L=4:GOSUB 8100:A$=H$:GOSUB 4GOO:C$=H$
4050 D$="u:GOSUB 8700:GOTO 4030
40GO REM
4500 REM ***** DB Directive Data-Collection Routine
4505 REM Collect byte(s) From the object code buFPer
4510 GOSU8 5GOb:D=U:L=4:GOSUB 8100:A$=H$:GOSUB 4700:C$=H$+X$
4520 8$=X$:P=1:GOSUB 8700
4530 C=C-l:IF C=O GOTO 105
4540 D=U:L=4:GOSUB 8100:A$=HS:GOSUB 4700:C$=H$+X$
4550 D$="u:GOSUB 8700:GOTO 4530
4560 REM
4800 REM **~** GETWORD Subroutine
4G05 REM Get a word FrD~ the object code bufFer
4810 GOSUB 4700:L$=HS:GOSUB 4700:HS=L$+H':RETURN
4650 REM
4700 REM ***** GETBYTE Subroutine
4705 REM Get a byte Fro~ the object code bufFer
4710 D=P~EK(S):L=2:GOSUB 8100:S=S+1:U=U+l:RETURN
4750 REM
5000 REM ***** GETDATA Subroutine
5005 ~EM Get an operand value From the Field characters
5010 GOSU9 800:M=X-K:A$=G':C=1
5015 GOSUB 5500:IF K<M GOTO 5100: REM ArithMetic operand
5020 IF LEFT'(GS,1><>lf'" GOTD 5030
5025 D=ASC(MID$(G$,2,1»:RETURN: REM ASCII operand(s)
5030 GOSUB 8600:IF T<Y THEN D=T(T):RETURN: REM SYMbol o?erand
5035 IF RIGHT$(G$,l)<>"H lf GOTD 5045
5040 H$=LEFT$(G$,M-l):GOSUB 8000:RETURN: REM Hexadecimal ope~and

5045 r~ RIGHT$(GS,l)<>"B lf GOTO 5055
5050 M=M-l:G$=LEFT$(G$,M):GOSUB 8200: REM Binary operand
5055 D=VAL(G$):RETURN: REM DeciMal operand
5090 REM
5100 REM ArithMetic Procedures
5105 l,J=O:W=O
5110 O=M:M=K-C:G$=MID$(A$,C,M):GOSUB 5030
5120 IF V=O THEN S(O)=D:GOTO 5150
5125 IF MID$(AS,C-l,l)=lf_tf GOTO 5135
5130 S(V)=S(V-l)+D:GOTO 5140
5135 S(V)=S(V-l)-D
5140 IF W=O GOTO 5150
5145D=S(V):RETURN
5150 V=V+l:C=K+l:M=~:GOSUB5500:IF K>M THEN W=l
5155 GOTO 5110
5160 REM
5500 REM ***** SEARSIGN Subroutine
5505 REM Search iF any '+' or '-' sign in the source statement
5510 FOR K=C TO M
5520 T=ASC(MID$(AS,K,l»:IF T<>43 AND T<>45 THEN NEXT
5530 RETURN
5540 REM
5600 REM ***** COUNTOPERAN Subroutine
5602 REM Count the number of succeedins operand(s)
5605 c=o
5610 GOSUB 900:IF R>O THEN RETURN
5620 IF LEFT$(G$,l)="'" bOTO 5650
5630 C=C+l:GOTO 5610

205

5650 C=C+«X-~)-2):GOTO 5610
5660 R~M

8000 REM ***** HEX-DEC Subroutine
8010 J=LEN(H$) :D=O
8020 FOR 1=1 TO J
8030 T=ASC(MID$(HS,J+l-!,l»
8040 Sl=D+IG~(I-l)*(T-5S):S2=D+1G~(I-l)*(T-48)

8050 IF T>S4 THEN D=S1
8060 IF T{64 THEN D=S2
8070 NEXT
8080 RETURN
8090 REM
8100 REM ***** DEC-HEX Subroutine
8110 D(O)=D
8115 FOR 1=1 Tq 4
8120 D(I)=INT(DCI-l)/16):P<I)=D(I-l)-DCI)*16
8125 J=I:IF INT(DC!»=O GOTD 8135
8130 NEXT
8135 FOR 1=1 TO J
8140 E$(J+1-I)=CHR$(48+P(I»
8145 IF P(I»S THEN E$(J+l-!)=CHR$(S5+PC!»
8150 NE>(T
8155 H$="Il:FOR 1=1 TO J
8160 H$=H$+E$(I):NEXT
81G5 REM MAKE UP L DIGITS
8170 IF J=l THEN RETURN
8175 H$=IO"+H$:J=J+l:GOTO 8170
8180 REM
8200 REM ***** BIN-DEC Subroutine
8210 0=0: FOR 1=1 TO M
8220 D=D+2~(I-l)*VAL(MIO$(G$,M~1-I,1»

8230 NE>~T

8240 RETURN
8250 ~EM

8500 REM ***** CHKMNEMONIC Subroutine
8505 REM ChecK with Mnemonic table to see it is instruction MneMonic
8510 FOR T=O TO 79
8520 IF G$<>B$(T) THEN NEXT
8530 IF T<46 THEN Z=l:RETURN
8540 IF T<57 THEN Z=Z:RETURN
8550 IF T<80 THEN Z=3:RETURN
8560 Z=O:RETURN
8570 REM
8600 REM ***** SEARSYMBOL Subroutine
8605 REM COMPare with symbol table entries
8610 T$=LEFT$(G$,S)
8620 FOR T=O TO Y
8630 IF T$<>T$(T) THEN NEXT
8640 RETURN
8650 REM
8700 REM ***** DISPLAY Subroutine
8705 REM Organize a print statement for listin9
8710 DS=AS+" "+8$+11 "+C$+" 11+0$
8720 GOSUB 8800:IF P=O GO TO lOS
8730 RETURN
8740 REM
8800 REM ***** PRINT Subroutine
8805 REM Print a stateMent to either screen or printer
8810 IF 0=2 THEN PRINT DS:RETURN
8820 PRINT#l,D$:RETURN
8840 REM
9000 REM ***** END Operation
9005 REM Print the SYMbol table entries and exit
9010 A$=Y~:8$=X$:C$=Y$:P=1:GOSUB8700
9500 A$="SYMBOL TABLE:":IF 0=2 THEN PRINT:PRINTA$:PRINT:GOT09S0S
9502 PRINT#l:PRINT#l,A$:PRINT#l

206

9505 K=O
8510 D$=""
8520 FOR X=l TO 5
8525 T$(K)=T$(K)+" If:IF LEN(T$(K»<7 GOTO 9525
9530 D=T(K):L=4:GOSUB 8100:0S=D$+T$(K)+H$+XS:K=K+l
8540 IF K<Y THEN NEXT
9550 GOSUB 8800:IF K<Y GOTO 9510
9 GOO ? R I NT: ? R I NT" 0 ~t " : PR I NT
9610 INPUT"Do YOU (oJant to 90 to Loader' (YIN) II ;A$
8620 IF LEFT${A$,1)="N" GOTD 9640
9630 POKE 133,8S:DISK!"CALL 5600=36,1"
9635 DISK! If CALL 5EOO=39,1":RUN"OSr-85"
9640 RUN"BEXEC*"

207

