Ly

CROSS ASSEMBLER, TEXT EDITOR, AND LINKAGE DEVELOPMENT: ,
PERSONAL COMPUTER AND SDK-85 MICROCOMPUTER

A Thesis Presented to
The Faculty of the College of Engineering and Technology

Ohio University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Hwa—Shingkphen/
June, 1983

ACKNOWLEDGEMENTS

I wish to express my gratitude to Professor Harold F. Klock
whose guidance makes this work possible. Thanks are also due to
my wife Wei-Li and my daughter Kaiting for their patience and
understanding throughout this work.

Finally, I want to express my great appreciation to my

parents for their spiritual support and encouragement.

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION..ueeuvsoeoossesossecsoeansosnsocssssnsasasscsnsncanss 1
2. EXPANSION OF THE SDK-85 SYSTEM...everereeeronoensscecsncncnnsnns 6
2.1 Basic SystemM.iiuiiuiieeeeeeeesseceessossssssssosssssessnsnsans 6

2.2 Expanded SysStemM...eeeeceecesescesceescsscnscoacancososcnnns 7
2.2.1 Expansion Driver CirCuitS...cceeeeececscesscccccacnns 7

2.2.2 External EXpanSiON..cceeececesscsesscesscccscsnscnnas 9

3. DATA COMMUNICATION .o eeveeeseeeesesecasosssscnsosnsasnsncanonnse 13
3.1 Hardware DesSigN.ieceeeeeececceesccsossseoscccssccnscconsns 13

3.2 Software Structure....cieieieieeireteecieneceseccncenannns 14

3.3 SDK-85 Communication Program....eceeeecceeccccosccosccasas 16
3.3.1 TRANSM ROUtTNE.eeteeeesesecesesssocasocssacsnancnns 19

3.3.2 RECEIV ROUtiNE..cieeeeeeeeeccesesescsssscncscnsnnns 21

3.3.3 RUN ROULTNE.tieereeeeecessecessssoscssnscscscsnnnns 24

3.4 O0OSI-C4PMF Communication Program.....cecececceccccocannenes 24
3.4.1 TRANSM Subroutine........... Sessscccsssncecsncccsns 26

3.4.2 RECEIV Subroutine..cececececececscacaccenccncnccnns 32

3.4.3 RUN Subroutine...eeeeeeereennnnnceeneeceacannananns 32

3.4.4 RESET Subroutine......... Ceececeecetettssssssasannn 35

4. EXECUTIVE SYSTEM DEVELOPMENT .ceeeececccescansnncanans cecsesenan 36
4.1 Disk Operating System of OSI-C4PMF............ P 1

4.2 Development Software and Its Executive Program......... ... 36

5. EXTENDED MONITOR...eeeeovenesncanannns e P 1

I N 0171 oL 1 44

5.2
5.3
5.4

5.5

5.6

5.7
TEXT
6.1
6.2

6.3

Command FOrmate.eeeeeeeeeeeeaoeeeseoscosaossanaasscssassase 46

Main Program StrUCtUrE.eeeeeereeeceeesensceoasssansonoassns 48
Data Communication Command Routines..................... ..50
5.4.1 DUMP ROULINE..ieuiterereeceanoenaccnasscnsnsncnsconse 51
5.4.2 GET ROULINE..veteeereerecesenceocnsncssssacasnsnsnns 51
5.4.3 RUN ROUtINE..euieeeririeneenenosocnconssenocsosannns 53
5.4.4 RESET ROUtTNE..seieieirererececeacesessssocssncnnns 54
5.4.5 LINK ROUELINE. et tiereeieeeencescacsoscacsssenancns 54
Display & Modification Command Routines.....ecceeeveuennes 56
5.5.1 EXAM and PRINT ROUtiNES...veeeeeecescescscsocnconns 56
5.5.2 SUBSTITUTE ROUtiN@..eeiveevueseoeseecssosocncnccnss 57
5.5.3 INSERT RouUtine..vceeveeieieeeeescncososccosaccansnns 59
5.5.4 ERASE ROULINE..vieirerernsecesensosecscacsnsncnnsnas 62
5.5.5 MOVE Routine...c.cevvreieeneceessssocscncscnconnses 64
5.5.6 SEE/SET ROULINE...eeieeeteneceeceesnscsccnonnccans 66
File Maintenance Command RoUtiN@S..cceveecvrceccncaacecens 68
5.6.1 SAVE ROUtINE...ieeerrereeasescescsssoscssscnnanee ..68
5.6.2 LOAD ROUETNE..cvererresesesesesosscssscsscanansanss 70
5.6.3 CHAIN Routine...c.ceeceeencnccocscncacns teeseseseens 70
5.6.4 CREATE Routine....ceeeeececccnseconss N 72
SUDIrOULTNeS . eeeerniteiioeeeeeesseesecosnonsessascssnseasna 75
EDITOR. ceveieeeeeeessesoseeaesesoscsasosassosssnnsncsaonse 82
General Description..cceeececcecrenccnnncnnanns cesesesnons 82
Main Program StruCture...c.ceeeeeeeceecsscasccccasccasnocns 84
Non-File Mode Related Command Routines......eecececececcsan 86

6.3.1 INPUT ROULTINE.eeeeeeceeccosnocecessscosoccoossssnnss 88

7.

6.3.2 LIST and PRINT ROULINES.ceereeeeceeeoeceeossnannass 91

6.3.3 DELETE ROUtINE..veeeeereeeecenesescocossnscsnsannss 93
6.4 File Mode Related Command RoUtineS....cececencaceecccnnnns 95
6.4.1 NEW ROULINE..eieieeeeeenerneeneenecseoccancanennas 95
6.4.2 EXTEND ROULINE...vveieeneesessesecoscsanscccccnnons 95
6.4.3 FILE Routine........ Ceesecesesenseseesssesannssennn 96
6.4.4 CALL Routine.....ceeeeeeeecnnens tessesssesseesanens 98
6.5 SUDrouUtinesS....iiieieieteneneccesscccsescoscssssesnsesnas 100
8080/8085 CROSS ASSEMBLER..veveeereseoseecocansscsncseanaannns 107
7.1 OVerVieW.ueeeeeeeoeosssesssscsscssasssssssansasesnsnsnsss 107
7.1.1 System DesCription.ecieeecesecceesccasoccescccnsss 107
7.1.2 Design Background...ecceeeeessceesccccsacoesscnnses 109
7.1.3 Syntax FOrmat.ieeeeeeeeceeeosossscscceccsasaccsnonss 110
7.1.4 Data FOrmS.eeeeeeeeseseecsessoccoscconcscasnsennans 111
7.2 Main Structure...ceeeeeeeeseececscncnns seesassescasssnans 112
7.2.1 The Initialization Procedure...c.ceeeeevececcecaans 113
7.2.2 The First Field Scan Procedure.....ceeeeeeeecececns 116
7.2.3 The Second Field Scan Procedure....... cesesssesans 118
7.2.4 The Error Display Procedure....ceceeceeeecesencens 120
7.2.5 The Ending Procedure...cceeecececcces ceccceasacacs 122
7.3 Instruction Translation....ceeeeeeeecesecceescncncancecns 124
7.3.1 8080/8085 Opcode Organization & Manipulation...... 124
7.3.2 The One-byte Instruction Routine..... ceceecctnaens 125
7.3.3 The Two-byte Instruction Routine.......ccceeeee .ee127
7.3.4 The Three-byte Instruction Routine..... ceecsccansa 130
7.4 Directive Operation....ceceeeeeess cesses cescecsseveconnces 130

7.4.1 ORG Operation....cceeeeeeeeenas Cectecceescecnnanns 132

7.4.2 EQU Operation..ieeececeecescecscaseoscscccncccnnns 132
7.4.3 DS Operation.eceeeeeeececenenns Ceesttesescescscnas 134
7.4.4 DW Operation.veeececeacess ceseescenscnens cecscssse 134
7.4.5 DB Operation.eeeeceececeececees ceeseessesnssssnnns 137

7.5 SubroutinesS...ieceeeeiiriceesecessccrcscsncncsnns ceseesnen 137
7.5.1 [ISOLATE Subroutine.......ece.. cesescnans certseesnes 140
7.5.2 GETDATA Subroutine.....eeeeeeeeseeececceccncnnnnns 140
7.5.3 POKWORD and POKEBYTE SubroutineS....ceeeeeeececess 146

7.6 The Listing Program..cceeeeeeccceceesns ceseses ceesesseases 148
8. SYSTEM OPERATIONS...eveveerecencsesccnnsnns Ceecetsetsetesetananns 151
8.1 Initialization......... cescsssscane seesesscessscsscnsssnas 151
8.2 Edit Source File......... casenre cecsssetsennns ceesccacstane 154
8.3 Assemble Source Files.eeeveeenenns cesessecsscrsecsasccse ..155
8.4 Operations of Extended Monitor.....ceeveceeecccocncns eeea157
8.4.1 Insertion of an RET..ueeeeeeececceccocecssnoccncns 157
8.4.2 Save Object Code File........ cesesccsee S 3 1
8.4.3 Load Program to SDK-85 for Execution........ ceeeeolb2
8.4.4 Get Result from SDK-85......... cesesrecsssense cesse163

8.5 Modify Program
9. SUMMARY AND FUTURE DEVELOPMENTS......cceeeeenes cesesscscascenns 166
9.1 SUMArY..eceeeececccccsscossscccnas O 119
9.2 Future DevelopmentS.ccceeeeeseccsossssccccssasssccecsessslb?
9.2.1 Double-Disk System EXpansion....cececeecececeseeesal6/
9.2.2 Hardwired Interrupt..ccceeceecesccccens cseesssesss 168
REFERENCES .eeeeeeeeeeeeseeeeeoscecsccascsssnsoscans cececsanes cessssl70

APPENDIX

A. CROSS ASSEMBLER ERROR CODE INTERPRETATION.....eeveeececncnenns 171
B. SDK-85 DATA COMMUNICATION PROGRAM......evveeacannann cerececans 172
C. OSI-CAPMF DATA COMMUNICATION PROGRAM...ieveereeneencnscnconnns 176
D. ENHANCEMENT SYSTEM EXECUTIVE PROGRAM.....eicevererieneecnnncnns 180
E. SDK-85 EXTENDED MONITOR PROGRAM. ... eevererenenecesosocnconnnns 181
F. TEXT EDITOR PROGRAM. ceceeeeeeetenenecorenceonosnscscscoscannsens 187
G. 8085 CROSS ASSEMBLER PROGRAM....eiuveececsocecsosccsossncances 191

H. ASSEMBLED FILE LISTING PROGRAM (SCRIBE).eeeeverureroseencannns 203

LIST OF FIGURES

FIGURE , PAGE
1.1 SDK-85 Development System Functional Block Diagram............. 4
2.1 SDK-85 Expansion Driver Circuit Diagram..ceececececcecceescenas 8
2.2 SDK-85 External Expansion Circuit Diagram.e..cceeeceecceccecacns 10
2.3 SDK-85 Expanded System Memory Map....... teecesecesesssensseans 11
3.1 Flowchart for Main Program Structure of SDK-85...cc0ecevccncnen 17
3.2 SDK-85 Command Table StruCture.....cceeeececesecececesecocacans 18
3.3 Flowchart for Subroutine DATAIN.......... sesssscsessssssasssss 20
3.4 Flowchart for Subroutine EMPTY..cieiieenererecenencncnncccnnns 20
3.5 Flowchart for SDK-85 Routine TRANSM....ceeeeienencoceconacnnns 22
3.6 Flowchart for SDK-85 Routine RECEIV..... “essssssssescsncssness 23
3.7 Flowchart for SDK-85 Routine RUN......... N 25
3.8 O0SI-CAPMF Data Communication Program Memory Map....cceceecceses 27
3.9 Flowchart for 0SI-C4PMF Subroutine BEGIN.......cev... ssseacass 28
3.10 Flowchart for 0SI-C4PMF Subroutine CHKSUM........... csessnces 29
3.11 Flowchart for OSI-C4PMF Subroutine SETUP.......... ceaccesncoe 29
3.12 Flowchart for OSI-C4PMF Subroutine TRANSM........... cesscccan 31
3.13 Flowchart for O0SI-C4PMF Subroutine RECEIV............ ceeeesesdd
3.14 Flowchart for OSI-C4PMF Subroutine RUN.....ccceveeeeens ceeess34
3.15 Flowchart for 0SI-C4PMF Subroutine RESET......... ceeesesecens 34
4,1 OSI-CAPMF Disk Operating System Memory Map....ececececceceeessd’
4,2 Disk Track Use Assignment...cceeeececcccccsces P)|
4.3 Overall Software Development Structure.....cceeececeeeeeeeess..d0
4.4 Flowchart for System Executive Program...cccceeeccceccccsccscs 41

4.5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

Flowchart for Executive ROULTNES..i.ieeeeeeeeeeneencecneannnns 42
Memory Map for Extended Monitor........... cesessvesessansseane 45
‘Command Summary for Extended Monitor.......... ceceesanae cesene 47
Main Pfogram Structure of Extended Monitor....c.ceeeeeenecennns 49
Flowchart for Routine DUMP......ccvvevenes teesrsssns ceceessnnn 52
Flowchart for Routine GET...ieeeveececcccceoscnnannes ceeessnns 52
Execution Sequence of Routine RUN...vcvecveennnens cessseenssas 54
Execution Sequence of Routine RESET...ccevencecencenes cesenens 54
Flowchart for Routine LINK.....eveveeennenn. cesesccscnsscsa ...55
An Example for Displaying FOrm....eceeececocececocecoscncoacss 57
Flowchart for Routine EXAM and PRINT....ceveeeeeenens ceseenns 58
Flowchart for Routine SUBSTITUTE........ sesesescns B 10
Flowchart for Routine INSERT....... P) §
Flowchart for Routine ERASE....cceveeeeecesncanens cesesenanas 63
Flowchart for Routine MOVE.......c.ccvuens ceeeenes . 65
Flowchart for Routine SEE/SET...ceveeeeranennn. cecsesasessans 67
Flowchart for Routine SAVE......civiveecenenen ceseeseassessssbd

F]owchart for Routine LOAD..OO.I..O..O....l......'....'l....'71
Flowchart for Routine CHAIN......... cececoccccsosesse ceseece 73

F]owchart for Routine CREATE'..........'.I.'..C...........‘.‘74

Flowchart for Subroutine PARSE...... coesessecrenses cesseenesdl]
Flowchart for Subroutine SCAN......ccceeeveeccenececccccccanes 78
Flowchart for Extended Monitor Subroutine DISPLAY........T...79
Flowchart for Subroutine GETFILE....ceeeveccecacacese seceesess80
Flowchart for Subroutine SHOW......ccciceveencennses cecesesesa8l

Flowchart for Subroutine CALCPAGE........ O <2 |

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11

Command Summary for Editor............ Ceessctesctsstessscnssans 85
Flowchart for Editor Main Program Structure......c.cecececeeess 87
Flowchart for Routine INPUT....civceavane ceecscesans ceesessane 89
Flowchart for Routine LIST and PRINT..ececeeecacencans cesensce 92
Flowchart for Routine DELETE.....ieveeevecncacancncnns crsesscs 94
Flowchart for Routine FILE...uieeeeeeeceeecnoncecocscannns —1
Flowchart for Routine CALL........... cesecsssssescses cesecanns 99
Flowchart for Subroutine SHRINK....eoeeeeveennne ceseesns eess.102
Flowchart for Subroutine RECOVER......cevesesesncccnccans103
Flowchart for Subroutine PUTID...cceeeecenrecencns cessssess.104
Flowchart for Subroutine DISPLAY.....cieveevnveennns cesesenes 104
Flowchart for Subroutine STEND......... ctesesscesaseasesnace 105
Flowchart for Subroutine GETPOSITION...cieeeececncsnens eess.106
The Assembler Workspace Memory Map.ceeececsccescccssses ceessss108

Flowchart for Build TableS.cceeeeeeecscsosecacascsssssensess 108
The Standard 8080/8085 Assembler Delimiters......... cesesessslll
Flowchart for The Initialization Procedure.............. cess.114
Flowchart for The First Field Scan Procedure......eeeeeveee..116
Flowchart for The Second Field Scan Procedure.......ccec.e...119
Flowchart for The Error Display Procedure....ceeevececeeeesss121
Flowchart for The Ending Procedure........ ceesesssssann cesane 123
The Register Array and Register-pair Array.ceeeeece. coaves cese124
Base Opcodes & Arithmetic Expression Table for Register-

related InstructionS.ceeeeceeecees cecceesccssscsssssssssesesl?h

Flowchart for One-byte Instructions Translation......ceee...128

7.12 Flowchart for Two-byte Instructions Translation..... ceesseesl?9

7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27

Flowchart for Three-byte Instructions Translation........... 131
Flowchart for ORG Operation....ceeeeeeeeescecccccasccecanans 133
Flowchart for EQU Operation........ cestecccssssesennans cecens 135
Flowchart for DS Operation...cececececes. cesseens ceecscasans 136
Flowchart for DW Operation....... ceesens ceesesnes ceesseasaes 138
Flowchart for DB Operation..icececescescescoacenss ceesees «..139
Flowchart for Subroutine ISOLATE......eceeceencncncncaceess.ldl
Flowchart for Subroutine GETDATA.....ececececccscsccscscsesald?
Flowchart for Arithmetic Operation...... I 1 X
Flowchart for ASCII Operation.......... cescsssessscsasssscas ..144
Flowchart for Hex Operation..... cesessssensacanss cessesee ...145
Flowchart for Binary Operation.......... csesvasessssssans ...145
Execution Sequence of Subroutine POKEBYTE...eeeeeeenn cececnse 146
Flowchart for Subroutine POKWORD...... S X Y
Generalized Flowchart for File Listing Program SCRIBE...... .149
8.1 An Example Program...cccesecccsccsssesscesscsososscoscecs P Y4
8.2 Source File of the Example Program....cceeeececccecscesscssssalb2

8.3 Listing File of the Example Program....cececeeececcsessesecssa158

CHAPTER 1 INTRODUCTION

In recent years, user-assembled computer kits have been widely
used in schools. These sihgle board computers contain all components
required for basic system operation. The simplicity and flexibility
make these computers well-suited for student experiments and simple
user applications. However, minimal capabilities of these Kkits
restrict system operation. The purpose of this thesis is to upgrade
the SDK-85, MCS-85 System Design Kit, and thereby provide a working
model for similar small system enhancement.

The SDK-85 basic system contains one page (256 bytes) of RAM
memory and an 8085A microprocessor operating at a 3MHZ system clock.
A built-in system monitor, a 6-digit LED display, and a 24-key keypad
help the user to enter a machine code program and operate the system.
On the prototype circuit board, a large wire-wrap area provides the
capacity for system expansion and development. Like most of the
simple microcomputer 1learning systems, the SDK-85 lacks the ability
to process the symbolic language, and to manage the user files. The
user must assemble his program and then enter the hexadecimal machine
codes directly through the keypad every time. Due to these
inefficiencies and inconveniences, enhancement of the SDK-85 operating
capability is the objective of this project.

Development of a resident assembler and file management system
require both extensive hardware and software expansion. Besides the
editor/assembler and the file management software programming, other

additional supporting developments may include ROM/RAM memory
1

2
expansion, ASCII keyboard input handling, video display circuitry

implementation, and floppy disk operating system design. In order to
maintain the simplicity and flexibility of the SDK-85, the cross
assembling scheme is adopted, instead of resident assembly. This
means the SDK-85 enhanced operation 1is accomplished through the
assistance of a complete computer as a host system. The
editor/assembler and the file management programs for the SDK-85 are
developed by wusing the existing facilities 1in the host system.
Through the data communication channel, the host system is able to
interchange information with the SDK-85, and command the SDK-85 to
execute a specified program. In this way, only minor memory
expansion and a data communication development are needed to let the
SDK-85 perform any function ordered by the host system.

In this project, the O0SI-C4PMF (former Ohio Scientific Inc.)
microcomputer is selected to perform the role as the host system.
The O0SI-C4PMF is a 24K RAM machine based on the 6502 microprocessor
with two serial ports and two parallel ports. One serial port is
used to interchange data with the SDK-85, and send data to printer.
The parallel ports are not used. Two floppy disk drives offer a
total of 160K bytes of storage capacity for this system. In the
system's firmware only a small monitor program and a DOS booting
routine are provided. The disk operating system, 0S-65 DOS, and the
BASIC Ianguage interpreter are loaded from disk to RAM locations by
user's request. To take advantage of DOS, a software development
system for the SDK-85 is designed and operated in the 0SI-C4PMF.

The SDK-85 software development system created in this project

3

includes a Text Editor program, an 8085 Cross Assembler program, an
SDK-85 Extended Monitor program, and a group of 6502 assembly
language subroutines ;a]led by the extended monitor for data
communication. Except for these assembly language subroutines, the
programs are written in the BASIC 1language. Each of these BASIC
programs is loaded from disk to workspace of the 0SI-C4PMF by proper
menu selection.

Figure 1.1 explains the overall system operation in functional
block diagram form. Through the assistance from the system, the user
is able to edit the 8085 assembly language source file by using the
Text Editor, and 1is able to call the Assembler to translate this
symbolic Tlanguage to an 8085 machine code program. The object code
file generated by the Assembler then can be allocated to the SDK-85
memory locations by the Extended Monitor. The Extended Monitor not
only performs the Loader function, it also offers the data
modifications and disk file maintenance capabilities which are not
available 1in the SDK-85 resident monitor. A memory buffer managed by
the Extended Monitor simulates any 2K range of the SDK-85 memory.
The user may order the Extended Monitor to copy a block of memory
contents of the SDK-85 into the memory buffer for modification or
filing. Therefore, the user 1is able to enter, debug, and save his
program more efficiently.

The structure and algorithm of each hardware/softwaré
implementation are detailed in the chapters to follow. Chapter 2
presents the memory expansion and data communication hardware

implementation on the SDK-85 system circuit. Chapter 3 depicts the

weageTq ¥ooTd TPUOTIOUNY Wa3sAS juswdoTaAeq Gg=MAS +°L FUNOIA

HONVNEINIVN
14

> / 7/ woznon \ [ama | bemwssy] [aounos [

WNHLSAS NOILVOINMNN
2 0 CHANHLXH ddod SSOHD JOVNONV'I HOLIGH
Gg-3ds Viva IXHL
Gg-3as Lodrdo G808 ATINISSY

SNOILVOIAIQO
kY }
AVIdSId

5

hardware/software design of the data communication between the SDK-85
and the OSI-C4PMF. It also explains the execution procedure of each
assembly Tlanguage communication routine of both systems. Chapter 4
highlights the overall linkage of the software developed and executed
in the 0SI-C4PMF. Chapter 5, 6, and 7 describe the program logic for
the Extended Monitor, the Text Editor, and the Assembler
respectively. Chapter 8 wuses a typical example to demonstrate the
operation and performance of this development system. Chapter 9
summarizes what has been accomplished and what possibilities still
exist for improvement. Appendix A provides the explanation on the
Assembler error code messages. Seven other appendixes document those

developed programs in source listing form.

CHAPTER 2 EXPANSION OF THE SDK-85 SYSTEM

2.1 Basic System

The SDK-85 is a simple microcomputer system based on the Intel
8085A microprocessor. In addition to the 3MHZ 8085A CPU, this

on-board system also includes the following devices:

8355 2K ROM with I/0

8155 256 Byte RAM with I/0 Ports & Timer
8205 3 to 8 Decoder

8279 Programmable Keyboard/display Interface
Hexadecimal Keypad/display Circuit

TTY Interface Circuit

The SDK-85 monitor program resides in 8355 ROM memory, from
hexadecimal location 0000 to 1location O7FF. It provides utility
functions employing either a teletypewriter, terminal, or the
on-board keypad. Only one page of RAM is provided by the 8155 for
user programming. This RAM can be addressed at locations 2000 to
27FF. One page of 8155 RAM thus occupies eight pages of mapped
memory. Multiple copies of RAM are due to incomplete decoding of the
8155.

On the circuit board, prototype space is allocated for additional
8355/8755 expansion ROM and 8155 RAM. For further enhancement of the
basic system, an optional expansion driver area is provided. This

may not be addressed by the 8205, but affords space for 8212 latches
6

7

and 8216 buffers for driving auxiliary systems. The optional
expansion drivers leading to the board's prototyping area are enabled

only over the address range 8000-FFFF.

2.2 Expanded System

As described in the previous section, the fundamental system
does not have enough memory space to accommodate the complete
development program. Therefore, a minimal hardware expansion is
required.

In order to be more flexible in further developments, the method
of expanding optional driver area was adopted. By installing two
8212 address latches and five 8216 buffers in the appropriate board
position, the external decoding circuit and external memory devices

could be developed in the wire-wrap area.

2.2.1 Expansion Driver Circuits

The circuit layout of the expansion driver area Was already
designed and printed by the manufacture in the upper right region of
the SDK-85 circuit board.

One 8212 1latch 1is employed for address/data bus demultiplexing
(DAO-DA7). Another 8212 buffers the unmultiplexed half of the address
(A8-A15), and five 8216 drivers, buffer the data bus and control
signals. A1l buffered I/0 buses are connected to the external
circuits through the bus expansion connectors J1 and J2. A completed
circuit diagram of this expansion driver area is duplicated in Figure

2.1.

wex8eTq 3TNOJT) JOATIQ uoTsuedxy Gg=3AS |°2 FNOIA

1)
oY N T
= K104 ;
T
Y
! 114 — v
2 = Qv ~—
5 R T IS _
Qv Q Q 2128 |k
av S 1] B e =
- ral 10(%or -
v-Q S|
UY-Q [T et o oFe 129 N_
o B3 7 3w ai
Sv-a ! TSP g . 5o b bLSWL 2ISYL = s
70 as N ror oY T
vqu» * S1eQa ! |
v AS+ =lesq Qs
e oa - et -
S ° 2129 a
2 o299 QT T°u @ Y v zwv)
o T 100 + Tl _
L»z_ %T AS+ 51 18Q natr .
212 Tl v, - 5€OCQ
5.8 ira)d A B), TeeQ 9 e €Qtar INT
Sv-9 138 [MM rlzca
v =l BAw s =5 s —o2 ={z8a 2qlz —
ev-9 Ao i s)
2v- - € Yoa M ra o) = 0q
ov-a b i .mu 10— i nal o
3 o MO hd e
* rst | % P 2l {37 aom
ASH Tlea S) by - Tt
Lg-e 5 e
x:.8 Naig el NINT | AS:
32:8 e on s =
nmnm__.w < <7|€8Q e , == - _
] 20a b
B3 Ll —rizes I s, 07l IR - | 3
. I o< 2Q - o029 12 .v\.mHﬂNM— S1esh 2 Py .
7120 .
©]9=a Q% L] 0 eleca >
=]/c0 ‘ Tr{esa €q B 9 1o
) _mDuv, IS | o e - rl=ca
L) ariesd . et hi3
s ~={10a
952 —rom »{19a vatr -
DR =1 {0 .
S L, Qs FO KD
s B
2%-Q = 220 s
w8 s ﬁanﬂ X N3 vﬂﬂn
1359 b
w9
I
e
S1q
\ﬂf.w% T8 et TaR%
o - ’
) Arieca
" oized Ware TV
Log Rleds]
»1'8Q Yatr 709
7120 N
\ T|o% -~ = 3 ot
5 e

9

As can be observed in the circuit diagram, the address line Al5
must be high (logic 1) to enable the 8216 data bus buffer/drivers.
This allows the bus expansion drivers to be enabled only when the
upper 32K memory locations (8000-FFFF) are addressed.

Since no external interrupt is used, the input pins for RST 6.5,
INTR, and HOLD are disabled by fixing the corresponding jumpers to
ground. If Tlater developments require any of these external inputs,

Chapter 3 of the SDK-85 User's Manual should be reviewed.

2.2.2 External Expansion

The external expansion circuits are located on the upper left
hand side of the SDK-85 «circuit board. This also identifies the
wire-wrap area. Circuitry here interfaces to the basic system via
connectors J1 and J2. Thus, the external expansion circuits may be
divided into two categories, extended memory, and a data
communication circuit. An off-board 74138 address decoder enables
the applicable component. Figure 2.2 shows the external expansion
circuit diagram.

The external expansion memory components include a 2716 2Kx8
EPROM and two 2114 1Kx4 static RAM chips. Like the original system,
each output from the external address decoder enables a 2K block of
addresses. The 2716 EPROM is addressed from 8000 to 87FF in absolute
addressing. The 2114's are mapped at 9000-93FF in the lowest access
range,, and a duplicate resides at 9400-97FF in the highest access
range. Figure 2.3 presents the SDK-85 memory map after expansion.

The data communication circuit is composed of an MC6850 ACIA

10

w
BY

S
2

G

X
~

-
ko
%

U
b
e
%)

weJdeTq 3INOJT) uoTsuedxy TBUXIXF Gg-HAS 2 °C TUNOIL

2
<

-« nm%‘o*ob-oodl\l v
< TSP

TCTTTCETTTTTS

B -
a b
9 A2 X
=77 oLt
i
9,
1Y v Al
z AS+
] 1| 2
= Z 044
¥o
an® ayo? £
m 2z
9 a XUJ g
2 €9yl ._.ml !
d L.bL.
N
714 7]
st ol
POLENZ . T
4 | B]
b A4 —a
$—o
—qg
z mq#@_L ¥ sloled 1 2| el o 2 9] o o 1fz]efe] ¢ o] 5] szl (7€ ¢ 2 8 —
0 G Yo P 255 S3 YTy 1Y # W WHWEI T 1 By WA WEY VY P | T
2 152(57 EX{ s2I'g an _ '
7714 VIOY 0589 po 5 KV 12 = WV 12 = wWoudd 9ile T
o n %wlvm_u nzw.mu.. A%
—Is. 1@ 0 S0 %0 €4 2a 10 gd /¥ ANy fof Tof ‘9 3 3 *ag 9 0/t tor 3y 30 Lo 90 50 %0 £0 20 18 HO N
s o ol 81 sfd2]12f 22| et Pl :N.m.au: X ulzl al o E gy Ll ol s of el ni o] &
9 A5+ AS+
(al)
GE

L

-

- OPEN T
9800
97FF
EXTERNAL RAM (DUPLICATE)
9400 Ay
93FF 5
9000 2114 EXTERNAL RAM 2
8FFF . =
I/0 MAP ACIA &=
8800 / E
87FF B
2716 EXTERNAL EPROM 2
8000 7
TFFF
‘-; OPEN -
3000
29FF
EXPANSION RAM (DUPLICATE)
2800
28FF
EXPANSION RAM (8155)
2800
2TFF 9
BASIC RAM (DUPLICATE)
2100 g
20FF
8155 BASIC RAM A
2000 H
1FFF o
KEYPAD/DISPLAY LOCATIONS §
1800
1TFF S
OPEN 3!
b=
1000
OFFF
EXPANSION ROM (8355/8755)
0800
O7FF
8355 MONITOR ROM
0000 y

FIGURE 2.3 SDK-85 Expanded System Memory Map

11

12

(Asynchronous Communications Interface Adapter), two 74163 4-bit
Presettable counters, a 7400 quad 2-input NAND gate, and a 7404 hex
inverter. As noted in Figure 2.2, the 6850 ACIA is addressed by 1/0
mapping instead of memory mapping. Two I/0 addresses, 8E and 8F, are
assigned to the ACIA Control/status register and Transmit/receive
register respectively. The 3MHZ system clock is divided by cascaded
74163's in order to generate a 19.23KHZ clock for the ACIA. This
clock will be devided by 16, in programming the ACIA, to obtain the

1200 baud rate.

CHAPTER 3 DATA COMMUNICATION

3.1 Hardware Design

The data communication link between the SDK-85 and the 0SI-C4PMF
is an asynchronous, serial data handler which transmits or receives
data bytes at a fixed rate of 1200 baud (1200 bits per second). Two
ACIA's (Asynchronous Communication Interface Adapters), Motorola
6850's, were used to perform this task. One of 6850's was already
part of the original O0SI-C4PMF 1I/0 circuitry. The other 6850 was
added to the external expansion board of the SDK-85 system, and is
the ACIA of interest in this section.

The added ACIA handles serial data communication at a rate of
1200 baud. This means the ACIA transmits or receives one byte of data
bit by bit, as eight data bits. The 8 bits are preceded by one start
bit and followed by one stop bit. Each byte requires approximately
8.33 ms to transmit all bits. This 1is much slower than the
instruction execution time of either microcomputer system. For this
reason, the handshaking between the two systems during communication
can be implemented by software rather than hardware. However, before
the software handshaking takes over, the hardware must be ready. Both
ACIA RTS (Request-To-Send) output pins are connected to each other's
CTS (Clear-To-Send) input pins in order to perform hardware
handshaking for the System-ready signal. When both ACIA's are-ready,
the software takes over.

As mentioned in Chapter 2, the 8085 CPU, of the SDK-85 system,

provides 256 bytes of I/0 dedicated memory. Two of these I/0 memory
13

14
lTocations are assigned to the ACIA. Hexadecimal address 8E is the
Control/Status register, and address 8F 1is the Transmit/Receive
register. Because these memory locations can be accessed like an I/0
port, they can be both written to or read from. That means each
location performs the function of two registers.

Since the MC6850 was developed mainly for direct interfacing
with the 6800 and 6500 series microprocessors, it is necessary to add
gating for its interfacing with the 8085-based system. As pictured
in Figure 2.2, the input signal (E) for enabling the I/0 data buffer
is given by NANDing the RD and WR output pins of the 8085 CPU to
generate an active-low signal for reading from or writing to the
ACIA. The R/W input pin of the ACIA is connected to the WR output
pin of the 8085 to determine the direction of ACIA data flow.

The clock circuitry, as shown in Figure 2.2, is implemented by
two cascaded 74163 presettable counters, which divide the SDK-85 3MHZ
system clock by 156 to generate 19.23KHZ for the ACIA. This clock
input will be divided by 16, in programming the ACIA, in order to get
1.2KHZ for the actual data clock.

Refer to Figure 2.2 detailing the complete data communication

circuit diagram.

3.2 Software Structure

The real-time data communication software in both 0SI-C4PMF and
SDK-85 are written in the corresponding machine language. The user
controls these machine 1language programs through an 0SI-C4PMF BASIC

language program called Extended Monitor, which 1is detailed in

15
Chapter 5. For communication structure, the 0SI-C4PMF is the host

system which gives a command and/or initialization information to the
slave system, SDK-85.

Four commands, TRANSMIT, RECEIVE, RUN, and RESET were developed
for communication between the 0SI-C4PMF and the SDK-85. TRANSMIT and
RECEIVE are employed to interchange data between two systems. RUN
orders a specified SDK-85 program to be executed. And RESET
terminates the data communication channel.

Each command is represented by an ASCII character. When the
0SI-C4APMF user issues a communication command to the BASIC language
program (Extended Monitor), the O0SI-C4PMF transfers the execution
control to the proper 6502 machine language subroutine. First, the
software tests the hardwired handshaking 1line. A warning message
will be returned to BASIC, if the SDK-85 is not ready. Otherwise the
corresponding ASCII command byte is sent to SDK-85. Upon recognizing
this ASCII encoded command, the SDK-85 transmits the same ASCII byte
back to O0SI-C4PMF for command verification. No further information
is sent, unless that command is verified by 0SI-C4PMF.

Except for RESET, the other three functions require the
O0SI-C4PMF to provide further information to the SDK-85. RUN needs
the OSI-C4PMF to supply the starting address of the specified
program. TRANSMIT and RECEIVE require not only the starting address
for initializing a SDK-85 data location pointer, but also the length
of data string for setting up a byte counter.

Both systems accumulate the checksum when each data byte is

transmitted or received. After completion of data transmission, the

16

checksum maintained by SDK-85 1is sent to O0SI-C4PMF for checksum
verification. The error status 1is returned to the BASIC calling

program, and translated to a proper message for prompting the user.

3.3 SDK-85 Communication Program

The algorithm for this 8085 machine code program, which accepts
commnands from the O0SI-C4PMF host system and executes the specified
command routine, can be viewed in the generalized form shown in
Figure 3.1.

After turning the SDK-85 power on, hardware initialization is
necessary in order to transfer control to this communication program
which resides at SDK-85 starting location 8227 (hexadecimal). At the
beginning of this program, the ACIA undergoes reset. This is
followed by a program sequence which writes to the ACIA Control
register specifying 10 bits per data byte (1 start bit + 8 data bits
+ 1 stop bit), divide-by-16 mode and low output state on the RTS
(Request-To-Send) pin. The purpose of this low output state is to
indicate that the SDK-85 is ready. Next, a small routine
repetitively checks the status of the communication link between the
0SI-C4PMF and the SDK-85. When the 0SI-C4PMF is ready to transmit,
the routine is exited.

The next step 1in program execution is that of waiting for an
input command. This is also. the re-entry point for most of the
command routines when previous commands have been executed. After an
input byte is received, the command recognition routine compares this

input to the contents of the command table, as shown in Figure 3.2.

(Lome)

A

Initializations

OSI Ready?

.Y
L
Kn\}
-

Wait Command

\

.| Skip Next Init Counter
2 Bytes & Pointer
N >
— Match?

)4 Y
Decrement \
Counter)

Verification

A \

N | End of
Table? Get Entry
Address
Y
\
FC=Entry Addr

\
Execute

Comm Routine

* 'RUN' WITHOUT RETURN

ADDRESS, OR 'RESET' [— — —— —
COMMAND
STOP

FIGURE 3,1 Flowchart for Main Program Structure of SDK-85

82c9

82ca

82CB

82cc

82cD

82CE

82CF

8200

82D1

82D2

823

824

FIGURE 3,2 SDK-85 Command Table Structure

TRANSMIT COMMAND BYTE (4F)

ENTRY ADDRESS OF ROUTINE
TRANSMIT (8258)

RECEIVE COMMAND BYTE (49)

ENTRY ADDRESS OF ROUTINE
RECEIVE (8274)

RUN COMMAND BYTE (52)

ENTRY ADDRESS OF ROUTINE
HUN (8284)

RESET COMMAND BYTE (45)

——

ENTRY ADDRESS OF RST 1 IN
MONITOR (0008)

18

19

If the 1input 1is identical to the command indicated by the command
pointer, then the next two bytes in the table are loaded into the
8085 CPU Program Counter. These bytes form the starting address of
the selected command routine. Any unrecognized input command takes
the flow of execution back to the point of command entry.

In order to deal with the characteristics of the ACIA, two
widely used subroutines were developed. One is called DATAIN which
tests the status of RDRF (Receive Data Register Full) of the ACIA and
returns with input data in the Accumulator (Register A). The other
subroutine is called EMPTY which examines the status of TDRE
(Transmit Data Register Empty) and returns control to the calling
routine when this register is ready for the next data transmission.
Figure 3.3 and 3.4 present the flowchart for these two subroutines
respectively.

The RESET command causes the data communication program to
transfer control back to the SDK-85 built-in monitor firmware. Since
the two bytes following the RESET command byte in the table form the
monitor entry location, no execution routine is developed for this
command. If the communication channel is needed later, the re-entry
procedures must be performed on the SDK-85 keypad.

The other three command routines are described in the sections

to follow.

3.3.1 TRANSM Routine

When a TRANSMIT command 1is received, the execution control is

transferred to this routine. TRANSM transmits a block of SDK-85

20
‘ ENTER ’

\
STATUS to A

Check RDRF

Full?

Y

Data to A

Empty?

(Lo)

FIGURE 3,4 Flowchart for Subroutine EMPTY

21

memory contents to the O0SI-C4PMF. The execution flowchart can be
viewed in Figure 3.5.

At the beginning of this routine, the execution logic sets up an
address pointer in Registers H & L and a byte counter in Registers D
& E. These information are provided by the host system (0SI-C4PMF).
Before transmitting the specified data block, Registers B & C are
cleared for using as a checksum accumulator. Each data byte is added
to the checksum after being transmitted.

The error checking procedure is entered when the byte counter
reaches zero. First, the high-byte of checksum (Register B) is sent
to the host system for comparison. Then the execution logic waits
for the host system to send its checksum high-byte. Upon receiving a
byte from the ACIA, a comparison is made to check if the two checksum
high-bytes are the same. As depicted in the flowchart, the low-byte
of checksum (Register C) 1is sent 1if no error on the high-byte
comparison. The error checking is ended with transferring control to

the main program for the next command entry.

3.3.2 RECEIV Routine

Corresponding to the RECEIVE command, this routine accepts a
block of data bytes, and 1locates the received data to memory
locations specified by the host system. Figure 3.6 presents the
flowchart for this operation.

As noted in the figure, the execution flow of this routine is
very similar to TRANSM routine. The difference is that instead of

outputting data bytes, RECEIV inputs data bytes. The checksum

=D

A

Get Start

Address

& Byte-Count

* FROM OSI

Clear CHECKSUM

\

Transmit

Byte

N

Accumul,

CHECKSUM

\

Increment
Decrement

Pointer
Counter

\
Data End ?
Y

\

a

High-byte

Transmit CHECKSUM

N_

0SI Agree ?

\

Y

Transmit
Low-byte

CHECKSUM

«

9

2

FIGURE 3.5 Flowchart for SDK-85 Routine TRANSM

22

23

=D

Get Start Address
& Byte--Count

d
Clear CHECKSUM

Receive Byte &
Store EBEyte

Accumulate
CHECKSUM

Increment
Pointer

Decrement
Counter

Data Iind ?

| . — —]* TO CHECK

FIGURE 3.6 Flowchart for SDK-85 Routine RECEIV

24

checking procedures, as described 1in the previous subsection, are

shared by both TRANSM and RECEIV routines.

3.3.3 RUN Routine

The purpose of RUN routine is to transfer execution control to
the program specified by the host system. As shown in Figure 3.7,
this routine 1is started by obtaining the starting address of the
specified program from the O0SI-C4PMF. Before loading the starting
address to the Program Counter, the address for re-entering
communication program is pushed into the stack memory.

In order to restore the communication channel, the specified
program must not be a looping structure and must include an RET
(return from subroutine) dinstruction. Otherwise, the data
communication is discontinued. This makes the communication program

treat the specified program as a subroutine.

3.4 O0SI-C4PMF Communication Program

In this section, the communication program written in the 6502
machine 1language is discussed. This program, in fact, is composed of
a group of assembly Tlanguage subroutines and command table
information. As mentioned, the BASIC program, Extended Monitor,
provides mutual interchange of information between the user and these
assembly language -subroutines. It interacts with the user to pass
the communication parameters, and the assembly language subroutines
implement the real-time communication work with the SDK-85.

These machine codes are stored at the first sector of the 39th

(o=)

\
Get Start Addn
High-byte

\

Get Start Addn
Low=byte

y
Push Re-entry

25

Addr to Stack

PC= Start Addr

Run Specified
Program

* RE-ENTRY ADDR
= 51

* ONLY APPLIED
WITH 'RET'

L

FIGURE 3,7 Flowchart for SDK-85 Routine RUN

26

track on disk. They are Tloaded to the 0SI-C4PMF memory locations
starting from hexadecimal address 5E00 after the Extended Monitor
program . is located to BASIC workspace. Figure 3.8 shows the memory
map for these assembly language subroutines. As noted in the map,
memory locations starting from 5EDD to 5EE2 are assigned to pass the
information set up by the BASIC routine to the assembly language
subroutines. Location b5EE5 is used as a message byte which contains
the error status code. Upon vreturning to BASIC, this location is
read by Extended Monitor program, and the content is interpreted as an
appropriate message to inform the user. The following statements

list the error status codes and the corresponding interpretations:

00 - Error free

01 - SDK-85 is not ready

02 - SDK-85 recognized a wrong command
03 - Transmission error (checksum error)

TRANSM, RECEIV, RUN, and RESET are the four major subroutines
called by the corresponding command routine in BASIC. To support
these major subroutines, certain housekeeping subroutines are
employed. These supporting subroutines are explained in flowchart

form shown in Figures 3.9, 3.10, and 3.11.

3.4.1 "'TRANSM Subroutine

The function of this major subroutine is to transmit a string of

data bytes from the 0SI-C4PMF memory locations to the SDK-85.

BYCLO
BYCHIT

STALO
STAHT

CHKLO
CHKHI

CMDTB

0000

009B

009C

5E00

S5EDC

SFFF

LOCAL MEMCRY POINTER LOWBYTE

LOCAL MEMORY POINTER HIGHBYTE

6502 ASSEMELY LANGUAGE PROGRAM

IMAGE OF MPLO

IMAGE OF MPHI

BYTE COUNTER LOWBYTE

BYTE COUNTER HIGHBYTE

START ADDRESS LOWBYTE

START ADDRESS HIGHBYTE

CHECKSUM LOWBYTE

CHECKSUM HIGHBYTE

MESSAGE BYTE

TRANSMIT COMMAND BYTE (4F)

27

LOAD FROM
IMAGES

SETUP BY
& BASIC

CLEARED
S BY
BASIC

RECEIVE COMMAND BYTE (49)

RUN COMMAND BYTE (52)

RESET COMMAND BYTE (45)

FIGURE 3.8 0SI-CU4PMF Data Commmication Program Memory Map

* MESSAGE CODE (ENTER
CLEARED .

Check STATUS
\
N
SDK-85 Ready?
Y
y
Transmit % POINTED
Command Byte | BY Y
S U —
M Yo Cod
essage € (et Response
=01
Verified ? Y
N
Message Code
2202
% SKIP BEGIN RE- Increment SP
TURN ADDR FOR By 2
DIRECT RETURN
TO BASIC

«D

FIGURE 3.9 Flowchart for OSI-C4PMF Subroutine BEGIN

¥ CHECKSUM
ENTER - CLEARED

Clear CARRY

Accumilate CHECKSUM

A

Increment Pointer

\

Decrement Counter
n
(RETURN

FIGURE 3,10 Flowchart for 0SI-C4PMF Subroutine CHKSUM

(o=)

Transmit Start Addr

y
Transmit Byte-Count

y
[Place Local Pointer

ge to Page O

[clear DECIMAL }— —J* SET BY BASIC

A
(RETURN

FIGURE 3,11 Flowchart for 0SI-C4PMF Subroutine SETUP

30

Before data transmission begins, <certain procedures are
executed. First, a test on the hardwired handshaking status (CTS
status) is performed to ensure the SDK-85 is in the READY state. No
further procedures will be executed, if this test fails. Second, the
RECEIVE command byte pointed by Register Y is transmitted to order
the SDK-85 to enter the receiving mode. After the SDK-85 responded
command is verified, the data string's starting location in the
SDK-85 memory and the string's length are sent in sequence. Then the
0SI-C4PMF local memory pointer, which marks the positions of the data
string, is vreflected from its image to page 0 locations in order to
perform the indirect addressed data fetching. To be able to
accumulate the hexadecimal checksum, the DECIMAL bit of the 6502
CPU's Status register is cleared. These procedures are implemented
by calling the subroutines BEGIN and SETUP in sequence.

Upon returning from the SETUP subroutine, the data string
transmission begins. When a data byte is sent to the ACIA, the
subroutine CHKSUM is called to accumulate the transmitted data byte
to the checksum. CHKSUM also increments the memory pointer, and
decrements the byte counter. This procedure is repetitively executed
until the byte counter reaches zero.

To check the data transmission error, the checking 1logic
requires the SDK-85 to send its checksum high-byte for comparison.
0SI-C4PMF then echoes its checksum high-byte to the SDK-85. If both
high-bytes are the same, the comparison on the low-bytes is
proceeded. As shown in Figure 3.12, any checksum mismatching leads

to an error code to be loaded into the message byte location.

< ENTER

* COMMAND
Points Command [~ | RECEIVE
Y
Call BEGIN
\
Call SETUP
g
Transmit Databyte
\
Call CHKSUM
\
N Data End ?
Y /__ |
{ P1
* SDK-85 _ Get CHECKSUM HIGH
CHECKSUM |\
,
\ N
\ Same?
\ X A\ 4 =
ransmit I
: Back
\ Transmit It c CHECKSUM
|HIGH Byte

Get CHECKSUM LOW

Message Code
N
Same? j =03

Y

<

< RETURN

FIGURE 3,12 Flowchart for 0SI-C4PMF Subroutine TRANSM

32

3.4.2 RECEIV Subroutine

As pictured in Figure 3.13, the structure of RECEIV is similar
to TRANSM subroutine described in the previous subsection. But,
unlike TRANSM, this major subroutine orders the SDK-85 to enter the
transmitting mode, and receives a string of data bytes specified by
BASIC from the SDK-85.

After calling the subroutines BEGIN and SETUP to send ASCII
command TRANSMIT and the initialization data to the SDK-85, the
execution logic starts receiving data bytes from the slave system,
and allocates the received data to memory location addressed by fhe
local memory pointer. As for TRANSM, the subroutine CHKSUM is also
employed here to accumulate the checksum, and prepare for the next
coming byte.

The checksum checking procedure 1is shared by both RECEIV and

TRANSM, and is covered in the preceding subsection.

3.4.3 RUN Subroutine

This major subroutine is entered when the user orders the SDK-85
to execute a specified program.

First, the subroutine BEGIN 1is wused for ready-checking and
command transmission. Then the starting address of the user
specified program 1is transmitted to the SDK-85 in high byte and low
byte order. Figure 3.14, shows the execution sequence for this

subroutine.

G

Set Y Point COMMAND
to Command — — | TRANSMIT

Call BEGIN

Receive &
Store Databytsg

Call CHKSUM

— —— — —1 TO CHECK

FIGURE 3.13 Flowchart for OSI-CU4PMF Subroutine RECEIV

33

34
(ENTER ’

N

Y Points Command

\

Call BEGIN

\

Transmit STAHI

\

Transmit STALO

)

o

FIGURE 3.14 Flowchart for OSI-C4PMF Subroutine RUN

G

\

Y Points Command

-Call BEGIN

)

FIGURE 3,15 Flowchart for OSI-CU4PMF Subroutine RESET

35

3.4.4 RESET Subroutine

As presented in Figure 3.15, the purpose of this subroutine is
simply to transmit the RESET command to the SDK-85. After setting up
the Y vregister to point the RESET command byte, the subroutine BEGIN
is called to perform the ready-test, command transmission, and

command verification.

CHAPTER 4 EXECUTIVE SYSTEM DEVELOPMENT

4.1 Disk Operating System of 0SI-C4PMF

The SDK-85 development system is based upon the 0SI-C4PMF (6502)
microcomputer. All of the system software developed for the SDK-85 is
executed by the O0SI's BASIC interpreter and linked through the disk
operating system (DOS).

The 0S-65 DOS formats a 5 1/4" diskette to forty tracks (0-39),
and eight sectors per track. Each sector holds 256 bytes. Each
track accommodates 2K bytes. Therefore, a formatted diskette may
store total of 80K bytes. The DOS and the system utility software
occupy the first fourteen tracks (0-13) of disk. The BASIC program
directory is stored at track 21. The remaining twenty five tracks
can be used to save the user programs.

The O0SI-C4PMF is a 24K RAM machine. Figure 4.1 shows the memory
assignment of the OSI-C4PMF disk operating system. Like most of the
microcomputer systems, only a small routine resides permanently in
firmware for booting DOS from disk after reset. As soon as DOS
acquires execution control and configures the system, it loads the
BASIC program located on the 14th track of the disk into the
workspace, and executes it immediately. This small greeting program
can then be wused to assign execution to other existing programs on

the disk. This technique is referred to as an auto-run feature.

4.2 Development Software and Its Executive Program

The SDK-85 ,software development system 1is a group of BASIC
36

0000
6
OOFF 502 PAGE ZERO
0100
6502 STACK
O1FF
0200
TRANSIENT PROGRAM AREA FOR USER'S
LANGUAGE PROCESSOR
22FF
2300
I/0 HANDLERS
265B
26%0
FLOPPY DRIVERS
2A4A
2A4B
DISK OPERATING SYSTEM (DOS)
2E78
2ET79
PAGE 01/1 SWAP BUFFER
3178
3179
DOS EXTENSIONS
3278
3279)
SOURCE FILE HEADER INFORMATION
327D
327E
SOURCE FILE WORKSPACE
SFFF
FIGURE 4,1 OSI-CYPMF Disk Operating System

Memory Map

37

38
programs designed to enhance the operation of the SDK-85
microcomputer. The developed software tools include a Text Editor, a
Cross Assembler, and an Extended Monitor. The Text Editor provides
the functions for editing the assembly 1language source file; the
Cross Assembler converts the assembly language source codes to the
8080/8085 machine codes; the Extended Monitor performs the data
interchanging with the SDK-85 and offers the data modifications, and
the binary file maintenance capabilities. To 1link these BASIC
programs, an executive program is also developed.

Currently, the software developed is a single-disk operation
system. A1l the developed BASIC programs, the 6502 machine language
program, and the associated reference data reside in one disk.
Figure 4.2 presents the disk track assignment for the SDK-85
development system.

To take advantage of auto-execution, the greeting program is
designed to be the executive program of the SDK-85 software
development system. It not only provides a menu to 1link all
development software, but also changes system configuration
appropriate to the function selected by the user.

At present the menu includes the three development programs for
the SDK-85, and a function FREE which releases the full workspace for
user programming. Figure 4.3 presents thé overall software
development system structure. As noted in the flowchart, only the
Assembler is able to enter the other programs without transfer
through the System Executive program.

The algorithm of the System Executive program is depicted in

TRACK

0-13
14
15-18
19-20
21
22-25
26-28
29-30
31
32
33
34
35
36
37-38
39
39
39
39

USE

0S-65 DOS VERSION 3,2

SDK-85 DEVELOPMENT SYSTEM EXECUTIVE PROGRAM

SDK-85 EXTENDED MONITOR

TEXT FILE EDITOR

0S-65 DOS DIRECTORY

8080/8085 CROSS ASSEMBLER

ASSEMBLER LISTING PROGRAM

EXTENDED TEXT FILE

USER BINARY FILE I

USER BINARY FILE II

USER BINARY FILE III

USER BINARY FILE IV

USER BINARY FILE V

ASSEMBLED OBJECT CODE FILE

FIRST TEXT FILE

Sector 1 - 6502 MACHINE LANGUAGE SUBROUTINES & TABLE
Sector 2 - USER BINARY FILE DIRECTORY

Sector 4 - ASSEMBLER REFERENCE TABLE CONTENTS PAGE 1
Sector 5 - ASSEMBLER REFERENCE TABLE CONTENTS PAGE 2

FIGURE 4,2 Disk Track Use Assignment

29

4o

aamjonas jusmdoTase(SaeMIJOS TTBISAQ ¢ * HMAOIL

HOLIgH

(GBNWSY) , HOLINOW

YT TAWISSY QHIANHLXH

A WALSAS Fadd VA ! W00dd \PZ

HAILNOEXH /N
\ WIISXS /

(Lo)

\

Intializations

Y
Print. Hello MSG

7
Print Menu
Read
User Input
A4
. Y >
X-Monitor ? X1
N ‘
/
Editor ? X X2 >
N |
\
Y
Agsembler ? X3
- ‘
\
N
Free System ?
Y

Enable ',' & ':', 'NEW' &
'LIST', and CONTROL~C

Disable 'REDO FROM START'

Release Full Workspace

—

C STOP

FIGURE 4.4 Flowchart for System Executive Program

4

Change Low
| Workspace

(5TFF)

Enable 'REDO FROM START'
Disable ',' & ':!

\ 4

RUN
EDITOR

~

zgxigai’:w | Enable 'REDO FROM START'
Disable ',' & ':!
(53FF) ’
RUN

ASM85
Change Low Load Obj= Load 6502
Workspace —>4 Code File Assembly
(55FF) to Buffer Program

able 'REDO FROM START'

isable ',' & '3

-V

RUN
X-MONITOR

FIGURE 4,5 Flowchart for Executive Routines

4o

43
Figure 4.4 and 4.5. In order to work with the DECWRITER IV printer,
which may be operated only at 300/110 baud rate, the ACIA is
reconfigured to the 300 baud rate. The ACIA is also used by the
Extended Monitor to communicate with the SDK-85, at a 1200 baud rate.

As marked 1in the flowcharts, the System Executive program
reconfigures certain system features for the menu selected program
before execution control is transferred. In general, two major
changes are made. First, the 1lower limit of the DOS workspace is
redefined for protecting the corresponding buffer. This ensures that
the DOS does not interfere with the buffer area just beneath the
workspace. Second, the 'REDO FROM START' message is enabled, and the
BASIC string terminators ',"' & ':' are disabled. 1In doing so, the
chance of losing execution control due to user's failure is
minimized. For instance, if a null input were accidentally entered,
the 'REDO FROM START' would be displayed to avoid re-entering the
program.

The FREE function offers a chance to let the user to escape from
the development system program. The entire workspace is assigned,
the 'REDO FROM START' 1is enabled, the LIST & NEW commands are
enabled, and the CONTROL-C function is restored. Before transferring
control back to DOS, the System Executive program clears itself from
the workspace. When the DOS prompt 'Ok' is displayed on the screen,

the system is ready for user programming.

CHAPTER 5 EXTENDED MONITOR

5.1 Overview

This program was developed for the purpose of supporting
housekeeping functions for the SDK-85 development system. It
provides enhanced abilities, which are not available in the SDK-85
built-in monitor, such as disk file storage, data block move and
insertion, and screen/printer display, etc. These capabilities are
enabled since the Extended Monitor program is executed on the
0SI-C4PMF system, rather than on the SDK-85 itself. Therefore, the
most important functions are those data communication commands which
can give orders to the SDK-85 for interchanging data.

Figure 5.1 presents the map of memory assignment. As may be
noted, the OSI-C4PMF locations from 5600 to 5DFF act as a data buffer
simulating SDK-85 memory. The first two buffer locations store the
starting SDK-85 address; the next two Tlocations store the ending
SDK-85 address. The remaining bytes hold a facsimile of SDK-85 data.
The first four reference addresses reflect the actual memory
locations where the data block should be located in SDK-85 memory.
Therefore, the 2K O0SI RAM buffer contains a memory model of the
SDK-85 system.

In the BASIC program, two variables ST and DN are assigned to
represent, in decimal, the starting and ending memory image address
values respectively. These addresses and the corresponding values may
be specified by the user, or may be updated by certain command

routines. The Extended Monitor program also maintains a pointer (BS)
hy

0000

327D

0s-65 DOS

327E

S5FF

EXTENDED MONITOR
PROGRAM WORKSPACE

5600

SDFF

BUFFER FOR SIMULATION OF
SDK-85 MEMORY

5EQ0

SEFF

6502 ASSEMBLY LANGUAGE
SUBROUTINES & TABLE

S5F00

SFFF

USER BINARY FILE DIRECTORY
TRANSITION AREA

FIGURE 5.1

Memory Map for Extended Monitor

45

46

which always targets the OSI-C4PMF address of the first byte of the
buffer (5600). This makes the local address (SA) of any data in the
buffer obtainable by taking the difference between ST and the user
specified address NS, and adding it to BS.

As listed in Figure 5.2, sixteen commands were developed to
perform various tasks. These commands can be classified under the
following functional groups: data communication commands, memory
display & modification commands, and disk file maintenance commands.
By manipulating these commands in the Extended Monitor, the user may
send the object code file to the SDK-85 memory and execute it, or may
get a block of data from the SDK-85 and save it as a disk file unit.
The wuser may also modify or rearrange the current data file in the
buffer area, or may display a 1ist of contents of the file on screen
or printer.

The algorithms of how to implement these commands are explained

in the following sections.

5.2 Command Format

The command string should consist of the syntax field and/or the
specification field. Any non-alphanumeric characters can be employed
as a separator between these fields. Only if the first character of
the specification field 1is a decimal digit, can the field separator
be omitted.

In the syntax field, a command entry must be provided. Since
the command logic recognizes the leftmost two characters only, a two

letter abbreviation for the command is allowed. In certain command

SYNTAX PIELD SPECIFICATION FIELD DESCRIPTION
DUap XXX - YYYY (CR) Dumps contents of XXXX through YYYY to SDK-85
XXX (CR) Dumps contents of XXXX through end of simu'eisd memo.’y to SDK-85
(CRr) Dumps entire contents of similated memory to SDK-85
o
Z GEt IXIX - YYYY (CR) Gets contents of YXXX through YYYY from SDE-85
E xxx (CRr) Gets contents of XXXX through end of simulated memory from SDK-85
3 (CR) Gets entire contents of simulated memory from SDK-85
§ ROn xxxx (CR) Orders SDK-85 to exscute program starting at location XXIXX
';’ (cR) Orders SDK-85 to execute program defined in simulated memory
3]
a
REset (CR) Orders SDK-85 to enter its system monitor
EXam XIXX - YYYY (CR) Displays contents of XXXX through YYYY on screen
xxxx (CR) Displays contents of XXXX through end of simulated memory on screen
(CR) Displays entire contents of simulated memory on screen
PRint XIXXX - YYYY (CR) Prints contents of XXXX through YYYY on printer
xxxx (CR) B Prints contents of XXXX through end of simulated memory on printer
o (CR) Prints entire contents of simulated memory on printer
§ .
S SUbstitute xxx / pb (CR) Substitutes the content of XXXX with hex value DD
E
§ INsert mx / b (CR) Inserts capacity for D (0-9) bytes starting at address XXIX
™
S ERase xxx / D (CR) Erases D (0-9) bytes starting at address XXX
a
41
a MOve 227ZZ = XXXX - YYYY (CR) Moves contents of XXXX through YYYY to locations starting at Zz2Zz2
SEe / SEt (CR) Displays current range of simmlated memory / Sets new range
% CReate (cr) Creates new file name in user file directory
-8 SAve FILENAME (CR) Saves current buffer contents to disk under specified file name
L
5 LOad FILENAME (CR) Loads specified file from disk to buffer
CHain FILENAME (CR) Chains specified file with current file in buffer
it (cR) Exits Extended Monitor .
v .
t#eswsserse NOTE: (1) XXXX, YYYY, & 2222 REPRESENT HEXADECIMAL ADDRESSES (2) CR -~ CARRIAGE RETURN

FIGURE 5.2 Command Summary for Extended Monitor

&7

48
strings, (eg. data communication and display commands) the
specification field is optional. On the other hand, most of the
modification and file maintenance commands, require user
specifications. The specification field may contain up to 3 address
operands, as in the MOVE command. Like the field separator, any
non-al phanumeric characters can be used to separate operands.

Details of each command syntax and the requirements of the
specification field are described in the following command routines,

and are listed in Figure 5.2.

5.3 Main Program Structure

Whenever entering the Extended Monitor from the System Executive
program or the Assembler, the object code file on track 36 is always
loaded to the buffer before execution starts. In this way, the
Extended Monitor may work as a Loader of the cross assembling system.

The main program structure 1is shown in Figure 5.3. Before
accepting any command via keyboard, three procedures are processed.
First, ST and DN are defined by the first four bytes of the current
buffer; second, the user-defined binary file directory is loaded from
disk into the last page of available RAM (5F00-5FFF) and is restored
as a BASIC string array; third, the command array is defined for
recognition of keyboard entries.

After the syntax field of the user input string is isolated from
the specification field, the command recognition 1logic takes the
leftmost two characters as a substring and performs comparisons with

the command array. The execution 1logic will proceed toward the

49
START)

Disp & Define
Simulated Memory

Restore Directory
from Disk

¥

Define
Command Array

o]

* TAKE LEFT- k Read User
MOST 2 CHAR \ Command input
\) &)
Go To
Isolate Command Display A
Error

< Valid Conmand>N—_’

Y

& It Command? 3l Go T

Command Rou-
Y tine

Save Directory,
to Disk
RUN
SYSTEM EXEC
STOP ’

FIGURE 5.3 Main Program Structure of Extended Monitor

50
corresponding command routine, if a command is confirmed. Otherwise
a syntax error message will be sent, and execution logic will accept
a new user input.

Further scanning on the command string is performed by each
command routine, when it is necessary. As described in greater
detail in later sections, two scanning subroutines have been
developed. PARSE 1is a subroutine which handles those commands with
default options. If the address is not specified, PARSE designates
the default condition. Otherwise, PARSE converts the entered string
characters to the proper address value(s). SCAN is a subroutine
called by those command routines which have no provision for default.

The only command which causes the Extended Monitor program to be
terminated, 1is the command QUIT (abbreviated QU). This command
orders the execution logic to save the current binary file directory
on disk, and clears the Extended Monitor program from BASIC workspace

by transferring control to the System Executive program.

5.4 Data Communication Command Routines

The most dimportant function that the Extended Monitor provides
is the ability to communicate with the SDK-85 motherboard. Each of
the data communication command routines sets up the necessary
information, then transfers control to a common routine, called LINK.
LINK calls the specified assembly 7language subroutine which
implements the command function by interacting with the SDK-85. The

assembly language subroutines are described in section 3.4.

51
5.4.1 DUMP Routine

DUMP is a BASIC routine which operates with the assembly langquage
subroutine TRANSM, to transfer a block of data in the simulated
memory to the SDK-85. DUMP functions as a Loader for the Assembler.

The user may or may not enter address specifications following
the command field. If an address specification is issued, then the
starting address must be inciuded. The ending address may be
omitted. The subroutine PARSE will replace the excluded address with
the corresponding default address value.

After the DUMP routine collects the necessary information, the
execution 1logic will be routed to the routine LINK, in order to
associate the assembly 1language subroutine, TRANSM, with the BASIC
DUMP routine. If a transmission error occurs, unlike other error
procedures, the execution logic may be ordered to retransmit the data
block at the user's request. For this reason, the specified variable
values remain valid, after the DUMP command is executed, until they
are redefined.

Figure 5.4 depicts the flowchart of this routine.

5.4.2 GET Routine

The program logic of the GET command routine is very similar te
the DUMP routine described in the previous subsection. However, the
purpose of this routine is to get a block of data from the SDK-85 and
to allocate that data to the corresponding locations in the buffer
area. The GET function may be seen as the inverse of the DUMP

function. Figure 5.5 presents the execution flowchart for this

Call PARSE Set TRANSM
Return w/ Assem Sub
NS,BC, & S Entry Addr

*T0 LINK

Go To
M Display M2
Error

FIGURE 5.4 Flowchart for Routine DUMP

' Call PARSE Go To
NS,BC, & S . Error
. EN >DN ? [M1]

Y

DN= EN
(EXPANSION OF
SIMULATED
MEMORY

>

Set RECEIV
*T0 LINK| >
Assem Sub. En- M2

try Address

FIGURE 5.5 Flowchart for Routine GET

52

53
routine.

The BASIC variable, ST, and its associated hexadecimal value in
the first two bytes of buffer RAM are initialized prior to user
command entry. These values define the start of a 2K block of
simulated SDK-85 memory. The address specifications of the GET
command can not alter ST or its hexadecimal equivalent. This means
that GET can only operate within the 2K buffer boundary. If the
starting and ending addresses designated in the GET instruction, fall
within this 2K range, then the corresponding SDK-85 data is loaded
into the buffer displaced, if necessary, from the start of the buffer.
To 1incorporate this additional data, the end of data record must be
indicated.

Thus, if the value of the last address specification (EN) is
greater than the current ending address (DN) of the simulated SDK-85
memory, then the value of EN replaces DN and the hexadecimal value of

DN in bytes 3 & 4 of the buffer are likewise converted.

5.4.3 RUN Routine

This command routine can be used to order the SDK-85 to execute
any specified program residing in the memory of the SDK-85. The user
may or may not give the starting location of that program. If there
is no address field following the syntax field, NS will default to
the current starting address (ST) of simulated SDK-85 memory.

As cautioned in Chapter 3, if there is no RET instruction at the
end of the 8085 program or the SDK-85 program itself is terminated in

an infinite looping structure, then the O0SI-C4PMF system Tloses

54

control of the SDK-85. In this case, a manual reset and
initialization on the SDK-85 1is necessary if the communication
channel is to be restored.

The program sequence of this routine is reproduced in Figure

5.6.

700 REM RUN Command Routine Entry

710 GOSUB 20100 : REM Call GETNS

715 ON CHK GOTO 30000, 30050, 30100, 30300 : REM Check error
718 IF J-(K+3)<>0 GOTO 30000 : REM Extra specification

720 LO=71 : REM Set assembly subroutine RUN entry address
725 GOTO 11500 : REM Go to LINK routine

FIGURE 5.6 Execution Sequence of Routine RUN

5.4.4 RESET Routine

This command performs a soft-reset function on the SDK-85. In
other words, the O0SI-C4PMF releases its control of the SDK-85 and
lets the SDK-85 ROM monitor program take over.

Unlike other commands, there should be no address following the
syntax field. Figure 5.7 duplicates the program procedures of the

RUN routine.

750 REM RUN Command Routine Entry
760 L0=92 : REM Set assembly subroutine RESET entry address
765 GOTO 11640 : REM Go to LINK

FIGURE 5.7 Execution Sequence of Routine RESET

5.4.5 LINK Routine

Unlike the previous routines, this routine is not a direct
command procedure. It 1is wused to 1link all data communication

commands and the corresponding assembly language subroutines

[-

Load NS to STAHI &
STALO Bytes

55

RUN Command'{/Y

J!N

Load BC to BYCHI &
BYCLO Bytes

v

Load SA to IMHI &
IMLO Bytes

v

Clear CHKHI &

CHKIO Bytes
'RESET! Y
Zero MESSAGE BYTE
(MSG)

Load Assem Subrou-

FIGURE 5.8 Flowchart for Routine LINK

tine Address Bytes

{

Call Assembly Lan-
guage Subroutine

MESSAGE BYTE \N__ |
=02

Y
<

Go To
Display
Error

@

56
together. The aforementioned command routines set up the necessary
address values. Then LINK is entered to allocate those values to the
appropriate memory locations before calling the assembly language
subroutines. LINK also checks communication error status by
examining the message byte, after returning from the assembly language
subroutine.

Figure 5.8 presents ;he algorithm of this routine. As may be
noted, the RESET entry is different than the entry location of other

commands.

5.5 Display & Modification Command Routines

Seven commands are classified in this family. They are EXAM,
PRINT, SUBSTITUTE, INSERT, ERASE, MOVE, and SEE/SET. The common
characteristic of these commands 1is that they can be used to
display/print the contents of the simulated SDK-85 memory, or modify

the layout of the current buffer.

5.5.1 EXAM and PRINT Routines

Although EXAM and PRINT are two independent commands, they share
the same procedures to perform the displaying task. The EXAM command
allows the user to examine a block of data on the screen, and the
PRINT command prints the data on the serial printer. However, the
PRINT command has an extra feature which the EXAM command does not.
This is the ability of allowing the user to add a title line before
data printout. Both commands use the same displaying form, an

example of which is shown in Figure 5.9.

57

01 2 3
0010 AC
0020 01 39 BD B2
0030 DE BD F6

FIGURE 5.9 An Example for Displayihg Form

Like the data communication commands, the user may or may not
specify the first and Tlast displaying addresses. The subroutine
PARSE 1is again wused here to return the appropriate starting address
and the byte-count, or error code.

The subroutine DISPLAY is called to exhibit data on the screen or
printer. DISPLAY collects 16 bytes of data in a string, and sends
the string to either the screen or printer by checking a display
flag. As illustrated in the example of Figure 5.9, the first row
indicates the 1least significant digit of the hexadecimal address.
These digits, 0 to F, form the columns of a matrix. The matrix rows
begin with an address value which is a multiple of sixteen. The data
dump is accomplished by displaying blanks until the data starting
address is hit.

Upon returning from the subroutine DISPLAY, the user may request
the execution Tlogic to display the next 256 bytes of data by simply
typing "Y" when interrogated by the 0SI-C4PMF.

Figure 5.10 explains the algorithm in flowchart form.

5.5.2 SUBSTITUTE Routine

This function allows the wuser to change the contents of the

buffer area.

ENTER
PRINT

Set
Printer Flag

Need Title?

EXAM

Set

Screen Flag

Read One
Line Title

l

Print Line

ﬁ%

Call PARSE
Return w/

NS & BC

Error?

N

Equate DS to NS

(DS= DATA START)

FIGURE 5,10 Flowchart for Routine EXAM and PRINT

—

Call DISPLAY

'

<:jContinue?ﬁ:>-H-——-i'
bd M

!

Set
BC= 256

Go To
Display
Error

)

58

59

Once the wuser specifies the location and the new contents to be
entered, the subroutine SCAN is called to check if there are any
errors on the entered values. After the task of changing is
performed, the program logic compares the address of the altered byte
with the current ending address value of simulated SDK-85 memory. If
the changed 1location exceeds the current end of simulated SDK-85
memory, the pseudo SDK-85 memory is expanded to include that byte.
This performs an automatic change & increment function for convenient
buffer operation.

The routine is designed so that the user may change the contents
of the next buffer location by simply entering the new data value in
hexadecimal when prompted by the execution logic. This sequence of
events continues until the bottom of the buffer is reached or any
non-hex digit is entered.

Figure 5.11 shows the flowchart for this operation.

5.5.3 INSERT Routine

The flowchart of this command routine is presented in Figure
5.12. The starting address where the data is to be inserted and a
single decimal digit which indicates the number of inserted bytes,
must be provided by the user. An error message is generated if this
insertion would increase the size of the buffer over the 2K capacity
or if the number of bytes 1is greater than nine. Therefore, this
function allows the user to insert a maximum of nine bytes.

The actual action taken by the execution logic is to move the

data block which follows the insertion point down D bytes. D is a

< ENTER
* RETURN ADDR

IN NS & CON- KN
TENT IN D N

N Call SCAN

Y
< Error?
| N
Substitute Content|
A of NS w/ D
r—y—< NS > DN? >
Y
Read New Update DN & DN B
Content tesvw; NS Y=
X Y ¥

\} Y Go To
<End of Buffer?>——>- Display
—————-——)iN

Error
NS= NS+1
Y/ >
Substitute?
AN
N
<

N

FIGURE 5.11 Flowchart for Routine SUBSTITUTE

ENTER)
* RETURN ADDR —

-
IN NS & NO. Call SCAN

IN D \t

Error?

iN
Will Exeed Y
Buffer ?

‘Ln
Calculate
Move-Cqunt

I v

* MOVE BoTTOM|_ _ _| Set Start D(i}: i:
FIRST Moving Loc play

& Error

Set MoveDown
Flag

!

Call UPDN

!

DN= DN+D

&)

FIGURE 5,12 Flowchart for Routine INSERT

62

variable in the range of 0 to 9. As noted in Figure 5.12, the
execution logic sets a flag and then calls a subroutine UPDN to
perform the block move task. Moving the bottom of the block first
prevents loss of data due to overwriting. The ending address of
simulated SDK-85 memory is extended to appropriate new location.

It should be noted that the contents of the locations where the
user intends to make insertions remains unchanged. The user must use
the SUBSTITUTE command, which is described in the previous

subsection, to enter new data to those locations.

5.5.4 ERASE Routine

This function allows the user to erase a number of bytes from
simulated SDK-85 memory. The number of addresses cannot be greater
than nine, and the starting 1location must be valid in the current
buffer range. Otherwise the execution logic will refuse to perform
this operation, and an error message will be generated.

Unlike the INSERT command, the program sets an UP flag before
calling the UPDN subroutine. The address of the first byte to be
moved is set to the location just beyond the last byte to be erased.
Then UPDN moves the data block, starting at the first address to be
moved through the end of simulated memory. The data block is in this
way, shifted up D 1locations. As for INSERT, D is the variable
containing the number of bytes to be erased. Before this routine is
terminated, the ending address of the memory image is updated with
the result of DN minus D bytes.

A generalized flowchart for this routine may be reviewed in

=

* RETURN -ADDRf— — - Call SCAN
IN NS & NO,
IN D
Y
Y
Error?
N
Y
Calculate
Move-Count

! y

* MOVE ToP | _ _| Set Start Dii°1T°
FIRST Moving Loc Eirzz
Set MoveUp
Flag

!

Call UPDN
DN= DN-D
<

@

FIGURE 5,13 Flowchart for Routine ERASE

64
Figure 5.13.

5.5.5 MOVE Routine

To perform this function which can relocate a data block
anywhere in the buffer area, three address operands must be provided
in the specification field. The first is the destination starting
location of the data block. The next two operands represent the
source starting and ending address of that data block respectively.

Figure 5.14 shows the flowchart of this routine. Upon entering
this routine, the subroutine GETNS is called to isolate the first
operand and return the destination starting address in the BASIC
variable NS. Since GETNS is then used to fetch the starting address
of the data block, it is necessary to equate MS to NS. GETNS is
called by the subroutine SCAN which reads the next two operands, and
returns the source starting and ending addresses in NS and EN.

The execution Tlogic examines these three address values to
determine the direction of movement. If the function desired to move
down, the program logic will also determine the end of the data block
to prevent over-expansion (2K maximum). Like INSERT and ERASE, the
UPDN subroutine is employed to perform data block movement.

In the case of downward data block movement, the ending address
of simulated SDK-85 memory 1is updated, if the data block move
increases simulated memory size. In moving data upward, the size of
simulated memory generally remains the same. It may only be reduced
if the user sets the source ending address equal to the current end

of simulated SDK-85 memory.

65

Go To
Display
Error

. | _[* rerury pES-
Call GETNS PINATION
S
Y\L Error? >
N

Equate MS to NS
MS=DESTINATION]

& * RETURN BLOCK

Call SCAN — — —| RANGE IN NS

l e

f

Set
MoveUp Flag

!

Call UPDN

!

Exceed DN?

\iN

Y / 4 >
Error?
N_

\lN

up DOWN
‘_——-<9heck Directio

Set
MoveDown Flag

!

Call UPDN

Update DN & Y
DN Bytes EN = DN

I "

(i}

FIGURE 5.14 Flowchart for Routine MOVE

66

5.5.6 SEE/SET Routine

The SEE/SET function allows the user to examine or define the
range of simulated SDK-85 memory. This function contrasts with the
automatic ranging which occurs as a result of previously discussed
commands. The SEE/SET command has no specification field. In this
way, the wuser may view the current range of simulated memory without
affecting the established limits. The user may set a new boundary
under the direction of software logic. No change is made unless the
user input is a hexadecimal address.

The flowchart of this routine is presented in Figure 5.15. As
illustrated, the routine 1is begun by calling the subroutine SHOW to
display the current 1limits, in hexadecimal, on the screen. The
execution Tlogic interrogates the user on whether to change the upper
boundary. The wuser may enter a new address in four hexadecimal
digits or may simply enter an "N" to escape this change. The lower
boundary procedure operates in a similar manner. Again, the user may
enter a new address or may avoid change by typing "N". Next, the
error detection procedure begins. If the simulated SDK-85 addresses
exceed a 2K range, or the ending address precedes the starting
address, or if any invalid hexadecimal digit is entered, an error
message is displayed.

It should be noted that the SEE/SET operation not only changes
the decimal variables maintained in BASIC‘workspace, but also alters
the corresponding hexadecimal bytes in the first four locations of

the buffer.

(ENTER

Call SHOW — —-

l

* PROVIDE 'SEE'
FUNCTION

Change ST ?

Y
Read New
Starting Addr

All Hex Digit?

T

Set New ST &
ST Bytes
Change DN ?
4 Y
Go T
id @w
Error VEndlng f ddr i
Exceed 2K Limit?
l’N
Set New DN &
DN Bytes
)—-—(
Qa
FIGURE

515 Flowchart for Routine SEE/SET

67

68

5.6 File Maintenance Command Routines

The Extended Monitor allows the user to manage five binary
files. Track 31 to track 35 are reserved for these files. Each file
occupies one track on the disk. A directory is maintained by the
Extended Monitor program to provide records to file maintenance
commands.

As mentioned before, the user file directory is recovered from
sector 2 of track 39 when the Extended Monitor program initializes
the system. The directory is composed of two arrays, F$(X) and P(X).
F$(X) holds the file names of each track, and P(X) records the
integer number of pages (sectors) occupied by the corresponding file.
The directory may be updated by certain file maintenance commands,
and 1is saved back to its disk location before exiting the Extended

Moni tor.

5.6.1 SAVE Routine

This command routine allows the user to save the current file in
the buffer onto the disk with a defined file name in the
specification field.

The routine starts by calling the subroutine GETFILE which
checks the wuser input file name with the directory contents, and
returns with a file index number in variable X. Only five tracks
have been assigned for file storage. If the returned vélue in X is
greater than 5, then the routine is terminated and an undefined file

error message 1is displayed. Otherwise the subroutine CALCPAGE is

=

Call GETFILE
Return w/ Loc
Index (1-5)

l

Found?

&Y
Call CALCPAGE

to Calc Page
of Buffer File

!

'

Convert Index No.
to Track No.

Go to
Display
Error

!

Update PAGE-CCOUNT
of Directory

y

Save Buffer
File to
Disk

<

@

FIGURE 5,16 Flowchart for Routine SAVE

69

70

called for calculation of the page-count (P) of the current file in
the buffer. Page-count determines the integer size of the file to be
saved.

Since the five file tracks are located from tracks 31 to 35, the
appropriate track position can be obtained by adding the index value
to the base value 30. Before saving to disk, the corresponding
page-count in the directory is updated with the value in P.

Figure 5.16 presents the flowchart for this command routine.

5.6.2 LOAD Routine

Retrieving a file from one of the file tracks and loading it
into the buffer, 1is the purpose of the LOAD routine. As with SAVE,
the wuser input file name must be defined prior to its designation in
the specification field.

After the file name has been verified, the base value, 30, is
added to the index number. This track number is converted to a
string variable to be wused in a DOS load statement of the BASIC
routine. As depicted in Figure 5.17, the range of the simulated
SDK-85 memory is redefined by the contents of the first four
locations of the buffer. This is accomplished by calling the SHOW
subroutine after loading. SHOW will also displaying the new simulated

memory limits for the user's reference.

5.6.3 CHAIN Routine

The CHAIN routine was developed to combine two files into a

single file space within the confines of the 2K buffer. In order to

(ENTER >

Call GETFILE
Return w/ Loc
Index (1-5)

Found?

Y

A4
Convert Index to
Track No.

Go To
Display
Error

Load File

From Disk
To Buffer

Call SHOW to
Display New
ST & DN Range

@

FIGURE 5.17 Flowchart for Routine LOAD

71

72

successively join two files, the file which is to come first must
reside within the buffer before the CHAIN command is issued. The
file described in the specification field is the remaining file.

As mentioned earlier, the user file directory is composed of a
file name array F$(X) and a file page-count array P(X). The latter
indicates the integer number of pages in each file. Since the size
of the buffer is limited to eight pages, routine logic determines the
total number of pages in the combined file, to prevent exceeding the
lower 1limit of the buffer. This procedure, as shown in Figure 5.18,
is 1implemented by adding the page-count of the current file in the
buffer to the page-count of the disk file to be chained. The files
are not joined if the sum is greater than 8 pages. The CHAIN
operation transfers the disk file to the location following the end of
the file residing in the buffer.

The ending address of simulated SDK-85 memory is increased to
include the added file. The first four bytes of the added file are

removed by a deleting process.

5.6.4 CREATE Routine

To create, rename, or check the filenames of the user directory
are the purposes of this command routine. As for SEE/SET, no
specification field is allowed. The routine logic instructs the user
to enter filenames.

Figure 5.19 shows the execution sequence of this routine. As
illustrated, the algorithm starts by displaying the current directory

on the screen. The user must then confirm the intention to generate

Call GETFILE

Found?

A

!

Determine
Total Pages

Y

Go To Y \L

Display amm— > 82

E

rror N
4

Get Track No.

!

>

Call CALCPAGE [~

* CURRENT
BUFFER FILE

* AFTER CON-

BINATION

Set Chaining Loc,

Update DN

!

Delete Disk File
ST & DN Bytes

(e

FIGURE 5.18 Flowchart for Routine CHAIN

Display
Directory

2

&

Create?

Read
Filename inpu

'

Take 7 Charac

FIGURE 5.19 Flowchart for Routine CREATE

Define Filenami

to Directory

!

Display
Directory

T4

75

a new filename. Otherwise the routine will be terminated. This gives
user an opportunity to simply review the directory without changing
it.

The filename creation procedures may be divided into three
parts. First, the first 7 characters are read from the user console
as a filename. Second, the user is asked to enter the location index
(1-5). Third, the entered filename 1is allocated to the array
position pointed to by the location index.

After these steps are completed, the updated directory is
displayed on the screen. The user may create another filename or

exit this routine when the routine raises the question on the screen.

5.7 Subroutines

The execution procedures of major subroutines are explained in
flowchart form 1in the next few pages. From Figure 5.20 to Figure

5.25, the following subroutines are depicted:

PARSE - Interprets the specification field or defines default
value(s)

SCAN - Reads the specification field without assigning default
value

DISPLAY - Exhibits data block from NS through EN on screen or
printer

SHOW - Defines ST & DN from the first four buffer bytes and
displays their hexadecimal values

GETFILE - Gets the designated file location index

76
CALCPAGE - Calculates the integer number of pages that the file
in the buffer occupies
Those subroutines which are not listed above can be reviewed in

the Extended Monitor program listing in the Appendix.

=D

N
N Default
Has Spec, Field? u
NS=ST
Y
y
Call GETNS
N Err Code=0?
Y
User Spegified EN N Default
r EN=DN
Y
Get EN
N \ 4
Err Code=0?
Y
y
Calculate * BYTE-COUNT IN
Byte-Count & = -4 EC
Local Pointer LOCAL ADDRESS
POINTR IN SA
\
Y Set
d
Any Brror Err Code
N
RETURN

FIGURE 5.20 Flowchart for Subroutine PARSE

7

(ENTER)

Call GETNS

Err Code=0?

Y

NS{ ST?

Y Set
Err Code

End of Field?

Calculate
Local Pointer

N
)

FIGURE 5,21 Flowchart for Subroutine SCAN

(ENTER)
*DS=ADDR, OF FIRST DATA

S=INT(DS/16)x16 *NS=ADDR. OF FIRST ROW
stz-ns | — — *BK=NO. OF BLANKS IN FIRST ROW
=16-BK *TaNO. OF NON-BLANKS

¥

Print
Column Index

Check Flag

)

Display
Column Index

Init Pirst Row <————‘|

N

l BK=0? N

Y
2

Fill Blank $

[Accumulate Data $

N
| Data End? N T=0?
Y Y

2
Check Flag 1

Print Display
First Row First Row
X Data End?
L-—__ .
N
l Init Next Row I
r Accumilate Data §
N
N
Data End? Row Full?
Y Y

A .
2l Check Flag |

Display
Row

]

Data End? N

— 1
Y

5.

=D

FIGURE 5.22 Flowchart for Extended Monitor Subroutine DISPLAY

Co)

N | Has Filename
?

Y

N
Isolate
F'ilename Field

\

80

Skip Spaces
* X IS FILE
S\:; . \ / INDEX
e

f,
1.6 Null? /

N /

\
Set X=1

Increment X

X)>5?
Y

FIGURE 5,23 Flowchart for Subroutine GETFILE

81

Get ST From Equate
Buffer ST

Display ST

v

Get DN From

Buffer

DN

Equat

FIGURE 5.24 Flowchart for Subroutine SHOW

Com)

Calculate * CURRENT FILE
Pages in P IN BUFFER

P is Integer?

FIGURE 5.25 Flowchart for Subroutine CAILCPAGE

CHAPTER 6 TEXT EDITOR

6.1 General Description

This Editor 1is developed for the purpose of editing the text
file of the assembly language source program. It is written in BASIC
language, and stored on disk under the file name, EDIT. It is loaded
into BASIC workspace by the proper menu selection in the System
Executive program or the error exit of the Assembler.

A 2K buffer is protected by 1imiting the lowest BASIC workspace
to hexadecimal location 57FF. This buffer is used as the source file
I/0 transition area for saving to or loading from disk. Due to the
restriction of 1limited memory, the maximum file capacity at a time
maintained in the workspace by the Editor is 4K characters (bytes) or
280 source 1lines. Four tracks are available to accommodate the
source files. Every two tracks contain a total of 4K bytes.
Therefore, one file may occupy two tracks, and the Editor may manage
two files. One is called First file. Another one is called Extended
file. The First file uses disk tracks 37 and 38. The Extended file
uses tracks 29 and 30. A file mode flag maintained by the Editor
guides the disk accessing logic to either the First file tracks or the
Extended file tracks. This flag defaults to flag the First file mode
by the Editor initialization procedures, and may be varied by the
proper commands. Although the Editor manages these two 4K-files as
two independent files, 1lacking an END directive at the end of the
First file will cause the Assembler to see the Extended file as an

extension of the First file. This makes the Editor impose a maximum
82

83
capacity wupon the source file of 8K bytes or 560 source lines. It

should be noted that the Extended file cannot be assembled
individually.

Eaéh of the entered source lines is maintained by a BASIC string
array element. Every line must be started by a decimal line number.
This 1line number is used as an index reference to locate the entered
line to the proper array element position. Once a new line is
entered, the program logic sorts all lines in sequence by comparing
the 1line numbers. Therefore, no insertion command is needed. The
use of line numbers is modeled after the BASIC programming language.

In order to store more characters in the 1imited memory space,
every entered 1line is rearranged by a shrinking procedure before the
input 1logic prompts the user to enter a new line. The shrinking
procedure scans the entered 1line, and replaces the encountered
multiple-space with one space character followed by a Tletter
character (A-Z) as the repeat-count. For example, a source line is
entered as below ('*' represents space):

10%***x*x| DX*H,2000H
After completing the shrinking process, the appearance of this line
is shown as below:

10*GLDX*AH,2000H
The Tletters G and A represent the repeat-counts for seven spaces and
one space respectively. Therefore, the maximum allowed spaces
between any non-space characters is limited to twenty s%x which is
the total number of alphabetic 1letters. The displaying/printing

commands recover each of the specified 1ines back to its original

84
form without changing the shrunken form.

A string array variable, I$(X), is assigned to accommodate the
entered source lines. A numerical array variable, I(X), stores the
corresponding line numbers. The Editor program maintains a
Line-count in variable I and a Data-count in variable C. The
Line-count records the number of 1lines in the current file. The
Data-count indicates the total bytes occupied by the current file.
Since one byte is reserved for the file eﬁding mark used in
filing/retrieving procedure, the upper-limit for the Data-count is
4095 bytes (4096=4K). After shrinking an entered line, the program
logic accumulates the length of this shrunken 1ine and one extra byte
into Data-count. The extra one byte is reserved for the
character-count (length) of that line while dumping the file to disk.
When the Data-count indicates that the current file has overflowed
(greater than 4095 bytes), the program logic adjusts the size of the
file by deleting the highest-numbered 1ine until the Data-count is
reduced under the 1imit (less than or equal to 4095 bytes).

Figure 6.1 1lists all of the Editor command syntax and their

corresponding operations.

6.2 Main Program Structure

The Editor program is started by setting the File mode flag to
the First file mode. Unless the user issues an EXTEND command to
alter the file mode, the disk accessing logic is always led to those
tracks (tracks 37 & 38) where the First file resides.

After the command array is defined, the Line-count and

85

COMMAND SYNTAX DESCRIPTION
New Clears entered lines & enters First file mode
Extend Clears entered lines & enters Extended file mode
Input Inputs source lines containing line numbers
File Files entered lines to disk
Call Calls file from disk
List Lists all lines of file on screen
X Lists line XX on screen
XX~ Lists lines XX through end of file on screen
-XX Lists from start of file through line XX
XX-YY Iists lines XX through YY on screen
Print Prints all lines of file to printer
XX Prints line XX to printer
XX~ Prints lines XX through end of file to printer
=-XX Prints from start of file through line XX
XX-YY Prints lines XX through YY to printer
Delete XX Deletes line XX from file
XX~ Deletes lines XX through end of file
-XX Deletes from start of file through line XX
XX-YY Deletes lines XX through YY from file
Quit Exits Editor

** NOTE:s XX & YY ARE LINE NUMBERS IN DECIMAL.
COMMANDS MAY BE ABBREVIATED BY FIRST INITTAL.

FIGURE 6.1 Command Summary for Editor

86

Data-count are both initialized to zero. Then the execution logic
prompts the wuser to enter a command input. As shown in the command
summary (Figure 6.1), a one letter abbreviation for the command is
acceptable. If the leftmost character of the entered string is not a
letter character, a syntax error message is sent, and the execution
logic requests the wuser to re-enter a command. Otherwise, this
isolated Tletter is compared with the entries of the command array.
The execution 1logic will proceed toward the corresponding command
routine, if a command is confirmed. Otherwise, the syntax error
message will be displayed, and execution logic will accept a new user
input.

Like the Extended Monitor, the QUIT command causes the Editor
program to be terminated. As depicted in Figure 6.2, when this
command is confirmed, the execution logic clears the Editor program
from BASIC workspace by transferring control to the System Executive
program.

Other commands are divided into two groups, the file mode
related commands and the non-file mode related commands, as discussed

in the following sections.

6.3 Non-File Mode Related Command Routines

Four commands are classified under this group. They are INPUT,
LIST, PRINT, and DELETE. The common characteristic of these commands

is that the algorithms are independent of the File mode flag.

87

J

=)—>

START
\

/ * AUTO CLEAR
Default First " T T T 77| DEFINED
File Mode e STRING &

- Set (row) NUMERICAL
2 (RUN) Extended VARTABLES
Define & Read File Mode
Command Array \
Y Y
y N
? ?
Initialize EXTEND? NEW?
LINE~COUNT N \
DATA-COUNT N .
\ FILE? E6)
~ Syntax

N Error N

\ 4 X Y ‘

Read CALL? ES

User Input
N ‘
PRINT? z E4V)
N\
First Char.,is | N N v
Letter? LIST? E3)
Y N
N
Isolate Y
Command Field DELETE? E2
\
N ‘
Y
Take Leftmost > quir? INPUT? E1 »
Character ‘
Y

/RUN SYSTEM EXEC /

. 4
(STOP)

FIGURE 6,2 Flowchart for Editor Main Program Structure

88
6.3.1 INPUT Routine

This function allows the user to enter the source file. The
execution logic sends the question mark to prompt the user to enter
source file Tline by line. Each of the entered lines must be started
by a non-zero number digit (1-9). The user may input those source
lines in a random numbered sequence. This routine will place each
entered line in the proper location by comparing this 1ine number
with other line numbers. This routine is exited when the user inputs
a non-number led string or the file reaches its maximum limit (280
lines or 4095 bytes).

As may be viewed in Figure 6.3, the INPUT routine is started by
checking the Line-count. If the Line-count records 280 1lines
already, a file-full message is sent and execution logic is routed to
wait a new command input. Otherwise, the routine execution proceeds
to accept a new line input. A question mark displayed on the screen
indicates that the execution 1logic is ready to receive a new line.
The user may order the Editor to implement other functions by simply
typing the proper command instead of number-led line. Upon receiving
the user entered string (A$), the execution logic tests the leftmost
character of this string to determine whether it is a source line.
If the Tleftmost character is not a non-zero decimal digit (1-9), the
execution logic exits this routine, and routes to the command
recognition procedure. If the test verifies that the input is a
source line, the 1line array pointer, X, 1is defined by I+l. The
entered 1line then is read into the line array position pointed by X.

As aforementioned, this new entry must be rearranged by a shrinking

>
Line-Count Display
- 280 2
(Maximua line)| Message

—_—
* MAY BE A Read
COMMAND \ New Line via
\ keyboard N
\ Data-Count Y
D 4095 ?
\ Y

Is first
.————A“ character a V
number ? Erase The j

Highest-Numbere
Y Line from Pile

Place New Line to Next
Available Position of
Source Lines Array X

Data-Count

> %095 2

Display
Error
Message

Over 26
Spaces ?

Accumulate New

Line to Data~-
Count
* THEE PIRST INPUT]
LINE ?
* Y IS POSITION | __ ___
POINTER \

Exclude Y Replace Y Lin

Line from Line with Y| New e Numb.:- -

Data-Count New Line Y Line Number ?

N I
Set Up for Y[New Line Mumber ¢
Call MOVE | Vovedown 1 Line Y Line Mumber ?
Position
N
N
End of Pile?
Insert New Lin
to Position Y Y

Increment
Line-Count <

FIGURE 6.3 Flowchart for Routine INPUT

90
process. To do this, a subroutine SHRINK is called. SHRINK returns

the shrunken 1line and its new character-count (length). Upon
returning from this subroutine, the error flag is checked. If the
error flag indicates that there is a violation on the space limit
(twenty six spaces), then an error message is sent and the execution
logic is led back to the beginning of this routine to request the
user to re-enter a line. After the logic confirms that the entry is
a valid Tine, another subroutine PUTID is called to collect and place
the line number in the line number array position pointed by X. Then,
the execution logic enters the sorting procedures.

If there 1is only one line in the source line array or the new
entry has the highest 1line number, then the file is already in
sequence. Otherwise, the further evaluation is proceeded. A FOR ...
NEXT Tloop 1is applied to compare the line number of the new entry to
other entries in the 1line number array. If the comparison logic
detects the new 1line number 1is equal to the number in position Y,
then the line in position Y is replaced by the new entry. If the new
number 1is smaller than the number in position Y, then those lines
starting from position Y through the end of file are repositioned by
moving them down one line position, and the new entry is inserted to
position Y.

After sorting all lines in sequence, the Line-count is increased
to inc1ud¢ the new entry. The character-count of the new entry is
accumulated into the Data-count. If the Data-count indicates that
the total characters is not over 4095 bytes yet, the execution logic

routes to the beginning step of this routine. Otherwise, this

91
overflowed file 1is adjusted by deleting the highest-numbered line.

This adjustment is performed until the Data-count is reduced below
the boundary. Then the execution logic sends a file-full message,

and exits this routine.

6.3.2 LIST and PRINT Routines

The only difference between these two commands is the displaying
destination. The LIST command sets the screen flag (F=1) which leads
the displaying 1logic to screen. The PRINT command sets the printer
flag (F=2), before routing to share the rest of the program
statements with the LIST command.

In both cases, a specification field following the command
syntax 1is optional. This specification field is used to enter the
line specifications, 1in which a dash mark is the separator between
the start 1line and end 1line. The user may specify both the start
line and end 1line, or specify either one, or omit this field. The
execution Tlogic will replace the excluded specification with the
corresponding default value.

As depicted in Figure 6.4, if there is no file established in the
workspace, the execution control is simply transferred to the command
recognition procedure to wait a new command entry. Otherwise, the
execution Tlogic proceeds toward the examination of the specification
field. If there is no 1line specification, the displaying range
defaults to the whole file. Otherwise, the subroutine STEND is called
to scan the specification field, and return the displaying range.

After checking the error flag returned by STEND and confirming no

Set
E3 Flag for|
Screen

B

E4 Flag for
Printer

5 —
Dt ot

Initialize
SEARCH Flag Y
& Default
to
Call STEND All Lines
Return Start &
End Positions

T Ly srvory

N

Go To
Display
Error

Call DISPLAY

i

@

.FIGURE 6.4 Flowchart for Routine LIST and PRINT

93
error, the subroutine DISPLAY 1is called to and send the designated

lines to either the screen or the printer.

6.3.3 DELETE Routine

This command routine performs the deletion of a block of
specified source lines. Unlike LIST and PRINT, this routine requires
the presence of the specification field. As listed in the command
summary (Figure 6.1), the user may specify both start line and end
line, or specify either one. A dash mark is also used here to
separate these two 1line specifications. If one of the Tline
specifications is absent, the corresponding default value is used.

Figure 6.5 illustrates the execution sequence in flowchart form.
As may be noted, if the execution logic detects a null specification
field, this routine is exited. When the presence of the
specification field 1is confirmed, the subroutine STEND is called to
evaluate this field and return the deleting range. The specified
lines must be existed in the file. Otherwise a 'NOT IN THE LISTING'
message is sent.

The deletion work 1is accomplished by three procedures. First,
those 1lines to be deleted are excluded from the Line-count and
Data-count. Second, those lines, starting from the line just beyond
the 1last line to be deleted through the end of file, are moved to new
positions starting from where the first deleting line resided. The
last procedure clears the useless array entries for faster DOS

execution.

J

Has Specifica-
tion Field ?

>N Y

JY

Initialize
SEARCH Flag

{

Call STEND

Error?
N

Reduce Line~Count &

Data-Count

Go To
Display
Error

!

Prepare for

Movint Up

Call MOVE
(DELETION)

{

Clear Useless
Lines

>t

FIGURE 6.5 Flowchart for Routine DELETE

94

95
6.4 File Mode Related Command Routines

NEW, EXTEND, FILE, and CALL are the four members of this command
group. The first two commands will change the File mode flag. The

other two take the File mode flag as reference during operation.

6.4.1 NEW Routine

This command clears any entered lines and its corresponding
arrays from memory, so that the user can have the full space to input
a new file. The File mode flag is set to the First file mode. This
command can be employed to clear the Extended file.

In order to destroy all of the defined variables, a very simple
scheme 1is applied. According to the characteristics of the BASIC
command, RUN, all of the established string arrays and numerical
variables will be set to null by issuing this command. Therefore,
this routine simply re-runs the main program statements starting from
setting the First file mode, as shown in the main program flowchart

(Figure 6.2).

6.4.2 EXTEND Routine

When this command 1is issued, the current file in memory is
cleared, and the Editor enters the Extended file mode.

This operation starts with setting the File mode flag to
indicate the Extended file. Then, as for NEW, the BASIC command,
RUN, is executed to set all of the arrays and variables to null. As
mentioned, the NEW command can be used to exit the Extended file

mode.

96

6.4.3 FILE Routine

The FILE command routine dumps the current file to transition
buffer, and saves this ASCII file on the disk. The execution logic
will check the File mode flag to determine whether to use the First
file tracks (tracks 37 & 38) or the Extended file tracks (tracks 29 &
30).

The capacity of the transition buffer is only 2K bytes (one
track). Each file may occupy 2 tracks. Therefore, the execution
logic checks to see if the buffer is full, after dumping a byte.
Once the buffer address pointer (BA) exceeds its 1imit, the contents
of this buffer is saved to the first track of the corresponding file.
The rest of the file then is dumped and saved to the second track.

As explained in Figure 6.6, the dumping procedure for each of
lines 1is started by storing the character-count (length) of that line
to the buffer 1location pointed by BA. Then a FOR ... NEXT loop
converts each of the characters to ASCII representation, and dumps
this ASCII byte to the buffer. As noted, after dumping a byte, the
buffer address pointer is checked. If the contents of BA indicates
that the buffer 1is full, the execution logic checks the File mode
flag and saves the current buffer data to the proper first track
(track 37 or track 29). Before re-starting the dumping process, the
buffer address pointer 1is initialized, and a track pointer (T) is
increased to indicate the first track has been used already.

After having all of the source lines dumped, a null ASCII byte

is placed as file end mark. Next, the execution logic examines the

*FIRST FILE-
TRACK 37 & 38

*EXTENED FILE-
TRACK 29 & 30

Init Buffer &

Inc Track Pointr

E6) —> Tnitialization
Dump -
Character-Count
Y Save Buffer to
0)
Guffer End? >——>i Track 37 or 29
=" {
Get Dump .
Next Character of Line
Line
A

Buffer End?

Track

Save Buffer to

‘l N
I é?nd of Line?>é—

Y

N,
\%pd of File?

JY
Dump ASCII Null
as End Mark

1 Check
Track Pointr

Init Buffer &

Inc Track Pointn

>

Save Buffer
to TK 37 or

Save Buffer
to TK 38 or

e

@

FIGURE 6.6 Flowchart for Routine FILE

97

98
contents of the track pointer. If the track pointer records that the
first track is not available, the logic stores the buffer contents in
the second track of the corresponding file designated by the File
mode flag. Otherwise, the File mode flag guides the disk accessing

logic to place the buffer data to either of the first tracks.

6.4.4 CALL Routine

This command is the inverse of the FILE function. It retrieves
the First file or Extended file from disk, and reconstructs that file
in the workspace. As with FILE, the current setting of the File mode
flag designates which file to be retrieved.
| The calling procedure is executed following the reverse order of
filing. As described in the FILE routine, the length of each line is
stored before dumping that line, and the last character in the file
is a null ASCII byte. Therefore, after the retrieving logic loads the
proper track contents to the buffer, the first byte obtained from the
buffer must be the character-count of the first 1line. If the
character-count is an ASCII null, this marks the end of the file. A
non-zero character-count sets up a FOR ... NEXT loop to recover the
succeeding characters of that 1line. After recovering a line, the
execution increments the Line-count, accumulates the Data-count, and
calls the PUTID subroutine to collect that line number. This process
is repeated until the execution logic reads a zero character-count
which marks the end of the file.

As with the FILE routine, a file may occupy more than one track

of data. After reading a byte from the buffer, the execution logic

* DEPEND ON
FILE MODE
FLAG

ES Load Buffer via
Track 37 or 29 — =
Initialization

Initialize a
Line

Recover
Character-Count

=0 ? \Y
(End Mark) /
N

D)

Track 38 or 3Q

3 X
<Buffer End ?Ha Buffer via
> |

Recover
Character to Line

Init Buffer Pointn

Y Load Buffer via
f d ?
<irBu feriEn : 7 Track 38 or 30

Init Buffer Pointr

Call PUTID to Get
Line Number

y

Inc Line-Count &
Acc Data-Count

FIGURE 6.7 Flowchart for Routine CALL

99

100
checks the buffer address pointer. If the pointer indicates that the
end of buffer has been reached, then new buffer contents are loaded
from the second track of the corresponding file.

A flowchart for this operation is shown in Figure 6.7.

6.5 Subroutines

This section presents the execution flowcharts for certain
important subroutines. In Figure 6.8 to Figure 6.13, the following
subroutines are explained:

SHRINK -
Scans the source line pointed by X, and replaces the
encountered spaces with one space character followed by an
alphabetic character as repeat-count

RECOVER -
Recovers the source 1line pointed by X to its original form in
T$ without changing its shrunken form

PUTID -
Puts the line number of the source line specified by X into the
corresponding location of line number array

DISPLAY -
Recovers and sends a block of source lines starting from array
location S through E to screen or printer

STEND -
Interprets the specification field or defines default value (s)

in S and E

101

GETPOSITION -
Searches the 1location of the specified line number in the line

number array and returns the appropriate location in X or T

Initialize
Scan Pointer

3

Search
Space Character

!

Collect Preceded
Non-Space Characs]

Y
(Ehnd of Line}
N

!

Search
Non-Space
Character

Y

Isolate
Preceded Space

Over
26 Spaces?

Non-Space

Update New Line
Character-Count

Place Shrunk
Line to Array

Set Err Flag

ollows ?

Collect 1 Space &

a Repeat-Count

* REPEAT-COUNT IS

4 REPRESENTED BY

ASCIT A - 2

FIGURE 6.8 Flowchart for Subroutine SHRINK

102

103

Initialize
Scan Pointer

>y

Search
Space Character

!

Collect Preceded
Non-Space Characs

CrrE e
ln

Convert Repeat-

Count to Number

k

Collect
One Space

¢ M

Number
= Number-1

y
< Number=0? >N——'

Y

Adjust

Scan Pointer

FIGURE 6.9 Flowchart for Subroutine RECOVER

104

Init Scan Pointer

i<)
Qumber Digit 9>Y—->- Next
’ ’ Position
lr«
Isolate Preceded
Number Digits

y

Put Number into
Line Number Array

()

FIGURE 6.10 Flowchart for Subroutine PUTID

Init Array Pointr

Call RECOVER

Next
Line

Screen

FIGURE 6.11 Flowchart for Subroutine DISPLAY

105

RETURN

- Isolate
| Specification Field

Set Error Flag

T Init Scan Pointer

<All Valid Has Sta rt L1ne>" Start Position
Di<s ? Default
call GETPOSITION....*.(Error?

(Start Position) ‘k’ \L
Ad just Specification END= START Po-
. ield End ? > sition

Scan Pointer]
i@s End Line ? Increment
l SEARCH Flag

- | End Position Call GETPOSITION
Default End Position)

< % Error ? >“
N

Called by DELETE
2

End Posi- End Posi-
tion X tion =T

Set Y N
Error Flag | <START) END ?

FIGURE 6.12 Flowchart for Subroutine STEND

L}

106

Init Scan Pointer

N
Set 4&————-<§11 Dec Digits?:>

Error Flag Y
A 1

Isolate
Decimal Digits

!

Let LN= Decimal
Digits Value

& X- BOTTOM
Init Search Pointr] _ -~ POSITION
Y (X & T) ~ T- TOP POSI-
TION

Decrement
T

Increment
X

FIGURE 6.13 Flowchart for Subroutine GETPOSITION

CHAPTER 7 8080/8085 CROSS ASSEMBLER

7.1 Overview

To develop an assembly 1anguage processing program is the main
purpose of this thesis. This Assembler program performs the clerical
task of translating the 8080/8085 assembly language source program
into the binary (machine) code language which can be executed by the

8080/8085-based microprocessor systems.

7.1.1 System Description

This Assembler program is written in BASIC language, and is
stored on disk under the file name ASM85. It is loaded into BASIC
workspace, and executed by the proper menu selection in the System
Executive program.

Figure 7.1 presents the workspace memory assignment while
executing the Assembler. A 2K buffer is reserved as a transition
area for the source file created by the Editor. The buffer assigned
for the object codes has a maximum capacity of 1K bytes. The Editor
imposes a maximum capacity upon the source file of 8K bytes or 560
lines. A typical 8080/8085 assembly language source line includes
line number, operation code field, and the spaces between them. If an
average 1line occupies sixteen memory locations, then the source file
comprises 512 Tlines. Assuming each 1line generates two bytes of
object code, then a 1K buffer for the assembled code is adequate.

Before assembling the source file, the 1K buffer region is used

as a temporary work area for the recovery of all reference tables
107

108

WORKSPACE START - 327E

THE ASSEMBLER PROGRAM & DOS
WORKSPACE

53FF
i
5100 (REFERENCE TABLES TRANSITION
AREA)
5TFF THE OBJECT CODE BUFFER AREA
5800

THE SOURCE FILE BUFFER AREA

END OF MEMORY - SFFF

FIGURE 7.1 The Assembler Workspace Memory Map

Load Ref

m Tables to !S)?ﬁn: ']I:'a?te
Object Cod ize & Ini

Buffer Area

Build — Build INS
&
REGISTER &
DIgECTIVE | REGISTER-PATR[€ |BASE-OPCODE
Table |Tables Tables

CONTINUE
- FIGURE 7.2 Flowchart for Build Tables

109
fron the disk. Necessary records include the instruction table, the
base-opcode table, the directive table, the register table, and the
register-pair table. A1l table information is stored permanently on
disk, and is transposed to corresponding. arrays in the BASIC
workspace. The reference table contents occupy disk sectors 4 & 5 of
track 39. Except for the base-opcodes, all table entries on the disk
are stored in ASCII form. ASCII null characters are used as
separators between elements on the disk. For the instruction
mnemonic record, disk storage consists of instruction characters
followed by a separator and a corresponding base-opcode. Figure 7.2
shows the flowchart of the table construction sequence at the

beginning of the Assembler main program.

7.1.2 Design Background

The reference tables could have been generated directly in the
BASIC program by reading table entries from DATA statements, rather
than recovering information from disk. However, the DATA statement
occupies BASIC workspace even after the data has been read. Since
the reference tables are large, considerable workspace memory can be
saved by fetching the information from disk. After transferring the
table data into the 1K object code buffer, the data is converted into
BASIC string arrays in workspace memory. The contents of the 1K
buffer are later overwritten during object code generation.

Other features of the Assembler have been designed in such a way
as to minimize the requirements for BASIC workspace memory. Only one

source line at a time is recovered from the source file buffer and

110

operated on by the Assembler. All consecutive sequences of ASCII
blanks in the source line are reduced to one space when brought into
workspace. The comment field is not recovered into workspace.

Because the Assembler main program supports no comment field, it
does not output the 1listing file. Instead, a subprogram SCRIBE is
accessed to perform the 1listing task. Unless the source language
file released by the Editor is 100% error free, the Assembler does
not let the user select the listing function. Every detected error
is sent to either screen or printer in error-code form. The meanings
of the error codes-are listed in the Appendix.

Like most of the assemblers written for microcomputers, a
two-pass scheme is applied. In the first pass, the assembler simply
collects and defines all symbols. In the second pass, it replaces
the references with the actual definitions. Since a source file is
physically read twice, and much time is consumed in the BASIC

language interpreter, the assembling speed is slow.

7.1.3 Syntax Format

Many assemblers use fixed format. Some assemblers require that
each field of a line start in a specific column. An example of this
might be when there 1is no label field, the first column must be a
blank. Another instance is when the operation code (mnemonic) field
must start in the 7th co]umn. The fixed formats are often a nuisance
to users. Thus, for convenience, the design of this Assembler adopts
a free format where the fields may appear anywhere in the line. To

avoid confusion, it 1is required that the user retrain from using

labels which are the same as instructions or directives.

The field assignment, 1like all assemblers, may consist of a
label field (optional), an operation code (instruction or directive)
field, an address field (conditional), and a comment field
(optional). Each field must be separated by a proper delimiter.
Figure 7.1 presents the standard Intel 8080/8085 assembler

delimiters.

: AFTER LABEL FIELD

'SPACE' BETWEEN OPERATION CODE AND ADDRESS
s ‘BETWEEN OPERANDS IN THE ADDRESS FIELD
; BEFORE COMMENT

FIGURE 7.3 The Standard 8080/8085 Assembler Delimiters

For more flexibility to the wuser, this Assembler allows the
first three delimiters shown in Figure 7.3 to be interchangable in
all fields. Only the semicolon is always used to mark the comment
field. For example, instead of using a colon after the label field,
the user may type spaces or commas between the label field and the
operation code field. The Assembler will also ignore the extra

delimiters or the appearance of delimiters in comments.

7.1.4 Data Forms

Data 1in the address field may be presented in various forms. It
may be a label, decimal value, hexadecimal number, binary digits, or
ASCII characters. This Assembler accepts all of the above
representations, and also allows simple arithmetic operations.

For 2's complement numbers, the equivalent decimal range for one

112

byte of data extends from -128 to 255. Similarly, two bytes of
binary data range from -2048 to 65535 in decimal representation. The
Assembler converts any negative decimal values, in the address field,
into the corresponding 2's complement form.

This Assembler will also handle arithmetic expressions involving
the operators "+" and "-". The arithmetic expressions are evaluated
from 1left to right, and no parentheses are accepted. The operands of
the expression may be in the form of a label, decimal number,
hexadecimal value, or binary representation. Care must be taken to

eliminate any spaces between the operand and sign.

7.2 Main Structure

The structure of the Assembler main program can be illustrated by
dividing it into five parts. These include initialization,
first-field scanning, second-field scanning, error displaying, and
the ending procedure. In processing through each pass of the
Assembler, most of these operations are encountered. The Pass
pointer variable, P, guides the Tlogic of these procedures to the
appropriate execution path.

Since this Assembler adopts a free format, the first group of
characters collected by the scan 1logic may be a Tlabel, an
instruction, or a directive. Unless the syntax logic confirms that
this field 1is an instruction or a directive, the execution logic
defines this field as a 1label, and second-field scanning is
initiated. If a proper operation code is not found in scanning the

first two fields, a syntax error code is generated. Subsequent field

113

scanning (operand/address) 1is 1implemented by each operation code
routine specified by the syntax logic.
The following variables are assigned to represent the important

pointers and flags throughout the Assembler program,

P - Pass Pointer (1 -pass 1, 2 -pass 2)
X - Scanning Pointer

Y - Symbol Table Pointer

A - Source File Buffer Memory Pointer

S - Object Code Buffer Memory Pointer

U - Program Counter

E - Error Counter

R - Error Code

0 - Display Flag (1 -printer, 2 -screen)
F - ORG Flag (1 -no ORG yet)

F2 - Filetype Flag (1 -first file, 2 -extended file)

7.2.1 The Initialization Procedure

The initialization process 1is the start of the Assembler
program. It handles the housekeeping work for the Assembler, and
provides necessary information to the Assembler for reference.

The execution 1logic of the Assembler begins in building the
reference tables. The sequence of building these tables is depicted
in Figure 7.2. The execution logic proceeds to prompt the user, and
read a keyboard entry which defines the Display flag guiding the

error code output to either screen or printer.

START

Build Tables

Read
DISPLAY Flag

-

Init P, Y, and E

N

PR

I

Flags

Reset Pointers &

Load FIRST File 7

o Buffer

-/

—— —— — —

* ENTRY OF
PASS 1

114

* ENTRY OF
PASS 2

* ENTRY OF

LINE RECOVERY

Peek a CHARACTER~-COUNT

!

Load EXTEND Fil
to Buffer Y File
T End Mark ?
Set
EXTEND j<—— FT:TE:DV
Flag g oevr
Y
Y

N

Recover rU—p.d;;; _]

Line -—-1Source |

Before ';' Buffer w/
|2nd Track

Y

Set Err Code

Isolate Line Number

B

5

FIGURE 7.4 Flowchart for The Initialization Procedure

15

To begin pass 1, P is initialized to 1; Y and E are both zeroed.
It should be noted that the entry point of pass 1 is only one logical
operation before the entry point of pass 2. Common pointers and
flags are then initialized. Subsequently the first 2K of source file
is loaded to the source file buffer area.

The routine of scanning the source line begins with clearing the
error code to zero. Before scanning the first field, a source line
is converted into a string variable (I$) from the source file buffer.
This conversion acts wupon a line which was formatted by the Editor
when saved to disk.

The first byte obtained from the buffer must be the
character-count of that 1line. If the character-count is an ASCII
null (00), this marks the end of the file. If a file-end mark is
detected, the program checks the Filetype flag. As mentioned in
Chapter 6, 1if the Filetype flag indicates that the current file in
the buffer is not an extended file, then the logic 1oads the extended
file from disk, and sets Filetype flag to 2. The file recovery
process 1is repeated from the first line of the extended file. If the
current file is the extended file and the end of file character-count
is found, then the END directive has been omitted. The execution
logic is led to the error display procedure.

A non-zero character-count sets up a FOR ... NEXT loop to
recover the succeeding characters of that line. If multiple
consecutive spaces are presented, they are represented as a single
space followed by a repeat-count. In the Assembler only one space is

loaded into BASIC workspace. The repeat-count is disregarded.

116
Character vrecovery 1is finished when the current line is ended or a
semicolon 1is encountered. The source buffer memory pointer (A)
points to the character-count of the next Tine.

A single file, even though not an extended file, may occupy more
than one track of information. This means that during character
recovery, the Assembler may need to access the disk in order to
retrieve the remainder of the file. The subroutine CHKBUFF is called
to check the buffer memory pointer (A). If the pointer indicates
that the end of buffer has been reached, then new buffer contents are
loaded from disk from the second track of the corresponding file.

After obtaining the 1ine number of the currént line, the
execution flow 1is routed to the field scanning procedures. The
execution algorithm for this part of the program is presented in

Figure 7.4.

7.2.2 The First Field Scan Procedure

The field scanning procedure starts by calling the subroutine
ISOLATE. ISOLATE 1is the only subroutine for line scanning in this
Assembler. It starts collecting characters after finding a valid
symbol (an alphanumeric digit, single quotation mark, or minus sign),
and stops when the 1line ends or any delimiter (space, comma, or
colon) is encountered.

If the current 1line is a comment line or has no valid starting
character, then the -execution 1logic recovers the next Tline.
Otherwise, syntax 1logic starts classifying the first group of

characters.

)

Call ISOLATE

N

1

>First Field

117

!

| Has Character?

Evaluate

PROG COUNTER

i?[

Directive ?

* COLLECT CHARACTERS
UNTIL HIT DELIMITER

* NUM, LETTER, QUOTE,
OR '-' ARE START CH

N
L 4

Tnstruction

1 E

2

Instruction
Translation

f
Address

Error ?

Defined
Symbol ?

iN

Symbol Table
Overflow ?

'

Define
‘Symbol

Set Err
Code

Y___@

Directive
Operation
(ORG, Ds,
DW, or DB)

:

FIGURE 7.5 Flowchart for The First Pield Scan Procedure

118

Directive EQU 1is not permitted in the first field, since EQU
must be preceded by an alphanumeric label. If the content of this
field 1is not a directive, then the subroutine SEARCH MNE is called to
determine whether it is an instruction. The returned variable Z
contains the result of the search, with a zero meaning no instruction
found, or a 1-3 indicating the number of bytes required by the
verified instruction. As shown in Figure 7.5, if the syntax logic
confirms that it found an instruction, the proper execution path is
determined by the Pass pointer, P. Pass 1 only adds Z to the current
Program counter (U), and to the object code buffer pointer (S). Pass
2 performs the actual opcode and address field translations.

The Pass pointer is also checked, if this field is neither a
directive nor an instruction. Pass 1 checks the symbol table to see
if it is a wmultiple defined label, and to see if the table is full
(maximum 100 entries). The first six characters of this group are
taken as a 1label and placed into the symbol table, if the above two
checking procedures are satisfied. Since all labels are defined in
pass 1, pass 2 neglects label definition and proceeds to second field

scanning directly.

7.2.3 The Second Field Scan Procedure

Since the characters collected in the first field are not an
operation code, the syntax logic collects and scans the second group
of characters. If the second group 1is still not a directive or
instruction, the syntax error code is generated.

Like first field scanning, the procedure starts by calling the

Call ISOLATE
Second Field

l

Has Character ?

]

* SYNTAX

ERROR

Y
[
'ORG' or Y . .
'END' 2 g~ Directive ?
N N
Y
Directive Instruction?
Operation Y
(EQU, Ds, ;
Y | Operand Instruction
Error ? Translation
] l
Y
Evaluate Address Y Set
PROG CNTR Error ? Err Code
N

FIGURE 7.6 Flowchart for The Second Field Scan Procedure

119

120
subroutine ISOLATE to collect the second group of characters. No
valid starting symbol or a non-operation code causes the syntax logic
to set a syntax error code and route to error displaying. ORG and
END are the two directives which cannot be preceded by label. It is
a illegal statement if one of these two is found in the second field.
Other directives lead the execution flow to the corresponding
operation routine.

As shown in Figure 7.6, the same algorithm which is used in the
first field scanning 1is also applied here. The Pass pointer leads
the execution 1logic to the appropriate path. Pass 1 evaluates
Program counter; pass 2 executes the found instruction translation

routine.

7.2.4 The Error Display Procedure

Because the program is shared by both pass 1 and pass 2, certain
errors are repeatedly generated. It is therefore necessary to
determine when an error code should be displayed.

Error codes 1 to 4 are permitted to be displayed in pass 1;
error codes 5 to 9 are displayed in pass 2. Other entries are
rejected by this procedure, and return the execution control to the
step of recovering the next source line.

Before displaying the accepted error code on the screen/printer,
Error-count (E) 1is incremented to record this error. Then the
user-defined Display flag 1leads the displaying statement to either
screen or printer. As depicted in Figure 7.7, the last operation of

this procedure is examining the error code again. If it indicates an

2 Check

l

Err Code
=597

\ PASS [/

1

121

Y

Err Code
= 1-4 2

Y

T

Increment

ERROR COUNTER

2 ISPLAY

Display Err
on Screen

\ Flag /

1

<

N

A

NO
IEND'
ERROR?

N

Display Err
on Printer

B

FIGURE 7.7 Flowchart for The Error Display

Procedure

122

NO END error (code=9), then execution 1logic routes to the ending

procedure, rather than recovering the next line.

7.2.5 The Ending Procedure

This procedure 1is entered when END directive is found or a file
ending mark is hit.

First, the object code buffer pointer is checked to see if the
size of the generated object codes is over the 1K limit. If it does
exceed the boundary, no pass 2 will be processed, and the execution
flow 1is led to the error ending procedure. Second, the Pass pointer
is checked. Pass 1 increments the pointer to 2, and re-enters the
initialization procedure for pass 2 operation. If Pass pointer
indicates that the pass 2 operation is completed, then Error-count is
checked to determine the next step. Non-zero Error-count leads the
execution flow to the error ending procedure, in which the Editor may
be selected for error corrections or the System Executive program
take over the control. If Error-count indicates no error was detected
throughout the assembling work, the hexadecimal values of start and
end of Program counter are loaded to the first four bytes of the
object code buffer. As illustrated in Figure 7.8, after the entire
contents of the object code buffer are copied to disk track 36, the
execution 1logic prompts the user to determine the destination. The
user may select the 1listing function by simply entering "Y".
Otherwise the System Executive program is loaded from the disk and

executed.

-

>

Y

PASS
Pointer
= 2

Qo

/
/
Z
* START ADDR
AT TOP 2,

END ADDR AT
NEXT 2 LOC.

Object Codes) 1K?
N
1 Check
PASS
2

Error Free ?

isplay
xceeds Limit
Message on

iy

Poke START & END
ADDR to Object
Code Buffer

!

Output Object
Code Buffer to
rack 36

Read
Destination

LISTING

Read
Destination

Run
EDITOR

FIGURE 7.8 Flowchart for The Ending Procedure

123

124

7.3 Instruction Translation

An instruction may be interpreted into an one-byte, a two-byte,
or a three-byte instruction. When syntax logic leads the execution
to the corresponding instruction routine 1in pass 2, the found
instruction mnemonic and its base-opcode have been pointed to by the

variable T.

7.3.1 8080/8085 Opcode Organization & Manipulation

By examining the opcode table and the instruction format of the
Intel 8080/8085 microprocessor, an important algorithm can be found.
That 1is, all the opcodes of register-related instructions are based
upon the associated sequence of register/register-pair. Therefore,
these opcodes can be obtained by manipulating the base opcode with
proper offset value.

According to this algorithm, the register sequence of the
register table and the register-pair table are built as shown in the

following figure.

REGISTER TABLE

ARRAY SUBSCRIPTS |Ofj1}|2)3|4|5]|6]7

REGISTER SYNTAX BIC|IDJE]JH]JL|M|A

REGISTER-PAIR TABLE

ARRAY SUBSCRIPTS oy 129} 3

REGISTER-PAIR SYNTAX B|] D ﬁ SP

FIGURE 7.9 The Register Array and Register-pair Array

125

Those opcodes, which are related to Register B, are chosen as
the base opcode for the corresponding instruction mnemonic family.
The actual opcode then can be acquired by developing an arithmetic
expression involving the array subscripts manipulation of the
corresponding register. For instance, the opcode for INR B is
hexadecimal value 04, then the opcodes for the entire INR family can
be found by performing the following arithmetic operation:

4+(S*8) ; S is the subscript of the corresponding register

Each instruction family has its arithmetic expression to
manipulate 1its base opcode. Figure 7.10 lists the register-related
instructions and the corresponding arithmetic expressions. All of
the base opcodes in the expressions are presented in decimal form.
As noted in the figure, POP and PUSH families use a different
register-pair table. Since this is the only exception, no extra
table 1is built for this purpose. The element SP in the register-pair
table simply 1is tempararily replaced with PSW when POP or PUSH is
met. It may also be noted that RST family uses no table. The number
digit following RST is used in the expression.

Those instructions which are not 1listed in Figure 7.10 use
absolute opcode from the base-opcode table directly. The total
entries of the instruction table and the base-opcode table are

seventy nine.

7.3.2 The One-byte Instruction Routine

Most of the register-related instructions are one-byte

instructions. Entering this routine with variable T containing the

INSTRUCTION ARITHMETIC EXPRESSION REGISTERS USE
MOV r1, r2 OPCODE = 644+(S1*8)+32 B,C,D,E,H,L,M,A
INR r OPCODE = U+(S*8) B,C,D,E,H,L,M,A
DCR r OPCODE = 5+(3S*8) B,C,D,E,H,L,M,A
ADD r OPCODE = 12848 B,C,D,E,H,L,M,A
ADC r OPCODE = 136+S B,C,D,E,H,L,M,A
SUB r OPCODE = 14445 B,C,D,E,H,L,M,A
SBB r OPCODE = 152+S B,C,D,E,H,L,M,A
ANA r OPCODE = 16043 B,C,D,E,H,L,M,A
XRA r OPCODE = 168+S B,C,D,E,H,L,M,A
ORA r OPCODE = 17648 B,C,D,E,H,L,M,A
CMP r OPCODE = 184453 B,C,D,E,H,L,M,A
RST 0-7 OPCODE = 199+(0-7)*8 NON

POP rp OPCODE = 193+(S*16) B, D, H, PSW
PUSH rp OPCODE = 197+(S*16) B, D, H, PSW
STAX rp OPCODE = 2+(S*16) B, D

LDAX rp OPCODE = 10+(S*16) B, D

INX rp OPCODE = 3+(S*16) B, D, H, SP
DCX rp OPCODE = 11+(S*16) B, D, H, SP
DAD rp OPCODE = 9+(S*16) B, D, H, SP
MVI r, D8 OPCODE = 6+(3%8) B,C,D,E,H,L,M,A
IXI rp, D16 OPCODE = 1+(S*16) B, D, H, SP

NOTE: S is the subscript

of the register sequence in table

FIGURE 7.10 Base Opcodes & Arithmetic Expressions Table for

Register-related Instructions

126

127
position index of the found instruction, a base opcode is obtained
from the corresponding location of the base-opcode array. T is then
Checked to determine whether the found instruction 1is a
register-related instruction. The program logic assigns the
execution to the proper instruction family procedure to get actual
opcode. If the entered instruction 1is not a register-related
instruction, the base opcode is used as actual opcode. The execution
sequence 1is explained 1in Figure 7.11, where B represents the base
opcode and S stands for the subscript of the register/register-pair
in the table.

After the proper opcode is obtained, the subroutine POKEBYTE is
called to place this byte into the object code buffer. Then, the
execution Tlogic checks to see if there are any unnecessary fields.
The error-free exit is to recover the next source line. Any detected

error causes the execution to go to the error display procedure.

7.3.3 The Two-byte Instruction Routine

In the entire two-byte instruction family, only MVI is a
register-related instruction. If variable T indicates that MVI is
met, the procedure of obtaining the actual opcode for the MVI family
is performed. Otherwise the execution logic by-passes the MVI
process and calls POKEBYTE to dump the opcode. After opcode is
placed at the proper location, the subroutine GETDATA is employed to
scan the operand field and return the decimal operand value in
variable D. As shown in Figure 7.12, if the returned error code

indicates that GETDATA could not find an operand (code=1), then the

Get BASE OPCODE(B)

128

From Table
l " Call GETRGTR T Cﬁde
Return w/
MOV!' ? —
B= B+(5*8) =07
* ADD, ADC, SUB, V
SBB, ees e e \
ORA, CMP etc, NJArith & Logic Y'; Call CHKRGTR <
Family ?
¥ Y
Err Codel|N
-————-—-9-—
=027
Call GETDATA Y]
1)]
Return W/ < RST'? \LY
D= 0—7 N
Y B= B+S _>.®
N JErr Code
=0 ?
Y 'POP' or |y Replace 'SP
/ 'PUSH' ? [>w/ 'PSW'
B= B+(D*8) \LN i
Register- v Call GETRP
pair ——>1Return w/
Family ? B= B+(5*16)
N
Call GETRGTR
Return w/ Y
c— 'INR' or
B= B+(5*8) 'DCR! 2 Regtore 'Sp!
{ z Y
N [Err Code] y y| Err Code
=077 =0 ?
|A6 >
Set
. Call POKEBYTE Err Code=8
N Y

<]

FIGURE 7.11

Extra Fields ?

Flowchart for One-byte Instructions Translation

Get BASE OPCODE(B)

From Table
‘L v Call GETRGOTR
'"MVI'? S4Return w/
N B= B+(S*8)
il !
Call POKEBYTE X frg S"de

! T

* ASCII BYTE Call GETDATA
POKED BY Return Operand
GETDATA Value in D
I Y f
E =1 ?
\ Err Code= 0 ? N rr Code=t 7 IN 5
(No Operand)
\ N I
o I
ASCII Operand? Modify
\LN Err Code=6 :
N
* -128¢ D256 Legal Value ? '
N
oo, Lo]
N Err Code
Value< 0 ? .. =7
‘lY
e

26 ‘v 2's Complement AL
' Conversion

FIGURE 7.12 Flowchart for Two-byte Instructions Translation

130
error code is modified to 6. Because the error code 1 is not
displayed in pass 2. The logic also checks to see if the operand is
an ASCII character. Since ASCII data has been dumped to buffer in
GETDATA, the POKEBYTE statement is by-passed.

The permissible data value in decimal is ranged from -128 to 255.
Exceeding this 1imit causes an error to be sent. If the data value is
acceptable, the program 1logic examines the sign of this data. A
Negative value is converted to the 2's complement representation.
The operand byte allocation and the extra field checking procedures

are shared with the one-byte instruction routine.

7.3.4 The Three-byte Instruction Routine

Like the two-byte family, only one instruction, LXI, is
register-related in this family. The algorithm shown in Figure 7.13
is similar to the two-byte instruction routine. Since this routine
sees the operand as a word (two bytes), the valid range for the
returned data is from -2048 to 65535 in decimal representation. The
subroutine POKWORD automatically performs the 2's complement

conversion if the given data is negative.

7.4 Directive Operation

The directives of the standard Intel 8080/8085 assembler are not
all allowed to be used in this Assembler. Several of the
pseudo-operations provided by the Intel assembler are not commonly
used, and the 1limited workspace does not have the capacity to

accomodate all of the directive operations. Therefore, only those

131

Get BASE OPCODE(B)

From Table
‘L v Call GETRP
'[X1'? p—————3Return w/
|N B= B+(S*16)
* OPCODE BYTE Y | Err Code=0
— — 7| Call POKEBYTE ?
Call GETDATA -
Return Operand Modify
Value in D Err Code=6 V
Y TY
N =1? [N
* 2048 <D< Err Code= 0? (fxzr oi:i;;) —>
65536 Y
N Y
N N
Legal Value?
\ g
. Y
Y
* AUTO-CONVERT Err Code
2's COMPLE~ | — Call POKWORD =7
MENT

&) s

FIGURE T7.13 Flowchart for Three-byte Instructions Translation

132
frequently used directives are included in this Assembler. They are
ORG, EQU, DS, DW, DB, and END.

Since the END directive operation 1is included in the ending
procedure, no description 1is written for it in the following

subsections.

7.4.1 ORG Operation

The ORG directive sets the Program counter to the value
specified by the operand field, in which the operand may be in the
form of a label, decimal number, hexadecimal value, or binary digits.
Because the pointer of the 1K object code buffer is initialized to
the start of buffer locations, multiple ORG's must specify address in
ascending sequence. Otherwise the former loaded object codes might
be overwritten by the latter dumped codes.

As shown in Figure 7.14, the ORG flag is developed to
distinguish the first met ORG from others. This flag is reset at the
pass entries in the initialization procedure. When an ORG is met,
the execution logic checks ORG flag to determine the execution path.
If the flag indicates that this is the first ORG operation, then the
Program counter (U) 1is equated to the address value returned by
GETDATA, and ORG flag is set to 2. If ORG flag variable contains 2,
then the object code buffer pointer (S) follows the increment of the

Program counter to a new location.

7.4.2 EQU Operation

This directive assigns the value of the address field to the name

Reset ASCII Flag
to Prevent ASCII

* U= USER PROGRAM
COUNTER
S= OBJECT CODE
BUFFER POIN-

* 1~ THE 1st
ORG
2- THE REST

y

Call GETDATA
Return New
START in D

!

Err Code N

TER

=027?

lY

New START Less
Than Current

PROG CNTR (U)?

ORG Flag =
172

Increment U &
S to New Value

}
Err Code
Y
Set ORG Flag
= 2

!

A

Equate U to
New START

(S Unchange)

(=

FIGURE 7.14 Flowchart for ORG Operation

135

134
specified 1in the label field. Figure 7.15 depicts the flowchart for
this operation.

In order to avoid defining the label twice, an EQU operation is
executed only in pass 1. Consequently, all the detected errors can
only be displayed in pass 1. Therefore, the found error codes are
modified to syntax error code before exiting the routine. The
address field may take all forms described in section 7.1.4, but only
one ASCII character is allowed. If the subroutine GETDATA returns
ASCII data, the Program counter and the object code buffer pointer
are decrement by one to eliminate the increment in GETDATA. Since the
name in the 1label field was defined to the current value of the
Program counter in the first field scanning, the EQU operation

redefines this name to the value returned by GETDATA.

7.4.3 DS Operation

The DS directive orders the Assembler to reserve a number bytes
specified by the value in the operand field. The operation simply
increments the Program counter and the object code buffer pointer by
the value obtained at the subroutine GETDATA.

ASCII and negative data are not permissible. The execution

sequence of this operation is depicted in Figure 7.16.

7.4.4 DW Operation

The DW directive stores a 1list of words into the object code
buffer. The 16-bit values (one word=two bytes) are located starting

at the current setting of the object code buffer pointer. Each word

% ONLY RUN IN

!

Extra Fields?

N

(

2 Check ~ PASS 1
A1
PASS
1
Set ASCII Flag to
Allow 1 ASCII
Call GETDATA
Return Operand
* GETDATA Value in D
POKED ASCII &
& INC PROG
COUNTR Err Code= |N
(U & 3) 92
T iY
\
Decrement Y
U&S by 1 ASCII Operand?
N
Y
* REPLACE Define D to Err Code
VALUE AT | ~1 Symbol Value = 1
TABLE LOC Table
Y-1

@

FIGURE 7.15 Flowchart for EQU Operation

135

Reset ASCII Flag
to Prevent ASCII

Call GETDATA
Return Operand]
Value in D

D

Err Code= 0? N ?f
Y
N Err Code=
D Value) 0? 7
Y

Increment PROGRAM
COUNTER to New Lo¢
(U= U+D , S= S+D)

S

FIGURE 7.16 Flowchart for DS Operation

136

137
in the operand field is separated by either a comma, space, or colon.
The words may be presented by all forms but ASCII. If the value
returned by GETDATA subroutine exceeds the range (-2048 to 65535),
the illegal value error is generated.

As illustrated in Figure 7.17, the execution logic is looped
until all words are stored or an error is detected. There is no
length 1imit set by this operation, but the Editor can accept a

source line up to 256 characters only.

7.4.5 DB Operation

The DB directive stores a 1list of bytes into the object code
buffer. The bytes are located starting at the current setting of the
object code buffer pointer. Each operand value is returned by the
subroutine GETDATA. The 1legal range for a 8-bit value is from -128
to 255. Unlike DW, DB also handles a string of ASCII characters
enclosed in quotation marks. As aforementioned, the ASCII string is
converted and stored by GETDATA.

Figure 7.18 depicts the flowchart for DB operation. As for DW
operation, there is no limit on the length of the 1ist. Each item on
the 1list 1is separated by either a comma, space, or colon. An ASCII

string is treated as one item.

7.5 Subroutines

As may be noted in previous sections, several processes are
implemented by calling the proper subroutine. Here only certain

important subroutines are discussed. Others can be reviewed in

Reset ASCII Flag
to Prevent ASCII

!

Call GETDATA
Return Operand
Value in D

138

Err Code = 0?

‘er

A '

Call POKWORD
Call GETDATA

Return Operand
Value in D

f

Has Operand ?

N

C

9

Legal Value ? p—>>

Err Code=
T

65536

* -2048¢D <

FIGURE 7.17 Flowchart for DW Operation

Set ASCII Flag to

Allow ASCIIs

y

Call GETDATA

Value in D

Return Operan

Err Code= 0?

139

V

ASCII Operand?]

lfN

Legal Value ?

| N _SJErr Code

1&{

D Value {0 ?

T

Conversion

2's Complement

Y

Call POKEBYTE

>y

Call GETDATA

Value in D

Return Operan

Y

Has Operand ?

N

)

=7

* —128{D (256

FIGURE 7.18 Flowchart for DB Operation

140

details by referring to the Assembler program in the Appendix.

7.5.1 [ISOLATE Subroutine

This subroutine is the field scanner of the Assembler program.
Whenever a field 1is to be isolated from the source line, ISOLATE is
called. Figure 7.19 shows the flowchart for this subroutine.

The scanning pointer, X, is initialized to point to the start of
a source line when that line is recovered into the workspace. X then
is managed by ISOLATE to indicate the next start scanning position.
As illustrated in the flowchart, ISOLATE starts with checking if the
line ends. Then it starts searching a valid field starting
character. An alphanumeric character, a quotation mark (indicates
ASCII), and a minus sign are the valid field starting characters.
Once 1ISOLATE hits one of these characters, the position of that
character 1is marked in variable K, and execution 1logic begins
searching for any delimiters. Either a comma, a space, a colon, or
line ends stops the searching. X now points to the stop position.
Then ISOLATE collects the substring starting from position K through
X-1 in variable G$ for returning. If ISOLATE cannot find a valid

character to start, the error code 1 is returned.

7.5.2 GETDATA Subroutine

Another frequently called subroutine is GETDATA, which scans the
address/operand field and returns the interpreted decimal value in D.
As mentioned, data in the address field may be presented in the

following forms: a symbol, ASCII string, hexadecimal representation,

End of Line ?

144

* SEARCH FOR

N FIELD START
¢ CHARACTER
Start Scanning
From Position X
Next Number, Letter,
Position Quote Mark, or
(X= X+1) Minus Sign ?
‘LN
N Mark FIELD
End of Li ?
° ne START Position
> ¥ in K (K= X)
Y
Err Code= 1

Next
Position
(X= X+1)

A

T

Comma, Space, or

Colon ?

(Any Delimiter)
N

End of Line ?

I

Collect Characters
from Position K to
X into G$§

FIGURE 7.19 Flowchart for Subroutine ISOLATE

Call Err Code | Y
ISOLATE =12
N
* RETURN IF HIT
141, -1, OR F— ~1Call CHECKSIGN[<
FIELD END ‘L
Y
Arithmetic ? A8)
Y ‘
ENTRY OF THE ASCII Data ? A9
NESTED SUB FOR F
TH OPERATION Y
Call
SEARCH SYMBOL
X Found ?
&N
. Y
Hexadecimal ? A10
Load Value Fro =
Symbol Value &
Table to D Y
= Binary ? A1
v
All Decimal N S Undefined Symboll
Digits ? Error
lY (Err Code = 5)
Y Get Decimal Y
Value in D
& Illegal Value
N Error >
D €65535 ? Err Code = 7)
Y
S

FIGURE 7.20 Flowchart for Subroutine GETDATA

N

Y| The First Sign]

>4 Initializationi~

¥

Is '=' ?

¢N

Add a '+' Be-

fore Expression

C o

<!

y

Call CHECKSIGN [~

Isolate a Operand

[

Call GETDATA
(Nested GETDATA)

Subtract
from
Sum

{

143

* CLEAR SUM &

~~ MARK THE

FIRST SIGN's
POSITION TO
1

a * MARK THE NEXT

SIGN OR EXPRE-
SSION END

N

* BETWEEN THE
PRESENT SIGN
AND THE NEXT
SIGN

Err Code= 0?
&Y
Check
Operand's Sign

P

Add |
to -Y

>‘}‘

FIGURE 7.21

N IEnd of Expression?

Y

Flowchart for Arithmetiec Operation

)

Count The Number of
ICharacters

Has End Quote

Y

Mark ?

‘LY

| Leftmost Char

Illegal Form
Error
(Err Code=6)

Start From

Convert ASCII,

* MAY BE O, 1,

2, OR NO LIMIT

<
Call POKEBYTE
End of N Next
Characters? haracter
‘LY
* 70 INFORM
ASCIie:{ P e = CALLING
ke ROUTINE

FIGURE 7.22 Flowchart for ASCII Operation

144

A10

A1

145

Exclude Tail | 5 JA11 Hex | N S lTllegal
Character-H Digiﬁs ? Value Err
Code=
v ode= 7)
1111 1
catl Over & X ;or;g;rror Y
HEX-DEC Digits? (Code= 6)
>
€D
FIGURE 7.23 Flowchart for Hex Operation
All
Exclude Tail : : LN > Illegal
Character-B Binary Value Err
Digits? (Code= 7)
Call ;11eg;1 Y
BIN-DEC orm Erron
(Code= 6)

!

FIGURE 7.24 Flowchart for Binary Operation

146
decimal digits, binary representation, or arithmetic expression. The
main logic of GETDATA leads the execution flow to the proper branch
procedure. .

As shown in Figure 7.20, GETDATA starts by calling the
subroutine ISOLATE to collect an operand field. If no valid
character is found, GETDATA returns the execution control to the
calling routine. Otherwise the data classification is proceeded.
The data classification process 1is executed in the following
sequence: check if arithmetic, check if ASCII, check if symbol, check
if hexadecimal, check if binary, check if decimal. Figure 7.21, 22,
23, 24 present the corresponding data operations. If the execution
logic cannot classify data in any of the above categories, the error

code is defined to UNDEFINED SYMBOL ERROR.

7.5.3 POKWORD and POKEBYTE Subroutines

The subroutine POKEBYTE dumps the entered byte value D to the
object code buffer 1location specified by the pointer, S. Then
POKEBYTE 1increments both Program counter (U) and object code buffer
pointer (S) to the next address. The program sequence of POKEBYTE is

listed in Figure 7.25.

4700 REM Subroutine POKEBYTE
4710 POKE S,D : REM Dump byte
4720 S=S+1 : U=U+l

4730 RETURN

FIGURE 7.25 Execution Sequence of Subroutine POKEBYTE

The subroutine POKWORD converts the entered value D to two

147

HOLDS WORD DEC

VALUE

Call DEC-HEX P~ —— |* RETURN 4 HEX
& DIGITS

Isolate Lo-
Byte Digits

!

Call HEX-DEC [~ ~ * CONVERT TO

‘L DECIMAL
<Call POKEBYTE >

Isolate Hi-
Byte Digits

!

Call HEX-DEC

(Call POKEBYTE >

FIGURE 7.26 Flowchart for Subroutine POKWORD

148

decimal equivalent bytes and stores these two bytes to the object
code buffer. This subroutine starts with calling the subroutine
DEC-HEX to convert the decimal value D to an equivalent 4 digits
hexadecimal representation. DEC-HEX subroutine will convert the
negative decimal entry to the equivalent 2's complement form. Then
POKWORD takes the low-byte of the returned hexadecimal representation
and calls HEX-DEC subroutine. HEX-DEC returns the decimal equivalent
value in D. Next, POKEBYTE subroutine is called to 1load this
low-byte value to object code buffer. Similar procedures, as shown
in Figure 7.26, are implemented by POKWORD to store the high-byte

value to the next buffer location.

7.6 The Listing Program

As mentioned before, the Assembler main program does not have the
capacity to install the listing operation. Therefore, this program is
developed to perform the listing function for the Assembler. It is
stored on disk under the file name SCRIBE. This program is loaded to
workspace and executed only if no error was detected by the
Assembler.

Since the only reference that can be passed from the Assembler
is the object code file, SCRIBE re-establishes the symbol table for
its own use. Each source 1line 1is recovered and scanned before
displaying. The format of 1line displaying is divided into the
following fields: the address field, the opcode field, the data
field, the source statement field. After printing the file, the

symbols and the corresponding hexadecimal values are listed in the

149

START Recover Source File ea
MNE Table & Obj Code i PISPLAY Flag

Tnitialization

>..$

lcet crar-count

{

Recover a Line

L
rﬁbdate_1

‘Source |

File End Mark? > | Butfer |

5 _—L__.l__l

Isolate

The First Field

T\V
Evaluate

PROGRAM
COUNTER

Y/
< Comment ? j>
*N
(Directive ?
N

b4 Instruction?)

‘LN
Define Symbol

y

Print Last

Line

Set New
PROG-CNTR

—

Equate >
Symbol

Y

Isolate

The Next Field

Obtain
Codes vig

Buffer

0BJ CoDE f—< Instruction? Yo

Get Word
via
OBJ CODE
Buffer

Print a Line

on-Screen/Printer

{

FIGURE 7.27 Generalized Flowchart for File Listing Program SCRIBE

150
form of five sets per row.

Instructions, DB and DW directives generate object codes. SCRIBE
processes these operation codes by obtaining byte/word from the proper
location of the assembled object code buffer. Therefore, only the
instruction and directive tables are restored from disk. Like the
Assembler main program, the program counter and object code buffer
pointer are evaluated follow each operation in order to record the
data code location and rebuild the symbol references.

Before SCRIBE performs the 1isting work, it prompts the user and
reads a user defined display flag. This flag guides the listing
logic to send the file to either the screen or the printer. After
the 1listing work is completed, the execution logic interrogates the
user to determine transferring control to the Extended Monitor or the
System Executive program.

Figure 7.27 presents a generalized flowchart to depict the

execution sequence for SCRIBE program.

CHAPTER 8 SYSTEM OPERATIONS

In this chapter, the operation procedures of this software
system are explained by demonstrating the typical processing sequence
of a simple example program. This example source program will be
entered by using the Editor, and will be converted to an 8085 machine
language program by the Assembler. Then the Extended Monitor will be
employed to file this object code program, and send this program to
the SDK-85 for execution. Those procedures of how to obtain
information from the SDK-85 and how to modify the program also will be
illustrated.

The source program in Figure 8.1 is the example program to be
demonstrated. It calculates the sum of a series of data bytes. The
length of the series 1is 1in location labeled LENGTH and the series
itself starts in location next to LENGTH. The sum is stored in the

hexadecimal address 2000. This addition program ignores carries.

8.1 Initialization

To start this operation, both SDK-85 and 0SI-C4PMF systems first
must undergo hardware initialization. After power up the SDK-85, the
user should press the EXEC key followed by entering the hexadecimal
address 8227 to enable the data communication program. When the
SDK-85 1is controlled by this program, an 'E' is shown in the leftmost
digit of the LED display. Then, a diskette contained the system
programs must be inserted into disk drive A of the O0SI-C4PMF

computer. Upon pressing the BREAK key, the 0SI prompts the message
151

10
15
20
25
30
35
4o
45
50
55
60
65

ORG

MOV

SUB

NEXT: INX
ADD

DCR

JNZ

STA

LENGTH: DB
DB

FIGURE 8.1

H
H
ORG
LXT
MoV
SUB

LENGTH: DB

9000H
H,LENGTH

ngw»

2000H

01H, O2H

9000H
H,LENGTH
B,M

A

H

M

B

NEXT
2000H

01H, O2H

We We we We We we we we we e

WO We We We WO wWe we WO we we

Points to LENGTH

B = data counter
Clears A

Points to data byte
Addition

Data end ?

No, adds the next byte
Stores the sum

2 data bytes follows
Data bytes

An Example Program

Addition of a string of data bytes

Points to LENGTH

B = data counter
Clears A

Points to data byte
Addition

Data end ?

No, adds the next byte
Yes, stores the sum

2 data bytes follows
Data bytes

FIGURE 8,2 Source File of the Example Program

152

153
'H/D/M'" on the screen. D selects the disk operation and boots the

DOS from the disk. The DOS then loads the System Executive program
to workspace, and executes this program to provide the following menu

display.
FUNCTIONS AVAILABLE:

(1) EXTENDED MONITOR - INTERCHANGE, MODIFY, & FILE DATA
(2) EDITOR - EDIT THE 8080/8085 SOURCE LANGUAGE FILES
(3) ASM85 - ASSEMBLE THE 8080/8085 SOURCE LANGUAGE FILE
(4) FREE - FREE SYSTEM FOR USER PROGRAMMING

SELECT FUNCTION (1-4)?

The user may select the desired operation by entering the
corresponding numerical digit. Any entry that fails to fall into the
range from 1 to 4 will cause this menu to be displayed again. If the
user intends to exit the developed system, the FREE function may be
selected. When the following message is displayed, the workspace is
cleared and the DOS is ready to accept the BASIC language programming

or a DOS command.

SYSTEM FREE
11645 BYTES AVAILABLE
0K

154
8.2 Edit Source File

To enter and to edit the source file of the example program, the
numerical key "2" specifying the edit 6peration is pressed. The
Editor program then 1is 1loaded and executed. A message 'Command?’
prompts the user for a command entry. As mentioned in Chapter 6, all
of the Editor commands can be abbreviated to one letter. For
entering the input mode, an "I" keyboard entry is issued. When the
input mode prompt '?' is displayed on the screen, the Editor is ready
to accept a source line input.

The program is entered line by 1line with a non-zero decimal
number at the start of each 1line. These numbers represent the
sequence of the program statements. Before pressing the RETURN key
to end a 1line, the SHIFT-0 can be used to delete the preceding one
character. After the input mode prompt ('?'), another source line
can be typed or a command can be entered to exit the input mode.
Suppose the form of this program is entered as shown in Figure 8.2.
In order to reserve the insertion capability, the line-increment
value must be at least greater than one. In this demonstration, the
line-increment 1is five. After having all lines entered, the user may
want to examine this entered source program on screen, or obtain a
hard copy from printer. To do so, the user simply types an “L" for
screen listing, or a "“P" for printer output. The user may specify
the range of displaying by entering the line specification following
the command syntax. These commands make the Editor exif the input
mode and to perform the specified command.

Before exiting the Editor, the source file just entered must be

155
filed to disk. This can be done by typing "F". The filing speed is

0.52 second per line. Since this example program did not exceed the
buffer capacity, no extended file is needed. If in the input process
a 'Buffer ends at line XXX' message is displayed on the screen, this
means the program is too large and line XXX is the last line. The
user may then use the extended file mode to accommodate the rest of
the 1lines. To enter the extended file mode, the user should file the
current file to disk, then type "E". Command NEW ("N") will clear
the extended mode.

Now, the example program source file is in the disk. The Editor
then can be exited by typing "Q" (QUIT). This makes the menu

selections to reappear on the screen.

8.3 Assemble Source File

To assemble the source program, a "3" is entered to select the
Assembler operation. Before the assembling process begins, the
Assembler program sends the following message to interrogate the

user.
List errors on printer instead of screen (Y/N)?

After reply, the Assembler starts translating the source file at the

rate of 30 lines per minute, and the following messages will be shown

to indicate the processing status.

This is a slow assembler!

156

Begin assembling
0 errors in PASS 1

Continue PASS 2

End assembling. Total 0 errors.
These messages indicate the case of error free. If any errors are
detected, a proper error message will be sent. For example, if there
is a syntax error in line XXX, the message will be:

Error #1 in line XXX
In the case of errors, the last message sent by the Assembler is:

Go back to Editor for corrections (Y/N)?
In the case of error free, the last message is:

Do you want a completed 1isting (Y/N)?
In both cases, a "N" entry causes the menu selections to reappear on
the screen. If the user selects the listing function, the succeeding
question is:

List on printer instead of screen (Y/N)?

Either listed on printer or screen, the assembled example program

157

will be 1listed as shown 1in Figure 8.3. After the listing work is

completed, the following message is:
Do you want to go to the Loader (Y/N)?

If the reply is "Y", then the Extended Monitor will be enabled.

Otherwise, the menu selections will be raised.

8.4 Operations of Extended Monitor

In order to communicate with the SDK-85, Extended Monitor
function is selected. When this program is loaded and executed, the

user should see the welcome messages as followed:

% SDK-85 EXTENDED MONITQOR *
Current data in buffer are released by the Assembler
Simulated SDK-85 Memory Starting Address - 9000
Ending Address - 9010

Command?

The object code file of the example program now resides in the
Extended Monitor simulated SDK-85 memory buffer area. These boundary
addresses can be changed to simulate another portion of the SDK-85
memory by wusing the SE command. The SE command may alter the range

but has no affect on the contents in the range.

8.4.1 Insertion of an RET

As mentioned, in order to regain control of SDK-85, an RET

158

wexfoxd aTdwexy ay3 JO STTJd SUTISTI ¢°g FUNDIJ

sa34q ®3BQ

SMOTTOJ s934q ®3ep ¢
ums ay3} saJol}s ¢sayx
934q 3xau ay3 sppe ‘oN
& pud eieQq

UOTRTPPY

93£q ®B3Bp 03 S3UTOd

¥ saeaT)

J93UN00 B3RP = ¢
HIONAT 03 8§3utod

e e e e o s e e e oo

s91£q e3Ep

‘N OIHO *¥*H

J006 HIONTT G006 IXaAN

aNd <9

HeO ‘HIO da 09
2 da SHIONIT GS

HOOOZ VIS 0S
IXAN ZNP Gh

g ¥od o

W aav ae

H XNI 3IXAN 0o¢

Y dns Ge

W'd AOW 02
HIONTT‘H IXI Gi
HO006 HY0 ot

¢ G

Jo 8utajs ® JO UOTLTPPY ¢ L
INFWALYIS HOHNOS das

*2g6t @ESVIII™

STIIVL TOEWAS
c0 0L06
19 J006
c0 d006

0200 2¢ €006
06G0 20 8006
G0 L006

98 9006

¢e G006

L6 £006

9t €006

0630 L2 0006
0006

YIVd 40 ¥aav

‘YTTINISSY SSOMD G808/0808

159

(Return-from-subroutine) instruction should be installed at the end.
In editing the example program source file, this instruction was not
included. Therefore, an insertion is needed. By examining the
listing printout in Figure 8.3, the RET instruction should be placed
at address 900E. This means those data bytes starting from the
labeled address LENGTH through the end must be moved down one
location. To do this, the IN command (INSERT) first can be used. By
typing "IN 900E/1", the data block is relocated and the address 900E
is available to enter the opcode of RET. To enter this opcode into
address 900E, the command statement "SU 900E/C9" is employed, and the

followed message is:

Substitute 900F?

Since only a byte is to be entered, the reply should be simply a "N".
A 2-digit hexadecimal input will replace the contents of address
900F, and a similar message for the succeeding substitution will be
displayed.

Because the address of LENGTH is changed to 900F, the
corresponding contents of address 9001 must also be modified to OF by
using the same procedure just demonstrated.

One would normally put RET into the original source program.

The modified object codes can be examined by screen display or
printer output. The command EX (EXAM) selects the screen; the
command PR (PRINT) selects the printer. If the user issues the PR

command without address specification followed, the whole object code

160
program will be sent to the DECWRITER printer. Before printing this

file, the following message is asked.

Do you need a title (Y/N)?

If the reply is YES, then the next question is:

Title?

Suppose the title is given as "OBJECT CODE LISTING OF THE ADDITION
PROGRAM". Then the printout from the printer will be shown as

following:

OBJECT CODE LISTING OF THE ADDITION PROGRAM:

0123 456 7 89 ABCDEF
9000 21 OF 90 46 97 23 86 05 C2 05 90 32 00 20 C9 02
9010 01 02

As noted, the 1last address is extended to 9011. 1In order to
confirm that the simulated memory range covers this expansion, the SE

command can be used. The SE command raises the following messages:

Simulated SDK-85 Memory Starting Address - 9000
Ending Address - 9011

Change Starting Address?

The message verifies that the previous insertion extended the

boundary to include address 9011 already. Therefore, no change needs

161

to be made. A "N" entry leads the execution to escape the present

function.

8.4.2 Save Object Code File

Before sending this modified object code program to the SDK-85
for execution, the wuser may wish to save this program to disk. The
user may use any created filename in the directory, or may create a
new filename. However, the CR command must be involved. This
command will display the current directory and will allow creation of

new filenames. For instance the directory messages are:

-- DIRECTORY --
LOC. FILE NAME
1 CHECKIN

2 APPTEST

3 KEY

4 2?2

5 27?7

Are you sure (Y/N)?

If the wuser simply want to check the directory, the above question
helps the wuser to escape creation of filename. If the user intends
to create a filename for the example program, then the succeeding

question is:
Enter new file name?

Suppose, the example program is named ADDITION. After entering this

filename, the followed question is:

162

At which storage location (1-5)?

As noted, locations 1 through 3 already have names, and locations 4 &
5 are undefined. The user may select any 1location. For those
defined 1locations, this will be a rename process. For the two
no-named locations, this will be a creation process. Suppose the
location 4 is selected. The updated directory will be displayed as

following:

-- DIRECTORY --
LOC. FILE NAME
1 CHECKIN

2 APPTEST

3 KEY

4 ADDITIO

5 ?2??

Create another file (Y/N)?

As noted, the created filename ADDITION is placed into location 4,
but only the 1leftmost seven characters were defined. The user may
create or rename another filename by typing "Y".

The example program ADDITION now is ready to be stored to disk
file Tlocation 4 under the filename ADDITIO. The user is able to save

this program by typing "SA ADDITIOQ".

8.4.3 Load Program to SDK-85 for Execution

The next step is to 1load this example program to the SDK-85

resident memory for execution. Since the range of the simulated

163
SDK-85 memory has not been altered, the loading operation can be done

by simply entering "DU" (DUMP command) without address
specifications. The contents of the current simulated memory then
will be 1loaded to ‘the corresponding SDK-85 resident RAM locations.
When the prompt "Done" is displayed, the program is loaded.

To order the SDK-85 to execute this program, the RU command
(RUN) must be employed. Either "RU" or "RU 9000" will command the
SDK-85 to execute that program. Since this example program is not a
looping structure and is equipped with an RET, the data communication

channel is still maintained after the program is executed.

8.4.4 Get Result from SDK-85

As noted, this example program ADDITION stores the sum to SDK-85
location 2000. The current simulated SDK-85 memory does not cover
this address. It is therefore necessary to set a new pseudo memory
range. After using the SE command to define a new boundary to
include the address 2000, the GE command (GET) then can be issued.
Suppose the new simulated memory range is set to 2000-2010. Upon the
information 1is received, the result may be examined by typing "EX

2000-2000" to display only that byte on the screen.

01 2 3 4546 78 9 ABCDEF
2000 03

8.5 Modify Program

The example program Jjust executed performs the addition of two

numbers. As noted from the structure of this program, it can be

164
modified to calculate more numbers by changing LENGTH and adding data

bytes. This may be accomplished in two ways.

The first way is to use the Editor to modify the source program.
To dé this, first, the user should type "QU" to exit the Extended
Monitor, then, select the Editor when the menu selection appears.
After entering the Editor, the source file can be retrieved by
issuing the C command (CALL). The example source program will be
loaded to the buffer at the average speed of 0.9 second per line.
When the Editor prompts 'Done', the user can use the I command to
enter the input mode. The newly entered statement will replace the
same numbered statement in the file. After the proper lines are
entered, the user should file the modified source program to disk,
then exit the Editor and select the Assembler to assemble this file.
Those procedures of re-entering the Extended Monitor and Loading
program to SDK-85 are the same as mentioned before.

The other way is to modify the object code file directly. Since
the object code file of the example program had been filed to disk,
the command statement "LO ADDITIO" entry will retrieve that file.
After the file ADDITIO is loaded, the screen will show the following

messages:

Simulated SDK-85 Memory Starting Address - 9000
Ending Address - 9011

The SU command now can be used to substitute and enter contents
at proper locations. Following those 1loading and executing

procedures described in the previous subsections, this modified

165

program then can be executed in the SDK-85.
Those operations which are not demonstrated above can be
reviewed in the chapters of the Editor and the Extended Monitor

description.

CHAPTER 9 SUMMARY AND FUTURE DEVELOPMENTS

9.1 Summary

The goals established at the start of this project have been
accomplished. In the SDK-85, the resident RAM has been expanded to
accommodate a larger user program. A data communication circuit has
been constructed on the SDK-85 board for serial interfacing with the
0SI-C4PMF system. The communication control program has been
developed in the expanded EPROM memory to co-operate with the host
system to implement the user specified operation. In the host system,
0SI-C4PMF, a cross-assembling and file managing system for the SDK-85
has been written and installed. This software system includes the
Text Editor, the 8085 Cross Assembler, and the SDK-85 Extended
Monitor. The Editor provides the functions for editing the source
assembly Tlanguage file. The Assembler translates the source codes to
the 8080/8085 machine code program. The Extended Monitor performs
the data interchanging with the SDK-85 and supplies the data
modifications, and the binary file maintenance capabilities. Through
the assistance offered by this enhancement sysiem, the user now is
able to manage the operation of the SDK-85 microcomputer more
efficiently and conveniently.

This development provides a model of using a DOS-based personal
computer to enhance a kit computer's operating capabilities without
extensive resident hardw&re and software expansion. Except for the
assembly language programs and the DOS command statements, the BASIC

language programs (Editor/Assembler/Extended Moni tor) are
166

167

machine-independent, and can be executed on other personal computers.

9.2 Future Developments

Although the present version of the developed system uses almost
all of the memory and disk space, it is still possible to advance the
operation capabilities. The following sections provide both hardware
and software enhancements that can be developed in the future

expansions.

9.2.1 Double-Disk System Expansion

The present software developed is a single-disk operation
system. The operating programs and the user files are both on one
diskette. It 1is possible to make minor software modifications to
expand the system to a double-disk operation system.

To support this, the DOS commands, DISK!"SELECT A" and
DISK!"SELECT B", can be used in the BASIC program to guide the disk
access to drive A or B respectively. One may construct the system so
that the system programs can be read from disk drive A, and the user
file information can be retrieved from disk drive B. Since track 0
through 9 are reserved by DOS, a total of thirty tracks can be
accessed by the DOS commands CALL and SAVE. Excluding the tracks
used by the user assembly language source file, object code file, and
directory, twenty four user binary files can be installed on the user
file diskette. To initiate this operation, a command INIT, which
will format a file disk, may be added to the Extended Monitor

program. On the system program disk, those tracks which were used to

168
store the user files, then are available to develop other utility

programs to enhance the capability of the system operation.

9.2.2 Hardwired Interrupt

Another major improvement can be scheduled in the future is to
install the hardware RESET function for the Extended Monitor. As
described 1in Chapter 3 and Chapter 5, the RUN command causes an user
specified program to be executed in the SDK-85. If the specified
program 1is a looping structure or has no RET instruction at the end,
the user loses control of SDK-85. To improve this, the hardwired
interrupt of the SDK-85 can be employed.

The available SDK-85 wuser interrupt is RST 6.5 which can be
accessed at connector J1 of the SDK-85 circuit board. At present,
RST 6.5 is disabled and will be available to use after the jumper
wire 1is removed from Jjumper 3-4. The 8085 RST 6.5 is a high-level
sensitive interrupt input. The interrupt signal must be held on for
at least 5,770 ns. Therefore, the hardware design could be developed
by wusing a one-shot chip and an inverter to generate a proper timing
signal to the RST 6.5 input. The falling-edge trigger signal for the
one-shot chip can be fed from the 0SI-C4PMF ACIA's RTS output pin or
a PIA's control 1line. To co-operate with the hardwired signal, the
SDK-85 communication program must also be modified. Since the vector
for RST 6.5 is set to branch to RAM location 20C8, the communication
program should place a JMP instruction for re-entry in locations
20C8-20CA during initialization.

In doing so, the Extended Monitor command RESET is able to

169

generate an interrupt to the SDK-85 system for restoring the data

communication channel.

170

REFERENCES

Intel Corporation, SDK-85 System Design Kit User's Manual, 1978

Intel Corporation, MCS-80/85 Family User's Manual, 1979

Ohio Scientific Inc., 0SI-C4PMF Challenger User's Manual, 1978

MOS Technology Inc., MCS6500 Microcomputer Family Programming

Manual, 1975

Lance A. Leventhal, B8080A/8085 Assembly Language Programming,

Osborne & Associates Inc.

Lance A. Leventhal, Introduction to Microprocessors: Software,

Hardware, Programming, Prentice-Hall Inc., 1978

171

APPENDIX A - CROSS ASSEMBLER ERROR CODE INTERPRETATION

CODE

INTERPRETATION

OPERATION CODE SYNTAX ERROR

MULTIPLE SYMBOL DEFINITION

SYMBOL TABLE OVERFLOW (MAXIMUM 100 ENTRIES)
NON-ASCENDING ORG SEQUENCE

UNDEFINED SYMBOL

ILLEGAL OPERAND FORM

ILLEGAL OPERAND VALUE

UNNECESSARY/ILLEGAL OPERAND

NO END DIRECTIVE

2080/8085

ADDR OP DATA

8227

8227
822A
g22C
822E
8230

8232
8234
8236

8239
823C
823F
8241
8242
8243
824G
8247
8z4A
824e
824C

31
3E
D3

D3

DB
6
c2

CD
21
06
BE
23
CA
0S
cea
23
23
c3

8227
00357
0015
0008
0001
0002
008E
Q08E
008F

cz2z2o
8E
135
8E
8E

08
3282

B582
cesaz
04

4FB82

3982

4182

172

APPENDIX B - SDK-85 DATA COMMUNICATION PROGRAM

CROSS ASSEMBLER,

SEQ

WODNG N D W -

RELEASED 1982,

E.E.

SOURCE STATEMENT

LI EEETE LRSS TSRS LS 22
4

SDK-85 DATA COM

ETEETIRT)

rThis eproaram resides permanentl
rtions startina from address B2Z2
;0SI-C4P system, and executes th

2 3 3¢ 3 34 3t 3% 34 3 3t 36 3 3 5k 3 3% 36 3 36 3 3 3 3 3 334 33436 %

Definitions:

R L)

PEGIN EQU 8227H '
RESET EQU of1o10111B H
PROGRM EQU 000101018 ’
MSKCTS EQU 000010008 H
MSKRRF EQU 000000018 B
MSKTRE EQU 000000108 H
STATUS EQU 8EH ’
CONTRL EQU STATUS H
0SIC4aP EQU 8FH H
ORG BEGIN

FHFHEHFFFHE R AR F R RER®E Main

Initialization

B NE B M. N N

LXI SP,Z0CZH ’

MVUI A,RESET

ouT CONTRL H

MUT A, PROGRM

ouT CONTRL H
NOTYET: IN STATUS '

ANI MSKCTS 3

JNZ NOTYET H

~

;Re—entry location for Command R
sWait command inPut from OSI-C4P

WACOMD: CALL DATAIN H
LXI H,TABLE H
MVI B,4 H
NEXT: CMP M H
INX H H
Jz FOUND H
DCR B H
Jz WACCMD H
INX H H
INX H
JMP NEXT H
rCommand verification

OHIO U.

3t 3¢ 3t 2 3 3b 36 3 5F SE 3 3 30 3 36 3 30 b 3 b 3 SIS E R

MUNICATION PROGRAM

v in the SDK-85 EPROM memorvy loca-
7H. It acceets commands From the
e corresronding command routines.

34 3 334 36 3 3 3 36 34 36 3 3 3 3 30 3 5 3 3 B 35 R3S XS

Progaram starting address
Pattern fer ACIA master reset
Pattern for eprogramming ACIA
Mask pattern for CTS test
Mask pattern for RDRF test
MasKk rattern for TDRE test
ACIA Status Rea.(Read Onlv)
ACIA Control Res.(Write Onlvy)
ACIA Transmit/Receive Rea.

ROUTING HMHERFHAFFREHFIXAR LR FHLY

Initialize StacK Pointer
Master reset ACIA

Prosramming ACIA, RTS low
Status Resa. to A
ChecKk if 0OSI readv

No, checkK asain

outines

Yes, gaet caommand in

Set Command Table Pointer

Set Counter

Match?

Point to Command Routine addr HI
Yes, found it

Check if end of table

Yes, invalid command

No. sKip address bvtes

Try next

824F

8251
8252
8253
8254
8255
8256
8257

8258B
825
825F
8261
8264
8267

828A
826E
826D
8270
8271
8274
8275
8277

827D
8280
8281
8284
8287

828A
828D
828E
8291

8292
8295

D3

7E
SF
23
7E
57
ER
£9

cb

cD
7€
D3
CD
c2
cD

CD

CcD
77
CD
cz
C3

8F

8F
2682

3982

8F
3882

9782
BG82
ACB82

7D82
GAB2

8682

2682

3982

124

173

FOUNDI 0OUT 0SIC4P v Send same command to OSI-C4P

Transfer control to the Command Routine

~a e we

Moy AM ; Load Routine address lo-bvte

Mov E,A

INX H

Moy AM 7 Load Routine address hi-bvte

Mou L/A ;7 (D,E)= Routine address

XCHG ; Preepare for passing address to PC
PCHL 7 Go to execute Command Routine

A FHRF AR R4 Routine TRANSM 3383453 2 353 5 36 3 % 36 3+ 38 36 34 3 % 3 3 343 3¢

“e we we e

rRoutine TRANSM transmits a string of data bytes specified by the
r0SI-C4P to ACIA
TRANSM: CALL SETUP
;Start transmission procedure
NEXQUT: CALL EMPTY

Mouw A,M

ouT 0SicC4?

CALL CHKSUM

JNZ NEXOUT

CALL EMPTY

Set memory Pointer & bvte counter

~e

Wait until ACIA readvy to transmit
Get a data brte

Transmit data to COSI-C4&P

End of data?

No, g0 for next

Yes, wait until ACIA reazadr

e NE Na ~a ~a owe

Routine CHECK is shared by TRANSM and RECEIV for checKing the
accumulated checKsum

Ne Nu Su v

CHECKX: MQv AR
ouT 0SIC4aP
CALL DATAIN

Get checKsum high-bvte
Send to OSICA4P
Get response from 0OSICA4P

CMP B 0SI-C4P asree with?
JINZ WACOMD Nor so to waiting for command in
Moy A,C Yes, get checKksum low-bvte

Na e we v Se we Nu

ouT 0sica4r
JMP WACOMD

Send to OSIC4P

FH N RRRR SR FFF AR FFFEE Routine RECETV #3# #3334 B34 23401404 3F 5334344

N Ne v

tRoutine RECEIV receives a string of data bytes from the 0SI-C4P,
rand locates the received data to the address specified by the GSI

RECEIVI CALL SETUP
rStart receiving procedure
NEXINI CALL DATAIN

Moy M:A

CALL CHKSUM

JNZ NEXIN

JMP CHECK

Set memory eointer & bvte counter

~e

Receive a dJata byte fFrom ACIA
Store the bryte to specified addr.
End of data?

No, so for next

Yesr 20 to checK error

Ne Mo Se we wu

IR R R HRFE ROt Ine RUN 3353633833 3 35 3 3 3 3 36 35 3 3 36 3 3 3 3 ¥ 3

~s ws v

;Routine RUN transfers execution control to the Program sceecified
by the OSI-C4P. The sepecified prosram is executed as subroutine.
RUN: CALL DATAIN 7 Get startina address hi-bvte
MoV H,A
CALL DATAIN ; Get startina address low-hvrte
Moy LA ; (H,L)=Starting address

;Set up re—entry address for returning from the sepecified pProaram
LXI D,WACOMD 7 Re—entrv is WACOMD
PUSH D 7 WACOMD to Stack

174

8296 E9 125 PCHL 7 Go to execute the seecified proa.
126 H
127 ;

128 PRI IFIFIEHF R R SRR A B RBF Subroutine SETUP ## B #4344 HHH B354 54355
H

130 ;Subroutine SETUP gets Starting address & Pvte—-count from the Q0SI.,
131 rand clears ChecKsum.

132 ¢
8297 CD B682 133 SETUPI CALL DATAIN v Get starting address hi-hvte
828A G7 134 Moy H:,A 7 Set memory Pointer hi-hvte
8298 CD BG8B2Z 135 CALL DATAIN 7 Get startina address low-bvte
B828E GF 136 - MOw L,A r Set memory pointer low—dvte
828F CD BEB2 137 CALL DATAIN 7 Get byte—count hi-hvte
82A2 37 138 Moy D,A v Set bvte counter hi-bvte
82A3 CD BGB2Z 139 CALL DATAIN 7 Get bvte—-count low-hvte
824G SF 140 Mo E/A ; Set byte counter low-hrte
82A7 3E 00 141 MUI A,0
82A8 47 142 Mo 2,A 7 Clear checKsum hi-hvte
B2RA 4F 143 Mow C:A 7 Clear checKsum low-bvte
82A8 C9 145 RET
146 7
147 P HRHHFFF YRR RRHE Subroutine CHKSUM S HEHJHFHFHHFHSHFJH S XT3
148
149 ;Subroutine CHKSUM accumulates ChecKsum, increments Memorvy Pointer
150 jand decrements Byte Counter.
151 7
824C 81 152 CHKSUM: ADD c ; Add data to checKsum low-bvyte
B82AD 4F 153 Moy C,A
82AE 78 154 Mow A,B
82AF CE 0O 155 ACI 0 7 Proragate CY to checKsum hi-bvte
8281 2 156 INX H ;7 Point to next location
8282 1R 157 DCX D 7 Decrement byte counter by 1
82B3 7A 158 Moy A,D
824 B3 159 ORA E 7 Set or reset Z flas
82BS C9 160 RET
161 H
162 TR HHFFFER R FFHFARREF Syubroutine DATATIN 3534333634 3 3636 3 3 3 3 3 % 33 4 3 3% 3# 33
163
164 ;Subroutine DATAIN checKs the status of RDRF bit, and loads the
165 ‘received bvyte to Accumulator.
166 7
8286 DE B8E 167 DATAIN: IN STATUS v+ Load ACIA Status Resister
82B8 EG 01 168 ANI MSKRRF v Is a data received?
82BA CA BEBZ 169 Jz DATAIN 7 No, Keep trvins
82BD DB 8F 170 IN 0SIC4P 7 Yes, get it
B82BF C9 171 RET
172
173 PHBERHF I HEFH RN AAFEFE Subroutine EMPTY 838353 30383 36 3 36 338 35 3 36 56 3¢ 3 34 3 3 3 %%
174
175 7Subroutine EMPTY checKs the status of TDRE bit until TDRE is set.,
176 jwhich means ACIA is readv to transmit another bvte.
177 ¢
82C0 DB BE 178 EMPTY: IN STATUS ¢+ Lead ACIA Status Reasaister
82C2 EG 02 179 ANI MSKTRE 7 Is Transmit Data Resgister busv?
82C4 CA C0O8B2 180 Jz EMPTY v Yes, Keep checKinga
82C7 CS 181 . RET 7 No
182
183
184 j-—---———mmmmm Command Table --—-—-———~-—-————-c—e——————=
185 ¢
82C8 4F 186 TABLE: DB ‘a0’ ¢ TRANSMIT command bvte
82Cce 5882 187 DW TRANSM v TRANSM entry address
82Ce 49 188 DB ‘T’ v RECEIVE command bvte
82CC 7A82 189 DW RECEIV 7 RECEIV entry address

B82CE 52 190 DB ‘R’ RUN command bvrte

82CF
82D1

82D2

SYMBOL

BEGIN

MSKTRE
WACOMD

CHECK

CHXSUM

OBJECT

220
8230
8240
8250
8280
8270
8280
8290
8240
8280
82C0
82D0

Lo

D3
0a
SF
8F
28
77
82
BB
(a]0)
ksl
82

8A8
45
080

TARL

8227
002
8239
825A
8ZAC

2

0

e

DB
23
SF
AC
39
AC
11
37
i2
ES
08

191
192
193
194

RESET
STATUS
NEXT
RECEIY
DATAIN

3¢ EB
cA 4fF
23 7€

82 79
82 C2
32 82
CD 26
74 B3
02 CA
0o

0057
008E
8241
8274
8z88

cz
0s
ER
ez
D3 8F
7D 82
DS ES
82 SF
C9 D8
co 8z

NN W
COWMmNMNO

PROGRM
CONTRL

FO
NE

TEM

7

31
22

=L

cA

-

CD
c3
C3

3€E
aE

co

DW
DB
DW
END

UND
XIN
PTY

8
c2
82
39
cD
co
39
5A
BG
00
EG
aF

RUN

£
Q8H

0015
O08E
824F
827D
82C0

g A
20 3E
CD BS
82 23
87 82
52 78
82 CD
82 CD
82 67
a7 4F
01 CA
58 82

MSKCTS
0sICaP
TRANSH
RUN

TABLE

=)
37
az

-~
<

cD
D3
87
26
cD
cs
86
49

[

-

21
€3
co
gr
gz
82
85
81
82
74

D
8E
cs
a1
8z
cD
cD
57
32
4F
bl
82

0008
Q08F
8258
828A
82C8

E
3E
82
=)ed
7€
36
26
CD
GF
78
aF
S2

~a wa e

23D =
[l% |

RUN entry address
RESET command bvte
Monitor RST 1 routine

MSKRRF
NOTYET
NEXQUT
SETUP

0001
8232
8258
8297

175

entrvy addr.

CONGOU AWM -

20

SEOQO=
00acs=
0oges=
FCOO=
FCOO=
0o08=
0001=
0002=
FCO1l=

SEQO

SEOO
SEO2

SEOS

SEO8
SEOA
SEQD

SE12
SE1S
SE18
SE1A
SE1D
SEZ0
SE23
SEZS

APPENDIX C - OSI-C4PMF DATA COMMUNICATION PROGRAM

A0O1
20625E

208AS5E

B198
20DOSE
20A15E

DOFG

20CSSE
CDE35E
DooC
8DO1FC
20C55E
CDEZ5E
D007
60

3t 5% 3t 3 3t 3 36 3 3 36 36 3 3 3 3 3 363 3 36 3 34 3E I 3E 3 3 3 3 3 3 W I3 SR W RSN

v 0SI-C4P DATA COMMUNICATION PROGRAM

7This B502 assembly lansauase pProaram is loaded from
rdisK whenever the Extended Monitor written in 3ASIC
ris executed. It occuries memorv from SEOO throusn
y5EE9 and uses pase zero locations 9B & 9C. It is
rcomeosed of four mador subroutines called by the
rPBASIC routine LINK of the Extended Monitor Prosram
rto implement the corresponding data communication
;command with the SDX-85 svstem.

36 36 3¢ 36 36 36 36 3 36 3 3 56 3 3 3 38 3 3F S I 3F 3 3 3 38 36 3 3 38 34 36 % 3 56 3F 36 3 3 333X SRS

Defiritions:

Ne Se va v owa

START = $5EO0O Progaram startina location
MPHI = $9C Local memory Pointr hi-Hvt
MPLO = 498 Local memory Pointr lo-bdvt

STATUS = $FCOO Status Resister of ACIA
CONTRL = $FCOO0 Control Reaister of ACIA
MSKCTS = 7%Z00001000 Pattern for testina CTS
MSKRRF = Z00000001 Pattern for testina RDRF
MSKTRE = 700000010 Pattern for testins TDRE

SDK8S = $FCO1 ACIA Trans/Receiv Reaister

= START

FRFaHRHFFRERFHE Sudbroutine TRANSM 338335 36 38 36 3 36 3 36 36 3¢ %34 3¢

~e ws we v

sTRANSM is called by BASIC to implement SEND comm-—
rand of Extened Monitor. It orders the SDK-35 to
renter the receivina mode, and transmits the data
rblock specified by BASIC to the SDK-8S5.

’

LDY #301 Y points RECEIVE command

JSR BEGIN Return w/ SDX-85 entered
H receiving mode

JSR SETUP Return w/ SDK-85 readr to
H accert data bvtes, & Y=0
NEXOUT LDA (MPLO).Y Get a bvte

JSR DATAO Transmit the bvrte

JSR CHKSUM Add CHECKSUM, inc eointer,
H dec bryte—-count

BNE NEXOUT Data end?/ Nor g0 for next

/ Yes:. check CHECKSUM

The followina procedures are shared by TRANSM and
RECEIV. It compares SDK-8S5 checksum to OSI check—
sum, and senerates status code to notify BASIC.

e Ne NE NE we N

CHECK JSR DATAIN Get SDK-85 checKsum hi-by
CMP CHKHI Aaree w/ 0OSI‘'s?
BNE ERRHI No
STA SDKB8S Yes: request checksum lo
JSR DATAIN Get SDK-85 checksum lo-by
CMP CHKLO Aaree w/ 0SI‘s?
BNE ERRLO No .
RTS Yes, return tao PASIC

176

100

102
103
104
105
106
107
108
109
110

121

130

SR RS R3]
mminmm

WMNMNMNM

~ MO oo

SE32
SE34

SE37

SE3A
SE3D
SE3F

SE42
SE44

SE47
SE49

SE4C
SE4E
SES1
SES4
SESS
SESSB
SESB

SESC
SESE
SEGI

ADE3SE
8DO1FC
4903
8DE4SE
GO

ADQO
20625

20BASE

20CS5€E
g19e
20A15E

DOFE
4ci2sc

A0OZ2
20B25E

A0S
B9DDSE
8DO1FC
88
BYDDSE
20DOSE
60

A0O3
20B25E
60

177

ERRHI LDA CHKHI Wrona checKsum hi-bvte
STA SDK8S No need to send lo-bvte
ERRLO LDA #3303 Transmission error messase
STA MSGC For informins BASIC
RTS

HIH AW RRFH% Syubroutine RECEIY #2834 35#383 #4333 343 %3¢

RECEIY is called by BASIC to implement ZET command
of Extended Monitor. It orders the SDK-85 to en-
ter the transmission mode, and receiuves the data
blocKk specified by BASIC from SDXK-85 to the corre-—
seonding simulated memory locations in O0SI-C4P.

Ne NE NE NE NE NE NE Ne Ne v

LDY #$00 Y Points TRANSMIT command

JSR BEGIN Return w/ SDK-85 entered
H TRANSMISSION mode

JSR SETUP Return w/ SDK-85 ready to
H send Jata brvtes, & ¥Y=0
NEXIN JSR DATAIN Get a brvyte from SDK-8S

STA (MPLQ) .Y Allocate the bvte

JSR CHKSUM Add checKsum, Inc Pointer,
H Dec byte-count

BNE NEXIN Data end?/ Nor 8o for next

JMP CHECK Yes, a0 to check CHECKSUM

AR EFFRF#EE Suubroutine RUN #3334 0 #5445 443

RUN is called by BASIC to imeplement RUN commanrd of
Extended Monitor. It orders the SDK-85 to execute
a user specified 8085 proaram.

IR IR IR

LDY #3%02 Y points RUN command
JSR BEGIN Return w/ SDK-85 read
H to accept address
H LDY #4 Y points to STAHI
LDY #4 Y points to STAHI
LDA BYCLO-1,Y Get address hi-hvte
STA SDK8S Send to SDK-85
DEY Y points to STALO
LDA BYCLO-1.,Y Get address lo-bvte
JSR DATAO Send to SDK-85
RTS Return to BASIC

FRFAHIFHFFFRFERF Subrotine RESET #3333 3 36303458 3 4 3 4 34 3

RESET is called by BASIC to implement RESET com-—
mand of the Extended Monitor. It orders the SDX-
B85 to enter the Svstem Monitor.

NE N NE Na Ne e ws owe

LDY #%03 ¥ points RESET command
JSR BEGIN Return w/ SDK-B85 reset
- RTS Return to BASIC

FEBERFARRRREFEE Subroutine BEGIN 3#38338 333 338 34 4 3 3¢ 34 3

~e we we we

BEGIN is called to send the command bvte Pointed
rby the callina subroutine to SDK-85. If SDK-85
rreturns a wrong echo, execution is return to the
rBASIC Program.

.
2

131
132
133
134
135
136
137

138 S
139 5

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

160

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
i88
189
190
191
192
193
194
195

SE79
SE7C
SETF
SEB1
5E33
SEBG
SEB9

SEBA
Se8C
SEBF
SE92
SES3
5ESS
SESS8
SESA
SESD
SESF
SEAQ

SEAL
SEAZ
SEAS
SEAB
SEAA
SEAD
SEAF
SEB1
SEB3

SEBG
SEE8
SEBB
SEBE
SEC1
SEC4

ADOOFC
2508
FO0A
A0
8DE4SE

E BA

E8

ES

9A

50
28ESSE
8DO1FC
Z0CSSE
DIESSE
F008
A902
8DEA4SE
4CBESE
G50

A004
B9DDSE
20D0OSE
88
DOF?7
ADDDSE
85982
ADDDSE
859C
D8

GO

18
6DEZ35E
8DEZSE
9003
EEE3SE
EG98B
Dooz2
EBSC
CCDESE

D003
CEDFSE
CEDESE
ADDFSE
ODDESE
60

7Check

BEGIN

RETURN

- READY

RIGHT

w8 wa v we

178

if SDK-85 readvy to accerpt command

LDA STATUS Get ACIA STATUS Register
AND MSKCTS ChecKk CTS

BEQ@ READY SDK-85 readv?/ Yes

LDA #1 No, prepare Err Message
STA MSG For informing BASIC

TSX

INX

INX

TXS Point return to BASIC
RTS Return to BASIC

LDA CMDTB.,Y Get command bvte

STA SDKS8S Send to SDK-85

JSR DATAIN Get echo from SDK-35
CMP CMDTB.,Y Risht command?

BEQ RIGHT Yes, 80 to RIGHT

LDa #2 No, prerare Err Message
STA MSG For informing BASIC

JMP RETURN Prepare return BASIC
RTS Error-free return

FEFHARRRRREFFFEE Subroutine SETUP #5338 %3838 3838383234543

rSETUP sends the Startina address & Brvte-count to

rSDK-85
;Image.

. It then loads the Memory Pointer with it
It returns to the callina mador subroutin

rwith ChecKsum byte & DECIMAL bit cleared.

7

SETUP
NEXT

CHKSUM
inter.,

() e ~e wo wo we wa wu

HKSUM

MPBYT

THEN

s

NODEC

-

LDY #4 Set Y as counter/eointer
LDA BYCLO-1,Y

JSR DATAO Send to SDK-835

DEY

BNE NEXT More to send?/ Yes, next
LDa IMLO

STA MPLO

LDA IMHI

STA MPHI Memory Pointer in Pase O
CLD Clear DECIMAL bit

RTS

#HH e R#* Subroutine CTHKSUM 3363363838 363 3¢ % 3 3 3¢ 3¢ #

accumulates checKksum, increments Memorvy -

decrements Brte—count

cLC Clear Carrv

ADC CHKLO Accumulate data bvte

STA CHKLO

BCC MPBYT Test if Carry clear

INC CHKHI Yes. propagate Carrvy

INC MPLO No, inc Mem Ptr lo-bvte

BNE THEN Test if need inc hi-bvte

INC MPHI Yes

CPY BYCLO Test if need decremen
both BYCLO & BYCHI brtes

BNE NODEC Nor aonly lo-bvte

DEC BYCHI Yes

DEC BYCLO

LDA BYCHI Prepare for testina end

ORA PBYCLO Set/reset zero bit

RTS

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

Lo 2o 2]
Ll

223
224
225
226
227
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

SECS
SEC8
SECA
SECC
SECF

SEDO
SED1
SED4
SEDG
SEDS8
SEDB
SEDC

SEDD
SEDE
SEDF
SEEO
SEEL
SEE2
SEE3
SEE4
SEES

SEEB
SEE?7
SEE8
SEE9

ADOOFC
2901
FOF9
ADO1IFC
50

AA
ADOOFC
2802
FOF9
BEO1FC
8A

GO

aF
49
52
as

PHEEHFEHRFEHREE® Subroutine DATAIN #3335 83436 3 3 3834 3+ 3 3%

rGets a data brte from ACIA and returns data in A.

DATAIN LDA STATUS ACIA Status register in
AND #MSKRRF MasKk RDRF bit
BEQ DATAIN Data in 7/ No, try again
LDA SDK85 Yes, get data to A
RTS

St RHHFRFF Subroutine DATAQD 33433 3 3 34 34 3 3% 3 3+ 3 % 3+ 3

Sends the data byte in A to ACIA for transmission

NE Ns Ne ve we we

DATAO TAX Save data hvte to X
TDRE LDA STATUS Status register to A
AND #MSKTRE MasK TDRE bit

BEQ TDRE Busv?/ Yes, wait

STX SDK85 No, ready to senddata
TAA data back to A

RTS

FHA#HHFRERUIE Roeserued Memory Bytes 3#33:%3%34% 5504434334

This area is initialized by PASIC proaram

N8 e s N wa N

IMLO # = # Imase of MPLO

IMHI 3% = #+1 Image of MPHI
BYCLO # = 3#+] Brte-count lo-bvte
BYCHI # = 3#+1 Bvte-count hi-bvte
STALO # = #+1 SDK-85 start addr lo-bvte
STAHI #* = *+1 SDK-83 start addr hi-bvte
CHKLO # = 3#+1 ChecKsum lo-bvyte
CHKHI # = #+1 Checksum hi-bvte

MSG # = *+1 " Messase bvyte

N FHRFFFHRANE Command Table 3533833838383 3836 3 3% 3 3 345+ 3¢

Ne v we we

CMDTE .BYTE ‘0O TRANSMIT command bvte

.BYTE ‘T RECEIVE command bvte
.BYTE 'R’ RUN command bvte
.BYTE 'E’ RESET command byrte

’
7 353 3 3 36 38 3 36 34 JE 34 36 36 36 36 36 34 36 6 3 3 36 3 I 38 36 336 30 3 3 I 3 3 363 4 336 3 36 3 S HH3
END

179

APPENDIX D - ENHANCEMENT SYSTEM EXECUTIVE PROGRAM

24 REM SETUP INFLAG & OUFLAG FROM DEFAUL

25 X=PEEK(10950): POKE 8993,X! POKE 8394.X

27 REM CHECK FOR EOOO MEMORY

28 FOR SC=1TO30IPRINTINEAT

29 IFPEEK(57088)=223 THEN POKE9794.37

30 PRINT“SDK-85 EXTENDED MONITOR & CROSS ASSEMPLER SYSTEM EXECUTIVE"
40 PRINTIPRINT" JULY 25, 1982 RELEASE"! PRINT

48 POKE 64512.,2: REM SET UP 300 BPAUD FOR DECWRITER PRINTER
S0 GOTO 100 .

60 PRINTIPRINT: INPUT "SELECT FUNCTION (1-4)";A

70 ON A GOTO 500,800,300,10000

100 PRINTIPRINTIPRINT “FUNCTIONS AVAILASLEI"IPRINTIPRINT

110 PRINT" (1) EXTENDED MONITOR - INTERCHANGE., MODIFY, & FILE DATA"
115 PRINT

120 PRINT" (2) EDITOR - EDIT THE B8080/8085 SOURCE LANGUAGE FILES"
125 PRINT

130 PRINT" (3) ASMBS - ASSEMBLE THE 8080/808S SOURCE LANGUAGZ FILE"
135 PRINT

140 PRINT" (4) FREE - FREE SYSTEM FOR USER PROGRAMMING"

150 GOTO GO

160 REM

300 REM ASMBS - ASSEMBLER

310 REM

330 REM CHANGES LOWER WORKING LIMIT TO $S3FF

340 PCKE 133.83

360 GOsue 2000

370 RUN"ASMB5"

380 REM

500 REM EXTENDED MONITOR

510 REM

530 REM CHANGES LOWER WORKING LIMIT TO $5SFF

550 POKE 133,85

570 DISK!"CALL SG00=36G,1"I REM 2RING ASSEMBLED DATA TO BUFFER
575 DISK!"CALL S5EO00=38,1"! REM 6502 PROG.IN

580 GOsue 2000

590 RUN"OSI-83"

600 REM

800 REM EDIT

810 REM

860 REM CHANGES LOWER WORKING LIMIT TO $57FF

870 POKXE 133,87

880 GOSUEB 2000

890 RUN"EDIT"

1990 REM

2000 REM ENABLE "REDO FROM START"

201
202

O POKE 2893,28:P0KE 2894,11
0 REM DISABLE "," & "“I"

2030 POKE 2972,13: POKE 2976,13

205

0 RETURN

3000 REM
10000 REM FREE THE SYSTEM FOR USER PROGRAMMING

100
100
100
100

18 REM
20 REM ENABLE "," & ":I"
25 POKE 2972,58: POKE 297G,44

26 REM FULL WORKING SPACE

10028 POKE 133,85

100
100
100
100
100
101
101
101

30 REM REPLACE "“NEW" AND “LIST"

40 POKE 741,76 . POKE 750.78

GO REM DISABLE "“REDO FROM START"

70 POKE 2B893,55:POKE 2894.8

90 REM ENABLE CONTROL-C

00 POKE 2073,173

10 PRINTIPRINT "SYSTEM FREE": PRINTIPRINT"11645 BYTES AVAILASLE"
20 NEW: END :

180

181

APPENDIX E - SDK-85 EXTENDED MONITOR PROGRAM

P
=]
R
B
R

[€s JNe s IR oS B

a5
90

100
110
502
504
S0S
S10
S15
S20
525
530
sS40
S50
555
S60
570
580
590
595
600
G610
620
530
635

RINTIPRINTIPRINT " ### SDK-8S5 EXTENDED MONITOR ###"
RINTIPRINT"“Current data in buffer are released by the Assembler"
EM Diseplay & define pPseudo memory ranse and command arrar
S=22016:G0SU2 30S00:GASUR 40000

EM Recouver User Directorvy

DISK!"CALL SF00=39,2"

A=24320: FOR X=1 TO S: T%=""

N=PEEK(A) {A=A+11IF N>7 GOTO 100

FOR Y=1 TO NIT$=T$+CHRS(PEEXK(A))IA=Q+1 INEXT Y
F$(X)=T$:P () =PEEK(A) IA=A+1 INEXTX

GOTO S02: REM To start command recoanition

GCTO B00: REM DUMP Routine entrvy

GOTO 650 REM GET Routine entrvy

GOTO 700 REM RUN Routine antry

GOTO 750: REM RESET Routine entrv

GOTO B0OO: REM EXAM Rcutine entrvy

GOTO 1600 REM SURSTITUTE Routine entrv

GOTO 2400 REM INSERT Routine entrvy

GOTO 32007 REM ERASE Routine entry

GOTO 4000 REM SAVE Routine entry

GOTO 4500 REM LOAD Routine entrvy

GOTO 48007 REM PRINT Routine entry

GOTO SGO0OI REM MOVE Routine entry

GOTO G400 REM SEE/SET Routine entrv

GOTO 1000 REM CREATE Routine entrvy

GOTO 35007 REM CHAIN Routine entrvy

GOTO 2000 REM QUIT Routine entry

REM

REM For wuninitialized Directorvy

FOR Y=X TO SIF$(Y)="?7?"INEXT
REM

REM #x##% Command Recosnition
PRINT

INPUT“Command“ A%

N=LEN(A%$) i T=ASC(LEFT$(A$,1))IIF T<B3 OR T>30 GOTO 30000
REM Scan and isolate the leftmost 2 command characters
FCR K=1 TO N

T=4SC(MID$(A$,X,1))

IF T>»G4 AND T<21 THEN NEXT
CM$=LEFTS$(LEFTH(A$,K-1),2)

J=N=-(K-1) :CHK=0

REM ChecKk with Command Arrav entries

FOR X=1 TO 18

IF CM$<>CT$(X) THEN NEXT

CN X GO7O0 20,22,24.25,28,30,32,34,36,37,38,40,42,44,45,46
GOTO 30000 REM Syntax error

REM

REM *###% DUMP Command Routine

GOSUP 10000 REM Call PARSE

ON CHK GOTO 30000,30050,30100,30300

LO=0: GOTO 11500 REM To LINK

REM

REM ####% GET Command Routine

GOSuUB 100007 REM Call PARSE

ON CHK GOTO 30000,30050,30100,30300

REM Extend the end of simulatins ranse if necessary
IF EN>»DN THEN DN=ENID=DNIF=2:GOSUB 20600

LO=5S0: GOTO 11500 REM To LINK

REM

REM ##%#% RUN Command Routine

REM Use default value if no sepecification

IF J=0 THEN NS=ST:GOTO 720 .

GOSUB 20100 REM Use specification

ON CHK GOTO 30000,30050,30100

718

720

730

750

750

770

800

810

815

820

8z2sS

828

830

840

850

260

1000
1010
1030
1040
1050
1060
1070
1075
1080
1090
1198
1199
1200
1210
12290
1230
16800
1305
1610
1520
1828
1630
1G3S
1640
1650
1660
1670
1690
1700
1710
2000
200S
2010
2020
2025
2030
2040
2050
2400
240S
2410
2420
2425
2430
2440
2450
24G0

IF J=(K+3)<{>0 GOTO 230000
LO=71: GOTO 11500 REM To LINK
REM
REM ###3#% RESET Command Routine
£0=92! GOTO 11640: REM To LINX with only command
RE]
REM #uxx3x EXAM Command Routine
DP=1. REM Set flas for screen diselay
GOSUR 10000 REM Call PARSE
ON CHK GOTO 30000,30050,30100,30300
DS=NS! REM NS will be redefined
G50SUR 70007 REM Call DISPLAY
PRINTIINPUT"Continue next 255 bvtes (Y/N)":A$
IF LEFT$(A%,1)<>"Y" GOTO 504
BC=25G6:GOT0 828
REM
REM ##3#%% CREATE Command Routine
REM Displav the current Directorvy
GOSUB 1200IINPUT"Are vou sure (Y/N)":B8%
IF LEFT$(2%,1)="N" GOTO 5S04
PRINTIINPUT"Enter new file name" 'PIB=LEFTS$(P$,7)
PRINT:INPUT"At which storase locaticn (1-5)":A4%
T=VAL(A$)IIF T=0 OR T>»5 GOT3 10E0
REM Define filename to Directory & display uepdated Directorv
F$(T)=R$:G0SUPL 1200:INPUT"Create another file (Y/N)";B3:GC7C 1040
REM
REM s###%% DISPDIR Subroutine

REM Display the current Directorvy on screen

PRINT:PRINT" —— DIRECTORY —-—-":IPRINT:PRINT" LOC. FILE NAME"IPRINT
FOR X=1 TO SIPRINT X:@" "IFS (X)) INEXT

PRINTIRETURN

REM

REM ####% SUBRSTITUTE Command Routine

IF J=0 GOTJ 3005S0: REM No specifications

P=21 GOSUB 20200: ON CHK GOTO 20000,30050,30100,20300
IF NS-ST>2043 GOTO 30300

REM Substitutian

POKE SA,D! SA=SA+1. IF NS<DN GOTC 1650

DN=NS: D=DN: =2 GOSuUB 206C0. REM Extend the simulatine ransae
IF NS-ST=2043 THEN PRINTIPRINT"“The end of buffer": GOTO 504
NS=NS+1. D=NS: GOSU2 11200 REM For next Prampt messase
PRINTIPRINT"Substitute "“;HEX$:" with";

INPUT A% IF LEFT$(R%,1)="N" GOTO S04

J=LEN(A%$): GOSUB 20700. ON CHK CGCTO 30000,30050,30100
GOTO 1630

REM

REM #####% QUIT Command Routine

REM Save the current Directory to disK befaore exitins
A=24320IFOR X=1 TO S

N=LEN(F$(X)) IPOKE A,NIA=A+1

FOR Y=1 TO NIPOKE A,ASC(MIDS(F$(X),Y,1))IA=A+1INEXT Y
POKE A,P(X)IA=A+1 INEXTX

DISK!“SAVE 39,2=5F00/1" IRUN"BEXEC*"

REM

REM ##x#3#% INSERT Command Routine

IF J=0 GOTO 30050

P=17 GOSU2 20200 ON CHK GOTO 30000,30050,30100,30300
IF DN+D-ST>2043 OR NS>DN GOTO 30300

REM Mowve blocK down

BC=(DN-NS)+1:. SA=SA+(DN-NS): F=1. GOSUB 20500

REM Extend the end of simulatins ranse

DN=DN+D: D=DNI F=2. GOSue 20600 GOTO 11690

REM

182

183

3200 REM ####%% ERASE Command Routine

3208 IF J=0 GOTO 20050

3210 P=1 GOSUR 20200: ON CHK GOTO 30000,30050,30100,30300
3215 IF NS>DN GOTO 30300

3220 BC=(DN-NS-D)+1: IF BC<O GOTO 30000

3225 REM Move data block up For deletion

3230 SA=SA+D. F=-1: D=-D: GOSUB 20500: GOTO 2450

3240 REM

3500 REM ####% CHAIN Command Routine

3510 GOSUB 80O00IIF X>3 GOTO 30400

3515 REM Calculate the Pages of the file in buffer

3520 GASUR 150007 IF P+P(X)>8 GOTO 30300

3525 REM Load the seecified disk File

3530 T$=RICHTS(STR$(XN+30),2) . SA=RS+4+(DN-ST)+1. D=SAl GOSUB 11200
3340 DISK!"CA "+HEX$+"="+T$+",1"] BS=S4I F=0: GOSUS 2006007 V=D
3545 REM Extend the simulating ranse to include the disK File
3350 F=2 GOSUR 20000 BS=22016I BC=D-U+1! D=DN+2C! F=2! GASU2 20500
3555 REM Delete the ransing hytes of the loaded disk fFile
3960 D=-4. SA=SA+4! F=-1: GOSUR 20500 GOSUR 30S00: GOTO 11850
3570 REM

4000 REM ###x% SAVE Command Routine

4020 GOSUB BOOOI IF X»S5 GOTO 30400

4030 GOSUBLISO00ITH=RIGHTS(STR$ (X)+30),2) IP(X)=PIP$=RIGHTS(STRS(P) 1)
4040 DISK!"SA “+T$+",1=5S600/"+P$:G07T0 11620

4050 REM

4300 REM ##x%+ | OAD Command Routine

4320 GOSUP BOOCOIIF X>5 CGOTO 30400

45330 T$=RIGHTS$(STR$(X+30),2):DISK!"CA SBOO="+Ts+", 1"

4540 GOSUR 30500:GOTO 11690

4550 REM

4800 REM #####% PRINT Command Routine

4810 DP=2IPRINTIINPUT"Do vou need any title (Y/N)":B%

4820 IF LEFT$(2%,1)="N" GOTO 31S

4830 PRINTIINPUT"Title" :B3IPRINT#1,0¢IPRINT#1:G07T0813

4840 REM

S500 REM ####x MOUE Command Routine

5610 IF J=0 GOTO 30059

SE620 GOSUB 20100:I0N CHK GOTO 30000,30050,30100

5630 IF J-(K+3)=0 GOTO 30050

5640 MS=NS:J=J-(X+3)P=4.G0SUR 20200

S650 ON CHK GATO 30000,30050,30100,30300

5660 EN=DIBC=(EN-NS)+1ID=MS-NS

5570 IF BC+(MS-ST)>2044 DR EN>DN OR NS<{ST GOTO 302300

S575 REM Cneck move upward or downward

5680 IF MS<NS THEN F=-1:GOSUR 20S00:G0OTQ S700

5680 F=1:SA=S54+BC-1:GASUB 20500:GOT0 5720

5695 REM For upward movement only

S700 IF EN<>»DN GOTO 11690: REM No neesd to reduce the end

3705 REM Chanse the end of simulatina ranage

3710 DN=MS+BC-1(F=2:D=DN.:GOSUR 20500:G0T0 11690

3715 REM For downward movement only

5720 IF MS+BC-1<DN GOTO 11690

3730 GOTO 5710

5740 REM

G400 REM ###%#% SEE/SET Command Routine

5410 GOSUB 30S00IPRINT:NS=STIEN=DN

G420 INPUT"Change startina address":;A$

6430 PRINTIIF LEFT$(A%$,1)="N" GOTO 6480

6440 GOSUZ BGOOION CHK GOTO 30000,30050,30100

6450 NS=D

G480 INPUT"Chanae endina address" A$

6480 IF LEFT$(A%,1)="N" GOTO 6520

53500 GOSUB G6BNOION CHK GOTO 30000,30050,30100

6310 EN=D

G320 IF EN-NS>2043 0OR NS> >EN GOTO 30300

G330 ST=NS:D=ST:F=0:G0SUB 20B800:DN=ENID=DNIF=2:G0SU2 20600:GOTO 11ES0
6550 REM

GE00 J=LEN(A%$):IP=4.:G0SUB Z0700:RETURN

G610
7000
7080
7090
7120
7130
7140
7130
71SS
7160
7170
7180
7180
7200
7220
7240
7260
7270
7280
7310
7320
7340
7360
7380
7390
7410
7420
7430
7500
7530
7540
8000
8005
5008
8010
8015
8018
8020
8025
8030
8040
10000
10005
100085
10010
10020
10040
10060
10070
10080
10100
10110
10130
10140
10150
10150
10180
10500
10502
10510
10520
10530
10540
10SS0
10550
10570

REM
REM ##xx%# DISPLAY Subroutine
NS=INT(DS/16)#16:BK=DS-NS:T=16-BK

PRINT

IF DP=2 GOTO 7150

PRINT™ o 1 2 3 4 5 6 7 8 9 A B
GOTO 7160

PRINT#L," o 1 2 3 4 S 6 7 8 9 A
REM For the first row onlvy

2Kg=" “ID=NSIGOSUB 11200:DSP%=HEX$

REM Fill blanKs

FOR X=1 70 T

IF BX=0 GOTO 7220
DSP$=DSP$+PK$IBK=8BK-1IGOTD 7190

D=PEEX(SA) IGOSUR 11200:DSP$=DSP%$+" "+RIGHTS(HEX$,2)

DS=DS+!ISA=SA+1BC=BC-1IIF BC=0 GOTO 7270
NEXT X

GOSUB 7S500INS=NS+1GIIF BC=0 THEN RETURN

REM For the rest of rows

D=NSIGOSUR 1i200:DSP$=HEXS

FOR X=1 TO 18

D=PEEK(SA):GOSUB 11200:DSP$=DSP3+" "+RIGHTH(HEX
DS=DS+1:SA=SA+1BC=BC-1!IF BC=0 GG70 7380
NEXT X

GOSUS 7S5S00IIF BC=0 THEN RETURN

NS=NS+18

GOTO 7310

REM

IF DP=1 THEN PRINT DSP$IRETURN
PRINT#1,DSP$.RETURN

REM ’

REM ####% CGETFILE Subroutine

IF J=0 GOTO 8018: REM No filename seecified
REM Get filename specification
B$=RIGHT$(A%$,J)IFOR X=1 TO JIIF MID$(B8%,X,1)I>"
NEXT

X=6IRETURN

B$=RIGHT$(B$,J—(¥-1))

REM ChecK with Directory

FOR X=1 TO SIIF B${»F$(X) THEN NEXT

RETURN

REM ###3##% PARSE Subroutine

REM Parse the address specification field to return either
REM specified value(s) or the dJefault value(s)

IF J<>0 GOTO 10040
SA=BS+4INS=STIRC=(DN-ST)+1IEN=DNIGOTO 10150
GOSUB 20100 IF CHK<>»>0 THEN RETURN

IF J=-(K+3)<{>0 GOTO 10080
9C=(DN-NS)+1EN=DNIGOTO 10130

J=J-(K+3):11=4.GOSUB 10S00:IF CHK<>0 THEN RETURN

IF J-(K+3)<>0 THEN CHK=1IRETURN
HEX$=DG$:G0SUS 11000EN=D:BC=(D-NS)+1
SA=BS+4+NS-ST

IF EN-ST>2043 OR NS-ST<0 THEN CHK=4:RETURN
IF B8C<0 THEN CHK=1:RETURN

RETURN

REM

REM ##### GETDG Subroutine

REM Get I disits from specification field
B$=RIGHT$(A$,J)

FOR K=1 TO J

T=ASC(MID$(B$,K,1))

IF T>»47 AND T<S8 GOTO 10580

IF T»64 AND T<71 GOTO 10580 .
NEXT K

CHK=1{RETURN

r o

GOTO 8020

-

5

184

10580
10520
10600
10610
10620
10630
10640
10650
11000
11005
11010
11020
11030
110580
11070
11080
11090
11100
i1110
11200
11208
11210
11220
11230
11250
11270
11280
11280
11300
11310
11320
11330
11340
11370
11280
11380
11500
11508
11510
11540
11550
11580
11570
11620
11630
11635
11640
11650
11660
11670
11680
11630
11700
113800
11305
11810
11820
11830
11840
15000
15010
15020
15050

DG$=MID$(B%,X,I)IT=LEN(DG$) I IF T{I THEN CHK=2IRETURN

FOR N=1 TO I

T=ASC(MIDS(DGS,N,1))
IF T<48 OR T>70 THEN CHK=3IRETURN
IF T>37 AND T«<GBS THEN CHX=3IRETURN

NEXT N
RETURN
REM

REM #st##3% HTOD Subroutine

REM Conver:t
L=LEN(HEX$) :D=0
FOR I=1 TO L

ineut HEX$ to the equivalent

N=L+1-1IT=ASC(MIDS(HEXS,N,1))
S1=D+1G"(I-1)#(T-55):82=D+16"(I-1)*#(T-48)

IF T>G4 THEN D=61
IF T<{G4 THEN D=S2

NEXT I
RETURN
REM

TD(0)=D

FOR I=1 TO 4

REM #3###% DTOH Subroutine
REM Cecnvert the inPput D t

o the eauivalent 4-disit

TD(I)=INT(TD(I-1)/168)ITP(I)=TD(I-1)-TD(I)*15
N=IJIF INT(TD(I))=0 GOTO 11280

NEXT

FOR I=1 TO N

TES(N+1-I)=CHR$(48+TP(I))
IF TP(I)>9 THEN TES(N+1-1)=CHR$(SS5+TP(I))

NEXT
HEX$=""

FOR I=1 TO N

HEX$=HEX$+TES(I) INEXT

IF N=4 THEN RETURN

HEX$="0"+HEX$IN=N+1I1GOTO 11370

REM

REM ##### LINK Routine - A
REM Place the SDK-85 startina address
D=NS:GOSUR 11B00:SH=DHISL=DLIIF LD=71 GOTO 11830
REM Place the bvte-count
D=BCIG0OSUS 11800:POKE 24288,DHIPOKE 24287,DL
REM Place the 0SI local startins address

D=SAIGOSUR 11800IPOKE

POKE 24291,0IP0KE 24292,0:

POKE 24289,SL:POKE

24290,SH

REM Zero MSG bvte and Set
POKE 24293,0:P0OKE 89S5S5,L0:P0KE 8956,94
REM Call the corresponding machine subroutine

POKE G4512,2
CHK=PEEK (24283)

linkagse between 2ASIC & machine

REM

24286,DHIPOKE 24285,DL

Clear CHECKSUM bvtes

decimal outPut

hex

in D

in HEXS$

subs

up machine subroutine entry address

communication error status

ON CHK GOTO 30120,30140,301G0

PRINTIPRINT"Done

REM

GOTO 504

REM ##3##3% SPLIT Subroutine
REM Selit inPut D to two decimal-byte, DH and DL

GOSUB 11200:T$=HEX%
HEX$=LEFT$(T$,2) :GOSUB

1IX=USR(X) IPOKE G4512,2
REM Check

11000IDH=D

HEX$=RIGHT$(T$,2) IG0OSUB 11000IDL=DIRETURN

REM

REM ####% CALCPAGE Subroutine

P=INT(((DN-ST)+3)/256)IF
P=P+1 IRETURN

REM

P#256=(DN-ST)+3 THEN RETURN

MSG

185

20000
20005
20010
20020
20030
20040
20100
20105
20110
20120
20130
20200
20208
20210
20230
20240
20250
20260
20270
20500
20505
20510
20520
203320
20540
20550
20600
20605
206810
20620
20630
20700
20705
20710
20720
20730
20740
20750
29999
30000
30050
30100
30120
30140
30160
30200
30210
30230
30300
30400
30450
30500
30505
30506
30510
30530
30540
30550
30860
40000
40010
40020
40030
40040
40045
40050
40060

186
REM s##3### STEND Subroutine
REM Get simulatins start or end address wvalue in D
D=PEEK(RS+1+F) IGOSUR 11200:SE$=RIGHT$(HEXS,2
D=PEEK(BS+F) :GAOSUL 11200HEX$=SE$+RICHT$(HEX$,2)
GOSUB 11000IRETURN
REM
REM s##### GETNS Subroutine
REM Get the sepecified starting address value in NS
I=4:G0SUB 10S00IIF CHK<>»Q THEN RETURN
HEX$=DG%:G0SU2 11000INS=DIRETURN
REM
REM ####3# SCAN Subroutine
REM Translate specification field with no default oetions
GOSUB 20100:IF CHK<L»0 THEN RETURN
IF NS<{ST THEN CHK=4IRETURN
IF J-(K+3)=0 THEN CHK=2IRETURN
J=J-(K+3) IGOSUR Z070QIIF CHKI>0 THEN RETURN
SA=RS+4+(NS-ST) :RETURN
REM
REM #3##%# UPDN Subroutine
REM Mouwe a blocKk of dJata upward or downward
FOR X=1 TO BC
T=PEEK (SA) IPCKE SA+D.,T
SA=SA-F INEXT
RETURN
REM
REM #¥### CHANGE Subroutine
REM Change simulating start or end boundary to D
GOS8 11800
POKE BS+F,DLIPOKE BS+F+1,DHIRETURN
REM
REM ##### GETDATA Subroutine
REM Get P-digit of data from specification field & return value
I=PIGOSUB 10SO0IIF CHK<{>») THEN RETURN
IF J=(K+(I-1))<>0 THEN CHKR=1:RETURN
IF P=1 THEN D=Y4L (DG$)RETURN
HEX$=DG$:G0SU2 11000IRETURN
REM
REM #3#3#%3% Error Diseplay Procedures
PRINTIPRINT"?Svntax error"iG0T0OS04
PRINTIPRINT"?Lack of data":GGTGS04
PRINTIPRINT"“?Non—-hex error":G0TOS04
PRINTIPRINT"Go to initialize SDK-83"IGAOTO 30200
PRINT:PRINT"Reset & initialize SDK-83"IGOTO 30200
PRINTIPRINT"Transmission error"
PRINT:INPUT"Execute again (Y/N)":8%
IF LEFT$(B%,1)="Y" GOTO 11500
GOTO S04
PRINTIPRINT"?Exeeds limits":GOTOS04
PRINTIPRINT"?Undefined file" :GOTOS04
REM
REM #3#3### SHOW Subroutine
REM Define & display the simulatins range by the 1st 4 bHytes of
REM the buffer contents

F=0:G0SUB 20000:ST=D

PRINTIPRINT"Simulated SDK-85 Memorrv Startina Address — “IHEXS$
F=2:G0SUB 20000:DN=D

PRINT") Endina Address - “;HEXSIRETURN
REM

REM *#%#%## Define Command Arrary Subroutine
DIM CT$(16)

FOR X=1 TO 16

READ CT$(X)

NEXT X

RETURN

DATA "Du","GE","RU","RE","EX","SU","IN","ER"
DATA "“SA","LO","PR","MO","SE","CR","CH","QU"

SR
10

20

30

35

38

38

40

80

80

100
105
110
112
115
120
122
125
130
150
135
160
170
190
195
196
200
208
210
220
222
225
230
232
235
240
242
245
250
255
260
279
275
280
2390
300
305
310
320
330
350
360
500
S10
520
600
GOS
608
G10
615
520
E30
G632
635

187
APPENDIX F - TEXT EDITOR PROGRAM

EM Text File Editor Prosram
REM
PRINTIPRINTIPRINT"-- TEXT FILE EDITOR --"
U=0:G0T040. REM Clear Extended mode (Re-run entry for NEW command)
U=17 REM Set Extended mode (Re-run entrvy for EXTEND command)
REM
REM Definitions
DIMI$(281),1(280) FORN=1TO9!READTSICH(X)=THINEXT
DATQ llIIl ’ CIN" ’ ICFIQ 'Ilcll ’ 'lLII , "P" , "D“ 'QIEII , !IG'I
REM

REM ##xx#% Command Recosnition

I=0:C=0! REM Initialize line-count & dJata count
PRINTIINPUT"Coremand";A$IN=LEN(AS)

REM

REM Test if the leftmost character is a letter
T=QSC(LEFT$(A%$,1)) I IFT{BSCRT >90GOTAZ20000

REM

REM Isolate the leftmost character of the svntax field
FORK=1TON:T=ASC(MID$(A$,K, 1)) I IFTH>B4ANDT{IITHENNEXT
M=l EFTS(LEFT$(A%$,X-1),1)IJ=N-(K-1)IR=0

REM

REM Check with the command arravy
FORX=1TO9IIFM${>CS (X) THENNEKXT

CNXGOTO0200,500,600,800,1000,2000,3000,4000,4500
GOTO20000 REM Syntax error

REM

REM ##%## INPUT Command Routine

PRINT

IFI=280G0TC20300. REM Test if reach maximum line limit
INPUTAS$IN=LEN(AS) IIFVAL(LEFT$(A8%,1))=0G0TO120: REM Mav be cecmmand
REM

REM ShrinK the entered line
K=I+111$(X)=A%.GOSURGOO0IIFR=1GOTOZ0400. REM VYiolate srace limit

REM

REM Fill the line number array
GOSURSOOOIIFI=00RI(X)>I(I)GOTA300. REM No nesf ‘tina
REM .

REM Sortina Procedures — either replacement or insartion

FORY=1TOIIIFI L >I(Y)IGOTO270

REM Replace line Y with the new line
C=C-LEN(IS(Y))-1II(Y)=I(X)IIs(Y)=I%(X)IG0OTO310
IFICO>I(Y)GOTO290)

REM Insert the new line at Y and reposition the rest of lines
T=I(X):T$=I$(X)IA=(I-Y)+1:S=XIE=S:F=—1IGOSUB3S00II(Y)=TII$(YV)=T$
NEXTY

I=1I+1

REM Test if data-count overflowed

C=C+N+1IFC<4096G0T0210

REM AdJjust the file by deleting the higshest—-numbered line
C=C-LEN(I$(I))-11I%(I)=""II=I-1:R=2IIFC>4095G0T0330

GOTO20300: REM To inform the user that file ends

REM

REM ##### NEW Command Routine

PRINTIPRINT"OK" :RUN30: REM Clear all variables

REM

REM ####% FILE Command Routine
PRINTIPRINT"DumpPing..."1A=22528IP=1FORX=1T0!

REM Load the character—-count of that line
N=LEN(I%$(X)):POKEA,N:A=A+1.G0SUR700: REM Test '+~ need 2nd track
REM Load characters of that line
FORY=1TON:T=ASC(MID$(IS$(X),Y,1)) :POKEA,T:A=A+1:GOSUBRT700INEXTY
NEXTX: REM Continue the next line

REM

REM Install the file—end mark

540
64S
550
8GO0
G70
700
701
702
708
710
720
750
751
735
760
770
g00
801
802
804
810
812
8i5
820
2830
840
850
860
00
a01
805
210
920
930
940
1000
1005
1010
1020
1025
1030
1050
1060
2000
2010
2020
3000
3010
3015
3020
3030
3040
30390
3100
3110
3120
3500
3502
33505
3510
3520
4000
4010
4020

POKEAQ, 01 IFP=1THENGAOSUR7SOIGOTOZ0300

REM Stere the current buffer to eraoper fFile track
IFU=0THENDISK ! "SAVE 38,1=5800/8":G0T320300

DISK!"SAVE 30,1=5800/8"IC0OT020500

REM

REM ####x CHKFULL Subroutine

REM Store the buffer to the 1st track of the corresceondin= file
REM /and initialize buffer Pointer if the current buffer Full
IFAC>24376GTHENRETURN: REM Not full vet
GOSURBR7S0OIP=2:1A=22528IRETURN

REM

REM ####% SAVEFIRST Subroutine

REM Filemode flag auides the buffer to he saved to track 37 or 29
IFV=0THENDISK ! "SAVE 37,1=5800/8" {RETURN

DISX!"SAVE 29,1:5800/8"IRETURN

REM
REM ##x#x CALL Subroutine
REM lLoad either tracK 37 or 29 to buffer

IFU=0THENDISK! "CALL 5800=37,1".G370810
DISK!"CALL S800=29,1"
PRINTIPRINT"Recovering...":I=0:C=0iX=1.A=22528
REM
REM Test if the character—-count bvte is the end mark {0)
I$(X)=""IN=PEEK(Q) I IFN=0GOTOZ203500
C=C+N+1:A=A+1GOSURBQOIFORY=1TON
T$=CHR$(PEEK(AN) 1IN0 =I$ () +T$IA=A+1 (GOSURSOQINEXTY
GOSUBS0QOII=1+11X=X+11G0T0320
REM
REM ####% CHKEMPTY Subroutine
REM Load the Znd track of corresponding File 1f necessary
IFAC 245768 THENRETURN

IFU=0THENDICSK ! "CALL $800=38,1"GOTCE30
DIGK!"CALL S5800=30,1"
A=22528IRETURN
REM

REM s####% LIST Command Routine

F=1I REM Set flas for screen display

IFI=0G0T0110. REM Nothins to diselay
IFJ=0THENS=1:E=]1:G07T01050 REM Default to all lines

REM Call STEND to return the epraoper diseplay ranae
0=0:G0SUBBOO0DIONRGOTOZ0O000,20200

GOSULGOO0IGOTOZOS0D

REM

REM s##### PRINT Command Routine’

F=2I1G07T01010. REM Set flaa for printer & Join LIST

REM

REM ###3## DELETE Command Routine

IFI=00RJ=0G0T0110. REM Do nothina when no seecifications
REM Call STEND to return the exact deletina ranse
0=2:G0SUBBO0O0OIONRGOTO20000,20200

REM Prepare for deletion

A=I-EIY=II=I-(E+1-5) IFORX=STOEIN=LEN(I3 (X)) C=C-N-1INEXT
REM Call MOVE for deletion and clear useless lines
F=1:GO0SUB3S00IFORX=I+1TOYIIS(X)=""INEXT

GOTOZ0500

REM

REM s##3#3#3% MOVE Subroutine

REM Move & blocKk of lines upward or Jdownward
IFA=OTHENRETURNI REM A is the count for how manv lines to be move
I(S)=I(E+F) 1 I%$(S)=1%$(E+F)IS=S+FE=E+F1A=4-1.0C070350S5

REM

REM ##x#% EXTEND Command Routine

PRINT.PRINT"OK"IRUN3S: REM Go to clear all variables & enter Extena
REM

188

mode

189

4500 REM ##3#%% QUIT Command Routine

4510 RUN"BEXECH*#": REM Exit Editor

4520 REM

S000 REM ####% PUTID Subroutine

S001 REM 1Isolate the line number & Place it to line wmumber array
SO010 FORK=1TONIT=ASC(MIDS(I$(X),K,1))IIFT>47ANDT{SBTHINNEKT
5040 I(X)=VAL(LEFTS(IS(X),K-1))IRETURN

S0S5S0 REM

5999 REM ##¥s#+ DISPLAY Subroutine

6000 PRINTIFORX=STCOE:GOSURIBO0:IFF=1THENPRINTT$:GOTOG020
BO10 PRINT#1,T$

5020 NEXT

B80S0 RETURN

G0GO REM

7000 REM ##%### GETPOSITION Subroutine

7005 REM Return the specified line Position irn the line number arrav
7010 REM

7020 REM Isolate a line specification

7030 FORK=1TOJ:T=ASC(MIDS$(B$,K,1))IIFT>»47ANDTL{58GOT07060
7040 NEXT

7050 R=1IRETURN

7050 A=KIFORK=ATOJ:T=ASC(MID$(B$,K,1))IFT>37ANDTI{SBTHENNEXT
7070 REM Get specification value and start sesanching

7100 J=J-(K-1)L=UAL(MID$(B$,A,(XK-A)))IT=IIFORX=1T0I

7130 CNOGOTO7160,7180,7180

7140 IFL<=T1(X)THENRETURN

7150 GOTO7190

7160 IFL>=I(T)THENRETURN

7170 T=T-1INEXT

7175 GOT07200

7180 IFL=T(X)THENRETURN: REM For DELETE onlvy

7190 NEXT

7200 R=Z2IRETURNI: REM Not in the file

7210 REM

8000 REM ###x% STEND Subroutine

8005 REM Interpret the specification field with default value(s)
BO10 2$=RIGHT$(A%$,J) iFORK=1TOJIT=ASC(MIDS(B$,K,1))

8040 IFT=45THENS=1:G0T08B1GO

8050 IFT»47ANDT<S8G0OT08080

806G NEXT

8070 R=1IRETURN

8080 GOSU27000:IFR<>OTHENRETURN

8080 S=XIIFJ=0THENE=SIRETURN

8100 B3=RIGHT$(A$,J) :FORK=1TOJIT=ASC(MID$(B$,K, 1)) IIFT<>45STHENNEXT
8150 IFJ-K=0THENJ=0:E=1:G0T08190 e

8160 0=0+1:G0SURP7000:IFR{>O0THENRETURN

8170 IFO0=3THENE=XIGDOT08180

8175 €=T

8180 IFJL>00RE-S<{OTHENR=1:RETURN

8130 RETURN

8200 REM

9000 REM #####% SHRINK Subroutine

9010 Te="":A=1

9015 REM Search space and collect those pPrecedina non—-space characters
9020 GOSURSZ00:T$=T$+MIDS(IS(X) A, (K=-A))

9040 REM Test if line ends

9050 IFK-1=NTHENI$(X)=T$IN=LEN(T$) IRETURN

9060 REM Search non—-seace character

9070 A=K IGOSUR9400IIFXK-AX2BTHENR=1IRETURN

9080 IFK-1=NGOTO09050: REM Ianore the seaces at the end
9085 REM Collect one space and a repcat—count

9090 T$=T$+" "+CHR$((K-A)+64):A=K:GOTO9020

9100 REM

9199 REM ####% SEARCHSPACE Subroutine

9200 FORK=ATON:IIFMIDS(IS(X),K,1)<>" “THENNEXT

9230 RETURN

9250
9399
9400
9430
9440
9598
9599
8600
9620
9650
9670
9720
9730
19999
20000

20300
20400
20500

190

REM

REM ##s##% SEORCHARAC Subroutine
FORK=ATONIIFMIDS(IS(X),K,1)=" “THENNEX
RETURN

REM

REM ####4 RECOVER Subroutine

REM Recover a line to its orisinal share
TE=""TA=1IN=LENCIS(X))
GOSUBIZO0ITS=T3+MIDS (IS (X)), A, (K-8)) I IFK-1=NTHENRETURN
REM Recover the space from the reeeat-count
A=ASC(MIDS(IS(X) ,K+1,1))~GAIFORB=1TOAITS$=Ts+" "INEXT
A=K+2:G0T7T09G20

REM .

REM Error Pracedures

PRINTIPRINT"?Svntax error”IG0TG110

PRINTIPRINT"?Not in listin2"IGOTOL10
PRINTIPRINT"Suffer ends at line"7I(I)IG0OTO1I10
PRINTIPRINT"?Duer 26 spaces"!PRINTIR=0IGOTCZ210
PRINTIPRINT"Done":GOTD110

9 R
10
11

12

85

a0
a1
92
93
g4
as
96
a7
a8

108
106
107
108
110
111
112

APPENDIX G - 8085 CROSS ASSEMBLER PROGRAM

EM This Assembler assembles the source eProaram from the
REM Editor, and stores the obdect codes to tracK 3G. If
REM any error is detected, a correseponding error code 1is
REM displaved. The Assembler would not eprerpare the File
REM listina unless the source file is error free.

REM i ittt e nasasannesanasnossansesossessanssansnssnsas
REM

REM BRING IN ALL ASCII DATA FOR THE TABLES

REM AND BUILD TABLES

REM ’

DISK!"CALL S400=39,4"

DIM B$(79),C(7S),T$(100),T(L00) I REM MAX.1C0 SYMBCLS
A=21504 REM INIZ MEMORY PTR

REM

REM BUILD INSTRUCTION AND PASE-QPCODE TA2LES

FOR X=0 TO 79 GOSUR BO00: Bs(X)=Ts. COX)=T: A=A+1. NEXT
REM

REM BUILD REGISTER TABLE (B,C.,D,E,H,L,M,A)

FOR X=0 TO 7: GOSUP BOOO:I R$(X)=T$: NEXT

REM

REM BUILD REGISTER PAIR TABLE (B,D,H,SP)

FOR X=0 TO 3: GOSUB B0O00OI RP3(X)=T$: NEXT

REM

REM PBUILD DIRECTIVE TARBLE

FOR X=1 TO 6: GOSUB GOQOI D$(X)=T$. NEXT

REM

REM

REM USER SELECTS PRINTER OR SCREEN, SET DISPLAY FLAG (Q)

REM

PRINT I PRINT

INPUT "List errgrs on erinter instead of screen (Y/N)":A$
IF LEFT$(A%$,1)="Y" THEN 0O=1 I GOTO B0 I REM PRINTER

0=2 . REM GSELECT SCREEN

PRINTI PRINT "This is a slow assembler!"l PRINT

PRINT "Begin assembling": PRINT

REM

REM s esesessmesesecaeseseessascess et aaenannn

REM

REM PASS 1 I SET UP MEMORY LAYOUT AND DEFINE SYMROLS
REM PASS 2 ! FILL MEMORY WITH OPCODES AND DATA

REM

REM P= PASS FLAG E= ERROR COUNTER Y= S¥YMEOL PTR
REM A= SOURCE MEMORY PTR S= BUFFER MEMORY PTR
REM U= PROGRAM COUNTER F= ORG FLAG

REM F2= EXTENDED FILE FLAG

REM

REM #### PASS 1 ENTRY

REM

REM INITIATES FLAGS AND PCOINTERS

REM

P=1 I Y=0 I E=0

REM

REM ###% PASS 2 ENTRY

REM .
DISK!"CALL S800=37,1" . REM PBRING THE 1ST SOURCE TRACRKR IN
A=22528: S$=21508: F=1! F2=1! U=0! REM RESET FLAG AND PTR.

REM

191

192

113 REM #x## ENTRY OF SCANNING EACH SOURCE LINE

114 REM

115 R=0 I REM RESET LINE ERROR CODE (E IS ERROR CCOUNTER)
116 N=PEEK(A) I A=A+1

117 IF N=0 GOTO 700: REM HITS END MARK OF FILE

118 GOSU2 950 I REM CHECK IF NEEDS 2ND TRACK

119 Is="" . REM INIZ

120 REM

122 REM RECOVER STATEMENT BEFORE ‘7’ AND RECOVER ONE SPACE
123 REM ONLY EVEN IF THERE ARE SEVERAL SPACES

124 REM

125 FOR X=1 TO NI I=PEEK(A).: A=A+1. GOSUP 950

130 IF I=59 GOTO 1S5S0 ! REM STOP IF HITS SEMICOLON
135 I$=1%+CHR$(I)

136 REM

137 REM CHECK IF SPACE THEN SKIP REPEAT-COUNT

128 REM

140 IF I=32 THEN X=X+1 : A=A+1 : GOSUB 950

142 NEXT X

144 REM

145 REM ADJUST SOURCE MEMCRY PTR FOR NEXT LINE

146 REM

150 IF X-1=N GOTO 160 REM NO ADJUSTING NEEDED

155 A=A+(N-X) © GOSUB 950 I REM A POINTS THE START OF NEXT LN
156 REM

158 REM GET LINE NUMBER

159 REM

160 N=LEN(I$)

162 REM LOOPING UNTIL HITS NON-NUMBER

164 FOR X=1 TO N

165 T=4SC(MID$(I%$,X,1)) I IF T>47 AND T<S8 THEN NEXT

172 L=VAL(MID$(I$,1,(X-1))) I REM L IS LINE NUMBER

176 REM

180 REM ###s+ ENTER THE FIRST FIELD SCANNING PROCEDURE

182 REM

185 GOSUe 8900 I REM GET THE 1ST FIELD OF CHAR.

190 IF R=1 GOTO 115 ! REM NO CHAR. BACK FOR NEXT LINE

192 REM

194 REM CHECK IF IT‘S DIRECTIVE ('EQU’ IS NOT ALLOWED IN
195 REM THE 1ST.FIELD)

189G REM

200 GOSue 980 [ON I GOTO 500,9000,280,3500,4000,4500

202 REM

203 REM CHECK IF IT’S INSTRUCTION

204 REM

210 Gosue 8500

211 REM

212 REM ONLY PASS 2 NEEDS SCANNING DATA FIELD

213 REM

215 IF P=2 THEN ON Z GOTO 1000,2000,2500

218 S=S+Z I U=U+Z . REM NO EFFECT EVEN Z=0

217 IF Z2>0 GOTO 115 ¢ REM IT’S AN INSTRUCTION., NO SCANNING IN PASS 1
218 IF P=2 GOTO 240 I REM NO SYMBOL BE DEFINED IN PASS 2
219 REM

222 REM DEFINE SYMBOL (THE 1ST.FIELD AND PASS 1 ONLY)
224 REM

225 GOSue 8600 : REM CHECK IF MULTI.DEFINED

228 IF T<Y THEN R=2 [GOTO 8700 ! REM YES, ERROR!

230 IF Y>100 THEN R=3:G0OTO 8700 : REM SYMBOL TE OVERFLOW!
232 T$(Y)=LEFT$(G$.6) I REM TAKE FIRST 6

233 T(Y) =U - REM DEFINE YALUE (CURRENT ADDR.)
234 Y=Y+1 . REM INCREMENT SYMBOL PTR

235 REM

236 REM

237 REM ##%% ENTER THE SECOND FIELD SCANNING PROCEDURE
239 REM

240 GOSuB 900 : IF R=1 GOTO 8700 : REM NO CHAR.SYNTAX ERROR

193

REM

REM . CHECK IF IT’S DIRECTIVE ('ORG’ & ‘END’ ARE NOT
REM ALLOWED TO BE PRESENTED)

REM

Cosue 980 : ON I GOTO 280,280,3000,3500,4000,4500
REM

REM CHECK IFf IT’S INSTRUCTION

REM
GOsSu2 8500
IF P=1 AND Z:x0 THEN S=S+2! U=U+ZI GOTO 115

ON Z GOTO 1000,2000,2500 I REM PASSZ OR NON-MNE AT PASS!
R=1 [GOTO 8700 REM CAN NOT RECOGNIZE

REM

REM i iiiiiiitiennecsaennassnescsaasnasassasasnnaassnssannsa
REM

REM

REM

REM -—---——mmm—— DIRECTIVE! ORG -—--————————

REM

REM SET MEMORY POINTER TO NEW VALUE.

REM NEW START LESS THAN LAST ORG IS

REM NOT ALLOWED.

L o b e

REM

Z=1 [REM SET FLAG 7O INDICATE ASCII ARE NOT ALLONWED
GOSUR S000 I REM GET DATA FIELD VALUE

IF R>0 GOTO 8700

REM

REM CHECK NEW START VALUE

REM

T=D-U { IF T<O THEN R=4 [GOTO 8700 I REM NOT &LLOWED
REM

REM CHECK IF IT’S THE FIRST ORG
REM

IF F=1 THEN U=D [F=2 [GOTO 56O
U=U+T I S=S+T

REM

GOTO 1090 [REM TO CHECK ERROR AND EXIT

REM

REM

REM -———-———--mm——— CHECK EMTEND ----——————---—
REM

REM CHECK EXTEND FLAG. IF IT WAS SET, THEN
REM IT’S NO ‘END’ ERROR OTHERWISE SET FLAG
REM ENTER EXTEND MODE.

REM -——-----mm e e e
REM

IF F2=2 THEN R=9I L=0: GOTO 8700 REM NO ‘END’
F2=2 . REM SET EXTEND FLAG

DISK!"CALL S5800=29,1"

A=22528: GOTO 115 REM RESET PTR AND CONTINUE
REM

REM

REM

REM

REM —-=-——————- SUBROUTINE: ISOLATE -——=-=————-—
REM

REM SCANNING I$ UNTIL HITS THE DELIMITER THEN
REM RETURNS WITH CHARACTERS OR ERROR MESSAGE.
REM

REM ENTRY: X= THE POSITION OF START

REM RETURNIX= THE POSITION OF DELIMITER

REM = ERROR CONDITION

REM Gs

REM -—-----—— e e e
IF X>N GOTO 921 ! REM THE END OF [%$ ALREADY

REM THE 1ST
REM THE OTHERS

194

911 REM

912 REM LOOPING UNTIL HITS NO., LETTER, QUOTATION MARK, 0OR MINUS SIGN
913 REM

915 FOR K=X TO N [I=ASC(MID$(I$,K,1))

916 IF I>47 AND I<58 GOTO 926 © REM NUMBER

918 IF IXG64 AND I<S1 GOTO 926G : REM LETTER

9192 IF I=39 OR I=45 GOTO 926 I REM ASCII OR MINUS SIGN

920 NEXT K

921 R=1 I RETURN [REM NO CHAR.INDICATED

aQz2 REM

9223 REM LOOPING UNTIL HITS DELIMITER (EITHER COMMA, COLON., OR SPACE)
225 REM

926 X=K I REM K MARKS THE START OF CHAR.

928 FOR X=K TO N [I=ASC(MID$(I$,X,1))

930 IF I=58 OR I=44 OR I=32 GOTO 946 ! REM HITS DELIMITER
832 NEXT X

942 REM .

946 G$=MID$(I%,K,X-K) I RETURN

947 REM

948 REM

949 REM

950 REM -——-——--—- SUBROUTINE: CHKBUFF —-—--——----
951 REM

952 REM CHECK IF NEEDS TO BRING THE 2ZND.TRACK TO
953 REM SUFFER. IF S0, RESET SOURCE MEMORY PTR.
854 REM —------mmm e
955 REM

960 IF A<Z24576 THEN RETURN [REM NO NEED

962 IF F2=1 THEN DISK!"CALL 5800=38,1i"! G0OTO 970
965 DISK!"CALL 5800=30,1" [REM EXTENDED MODE
970 A=22528+(A-24576) I RETURN

971 REM

972 REM

973 REM

980 REM —-————————- SUBROUTINE: CMPDIR --—=—=——--
981 REM

982 REM COMPARE CHARACTERS (G$) WITH DIRECTIVE
983 REM TABLE. RETURN WITH I (1-7)

984 REM ——=---—m-mmm e e
985 REM

990 FOR I=1 TO G: IF G$<{>D3(I) THEN NEXT

992 RETURN

993 REM

994 REM

995 REM

1000 REM ——--=om——e ONE-RYTE INSTRUCTION -—-—==—-——-
1001 REM

1002 REM FILLS MEMORY BUFFER WITH OPCODE.

1003 REM ENTER WITH T POINTS THE FOUND MNEMONIC
1004 REM -——-—-------mmm e
1006 REM

1010 B=C(T) . REM GET BASE OPCODE

1011 REM

1012 REM CLASSIFICATION

1013 REM

1015 IF T=0 GOTO 1100 I REM 'MOV’

1020 IF T=1 GOTO 1200 I REM ‘RST’

1030 IF T7<4 GOTO 1300 REM ‘POP’ & 'PUSH’

1040 IF T<6 GOTO 1400 REM ‘INR’ & ’‘DCR’

1050 IF T<14 GOTO 1130 REM ARITH.& LOGIC

1060 IF T<19 GOTO 1320 REM RP FAMILY

1062 REM

1065 REM THE REST OF ONE-BYTES

1070 REM

1080 D=B

1085 GOSUB 4700 : REM POKES OPCODE

1086 REM

R

1087
1088
1090
1095
1096
1097
1100
1101
1102
11035
1110
1120
112%
1130
1135
1150
1159
1160
1200
1201
1210
1215
1220
1230
1240
1300
1301
13085
1310
1315
1318
1320
1320
1340
1350
13595
1360
1400
1401
1410
1420
1430
1440
1445
1450
1450
1700
1701
1702
1703
1704
1705
1706
1710
1715
1718
1717
1718
1720
1740
1750
17G0
1765
1770

195

REM ENTRY OF CHECKING UNNECESSARY (EXTRA) OPERAND
REM
Gosup 200 I IF R=1 GOTO 115 I REM NO MORE

R=8 I GOTO 8700 . REM ERROR

L=
REM

REM ENTRY OF 'MQu’ (OPCODE=R+R1%#8+R2)

REM

GOSU2 1300 [REM B=p+R1x8

IF R>0 GOTO 8700

REM

REM ENTRY OF ARITH.3 LOGIC (OPCODE=B+R)
REM

GOSLR 1700
IF R:0 GOTO 8700
D=R+T I GOTO 1083 [REM EXIT OF 'MOV’ AND A&L

REM ... f e e mareeseseetaae et e s et e e
REM

REM ENTRY CGF ‘R8T’ (OPCODE=B+(0-7)#8)

REM

GasSuU2 5000 I REM GET DATA (0-7)

IF >0 OR D»7 THEN R=8 [COTO 8700 I REM ILLEGAL
D=£+D+B [GOTO 1089 [REM REENTER ONE-2YTE

REM ... Ce e ean fesens e fsaeeaan
REM

REM ENTRY OF ‘POP’ & ‘PUSH’ (QPCODE=R+RP#1G)
REM

RP$(3)="PGSW" I REM TEMP.CHANGE SP TO PSW FOR HEREZ ONLY
REM

REM ENTRY 0QF RP FAMILY (QPCODE=BR+RP*1G)

REM

GOsue 1800 I REM PB=B+RP#1G

RP$(3)="GP" [REM PUT SP BACK

IF R>0 GOTO 3700 | REM DATA FIELD ERROR

GOTD "10B0 @ REM KIT OF ’POP’ & ‘PUSH’ AND RP FAMILY
REMo.... C et e s i Eseemenaastseses e st n e
REM

REM ENTRY OF ‘INR‘ & ‘DCR’ (OPCODE=B+R*8)

REM

GOSUE 1900 [REM B=B+R#B8 BACK

IF R>0 GOTO 8700

GOTO 1080 I REM REENTER ONE-BYTE

REM feeeanaan cesataeseesinanas et nennnesn
REM

REM

REM

REM ~—-—————— SUBROUTINE! CHKRGTR ~-~——--———--—
REM

REM GET NEXT FIELD OF CHARACTERS AND COMPARE
REM WITH REGISTERS TABLE. RETURN WITH T POINTS
REM THE FOUND REGISTER, OR ERROR BACK.

REM ———--m—mmmmm e
REM

GOsSuB 900 [IF R=0 GOTO 1720

R=8 [RETURN I REM NO CHAR.OR NOT MATCH ERROR
REM

REM COMPARE WITH TABLE

REM

FOR T=0 TO 3 ! IF G$=R$(T) THEN RETURN

NEXT 7T ’

GOTO 1715 I REM CAN NOT FIND

REM

REM

REM

1800
1801
1802
1804
1808
1806
1810
1815
1816
1817
1820
1825
1835
1840
1845
1850
18535
1900
1901
1902
1903
12804
1905
1910
1920
1940
1945
1950
1955
2000
2001
2002
2003
2004
20085
2006
2010
2020
2025
2030
2035
2040
2050
20SS
2060
20G6S
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2500
2501
2502
2503
2504
2505
2506
2510
2929

PSW=3)

REM -———--————=- SUBROUTINE! GETRP --—--—--—-

REM

REM GZT REGISTER-PAIR UVALUE (B=0,D=1,H=2,SP OR

REM RETURN WITH PB=BASE+RP*16

REM —————-—m e e e
REM

Gagsue 900 @ IF
REM
REM
REM
FOR T=0 TO 3
IF G$=RP$(T)
NEXT T

R=8 [RETURN I
REM
REM
REM
REM
REM
REM
REM
REM
REM
GOSuUe 1700 I REM
IF T»7 THEN R=8 !
2=B+T*8 [RETURN
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
2=C(T)

IF T>4G6 GOTO
REM
REM
REM
GOsue 13900

IF R>0 GOTO 8700

COMPARE

REM

RETURN WITH

FILLS MEMORY
DATA. ENTER
THE MNEMONIC

2070

‘MUTI Y ONLY

REM
REM REENTRY OF
REM
D=2 [GOSUB 4700

GOSuUB S000
IF R=1 THEN R=6

IF R»0 GOTO 8700
IF G$="I"

R=1 GOTO 1840

WITH TABLE

THEN B=B+T#1G6 !

RETURN [REM

CAN NOT FIND

SUBRCUTINE!

GET REGITER VALUE B2ACK

GETRGTR

B=BASE+R*8

GET T OR ERROR

RETURN

BUFFER
WITH T
IN THE

ALL

TR

TWO-BYTE INSTRUCTIONS

REM

REM
REM
REM
REM

GOTO 1090:REM
IF D»255 OR D<-128 THEN R=7 !

D
<

WITH OPCCDE AND 1-BYTE
POINTS THE POSITION OF

TABLE.

GET BASE
NOT ‘MUI’

0OPCODE

B=R+R#8

BYTES

POKE QPCODE
GET OPERAND
NO OPERAND ERROR
OTHER ERROR

REM NO CHAR.ERROR

FOUND

(8=0,C=1,D=2,...,A=7)

ASCII DATA BEEN POKEN ALREADY

GOTO 8700 I

IF D<O THEN D=256+D:REM GET 2‘S COMP.

GOTO 1085
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
B=C(T)

IF T»57 GOTO

MNEMONIC.

.
.

REM

THREE-BYTE INSTRUCTIONS

EXIT

REM

FILLS MEMORY BUFFER WITH OPCODE AND 2-BYTE
DATA (ADDRESS).

ILLEGAL VALUE

ENTER WITH T POINTS THE FOUND

REM
REM

GET BASE 0PCODE
NOT “LXI’

196

2925
2530
2540
2850
2560
2965
2570
2580
2590
2600
2610
2615
2620
2630
2640
2GS0
2670
3000
3001
3002
3003
2004
30085
30006
3007
3008
3010
3020
30320
3040
3050
306D
3085
30G3
3070
3080
3020
3500
3501
3502
3305
35085
3510
3520
3330
3535
3540
35350
3560
3570
4000
4001
4002
40073
4004
4005
4006
4007
4008
antn
4020
4025
4026
4027
4028
40232

REM ‘LXIC ONLY

REM

GOSuUe 1800 I REM P=P+RP#16
IF R*0 GOTO 8700 < REM ERROR

REM

REM REENTRY OF ALL 3-BYTES

REM

D=2 I GOSuUe 4700 ! REM POKE OPCODE

GOsUe 5000 . REM GET 2-BYTE DATA
IF R=1 THEN R=6 [GOTO 8700 ! REM NO DATA
IF R>0> GOTO 3700 [REM OTHER ERRORS

IF D*BS53Y OR D<-2048 THEN R=7 [GOTO 8700 ! REM ILLEGAL UALUE

GOsSuL2 4600 . REM POKE 2-BYTE

GOTO 1090 . REM EXIT

REM

REM

REM .

REM ————————— DIRECTIUVE: EQU —-—=-———-——=

REM

REM GIVES VALYE TO THE SYMRQOL JUST DEFINED

REM OPERAND CAN BRE A DECIMAL., HEX, RINARY.

REM DEFIMED SYM2OL, OR AN ASCII DATA.

REM ENECUTES AT PASS 1t ONLY, ALL ERRORS

REM WILL 25 DISPLAYED IN ERROR 1.

REM ———=———m e

REM

IF P=2 GOTOC 115 : REM NO ACTION AT PASS 2

2=2 REM SET FLAG TO PERMIT 1 ASCII
GOSue S000 REM GET OPERAND IN DECIMAL

IF R>0 GOTO 30701 REi ERROR

IF G$="'" THEN S=S-1. U=U-1. REM ASCII HAD BEEN POKED
T(Y-1)=D : REM VY WAS INCREASED BY SYMBOL DEF.
GOSUe 900 : REM CHECK NO MORE

IF R=1 GOTC 115 ! REM ERROR FREE EXIT

R=1 [GOTO 8700 . REM ERROR EXIT

REM

REM

REM -————————— DIRECTIVE: DS —--=-——=———-

REM

REM RESERVES D BPYTES 0OF MEMORY BUFFER

REM —————— e e

REM

Z=1

GOSUR S000

IF R>0 GOTO 8700
IF D{O THEN R=7:
S=S+D : U=U+D

REM SET FLAG TO PREVENT ASCII
REM GET D

REM ERROR

3070 87007 REM ILLEGAL VALUE
REM INCREMENT MEMORY POINTERS

N R I R

GOTO 1090 REM CHECK NO MORE, EXIT
REM

REM

REM ————————mm DIRECTIVE! DW ——=—====--
REM

REM GETS DATA WORDS FOLLOWING THE DW
REM AND FILLS THOSE WORDS TO MEMORY.
REM WORD FORM CAN BE EITHER DECIMAL.
REM HEX, BINARY, OR SYMBOL. NO ASCII
REM WILL B2E ACCEPTED.

REM -
REM

Z=1

GAOSuUe S000

IF R>0 GOTO 8700
REM

REM REENTRY OF THE NEXT WORD (IF MORE THAN ONE IN A LINE)
REM

REM SEY “LAG TO PREVENT ASCII

REM GET FIRST DATA (WORD)

IF D»BS535 0OR D<-2048 THEN R=7 [GOTC 8700 : REM ILLECAL UALUE

197

4030
4040
4050
4060
3070
4080
4090
as00
4501
4502
4503
43504
4505
4506
4507
4508
4509
4510
4512
45135
4516
4518
4519
2320
4530
4522
453S
4540
4550
45G0
4570
4580
4530
4600
4G01
4602
4503
4604
4G0S
4506
4607
4608
4510
4620
4630
4G40
4545
4550
4GSS
4660
4670
4680
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4720
4730

GOSuUe 4500 : REM POKE WORD

Gosue sooo : REM CHECK IF MORE

IF k=1 GOTO 115 I REM NO MORE, EXIT

IF R>1 GOTO 8700 [REM ERROR EXIT

GOTO 4029

REM

REM

REM -—————-m—= DIRECTIVE! DP -—————-——-——
REM

REM GETS DATA BYTES FOLLOWING THE DB

REM AND FILLS THOSE DATA INTO MEMORY.

REM DATA FORM CAN BE A COMBINATION OF

REM DECIMAL., HEX, BINARY, DEFINED SYMeOL,
REM AND A STRING OF ASCII. AS LONG AS:

REM BYTE VALUE IN THE RANGZ OF -127 TO 255
REM -———-mmmm e
REM

Z=80 REM RELEASE FLAG TO ALLOW ASTII

GOSuUe Soo0o

REM GET DATA

IF R>0 GAOTO E700

RZM
REM
REM

REENTRY OF THE NEXT DATA (MORE THAN ONE)

IF G¢="'" GOTO 4540 REM ASCII HAD PEEN POKED
IF DX255 OR D<-128 THEN R=7 I COTO 8700 I REM ILLEGAL

IF D70 THEN D=256+D: REM GET 2'CS COMP.
GasU2 4700
GOsuUe S000
IF R=
IF R>0 GOTO 8700

REM POXE DATA BYTE

REM CHECK MORZ, AND GET IT
REM NO MORE, EXIT

REM ERROR EXIT

1 GOTO 115

GOTO 4520 REM MCORE THAN 1 DATA

REM

REM

REM -———-mmm—— SUBROUTINE: POKWORD -—--—=~—-——-
REM

REM SPLITS INPUT D TO 2 BYTES AND POKES LOW-
REM HIGH RYTE INTO MEMORY BUFFER IN SERUENCE.
REM

REM ENTRY : D= DATA WORD

REM RETURNI S=S5+2, U=U+2

REM ~——---mm e e e e e
REM

GOSUB 8100 : REM CONVERTS D TO 4 DIGITS HEX

Té=H$! HI=RIGHT$(T$,2)
GOSUR 8000 .
Gasue 4700

REM GET LOW-BYTE VALUE
REM POKE LOW

H$=LEFT$(T$,2)

GOsuz2 3000
GOsue 4700

REM GET HI-BYTE VALUE
REM POXE HI

RETURN

REM

REM

REM —-—-————m—e SUBROUTINE! POKEBYTE -—-———————-
REM

REM POKES A INPUT BYTE (D) INTO NEXT AVAILABLE
REM MEMORY BUFFER LOCATION THEN INCREMENTS THE
REM POINTERS FOR NEXT PCOKING.

REM

REM ENTRY . D = DATA BYTE

REM RETURN: S=85+1 & U=U+1

REM -—————mmmmmmm e
REM

POKE S,D ¢ REM POXING

S=8+1 [U=U+1 : REM INCREMENTS MEMORY POINTERS
RETURN

VAL UE

198

4740
4750
S000
S001
3002
S003
S004
S008
5009
3010
sS012
3015
S020
5025
S030
S032
S035
5038
5S040
5042
50435
3050
5052
S054
S0S5S
Yelcial
S0BS

S070 !

S07S
5080
S08%5
5094
S09S
S095
5097
3098
5099
S100
S110
S11S
5120
3125
S130
S135
5140
5145
5150
S158
5160
5180
S200
5201

210
5219
5220
5225
5230
S235
5240
52473
SZ250
S25S
S260
S26S
5270
52735

REM

REM

REM —————————- SUBROUTINE: GETDATA -—--—-—-————

REM

REM GET A CHARACTER FILZED FROM THE REMAINING

REM STATEMENT AND RETURN WITH ITS DECIMAL UVALUE

REM IN D OR ERROR IN R.

REM ———mmmmm e e

REM

GOSU2 900 . REM ET DATA CHARTERS
IF R=1 THEN RETURN REM EXIT WITH NO DATA
M=3-K | A%$=G% [C=1 REM FOR ARITH.ONLY
GOSU2 SS500 REM CHECK IF ARITHMETIC
IF <<M GOT0 5100 . REM YES, GO CALCULATING
IF LEFET$(G%,1)=""" GOTO S200IREM ASCII DATA

REM

REM -- NESTED SUBROQUTINE FOR ARITH.OPERATION --
REM
GOsU2 2600 . REM CHECK IF SY¥MPROL

IF T<v THEN D=T(T): RETURN: REM EXIT OF S¥MEOL
IF RIGHT®(G$,1)="H" GOTO 5300 : REM HEX DAaTa

IF RIGHT$(G$,1)="2" GOTO 5400 : REM RINARY DATA
REM v

REM CHECK EACH CHARACTER IF UALID DECIMAL

REM

FOR I=1 TC M! T=ASC(MID%(G%$,I,1))

IF T:37 OR T<48 THEN R=5IRETURNI REM UNDEFINED SYM20L
NEXT I

D=UAL(C3) ©REM ALL VALID NUMPRERS
IF D:G5335 THEN R=7 ¢REM ILLEGAL VALUE
RETURN ¢ REM EXIT OF DECIMAL
REM

REM -—-— ARITHMETIC GOPERATION ---

REM

REM DO ADDITION OR SUBTRACTION FR
REM # NOT ALLOWED TO HAVE SPACE 2
REZM

S(0Y=07 U=17 C=2 - REM INIZ.

IF LEFT$(A%,.1)="-" GOTO 5120 RE! HAS MINUS SIGN ALREADY
As="+"+A%] M=M+1! REM DEFAULT NO SIGN TO PLUS SIGN

GOSU2 S500: Q=M M=K-C: REM Q@ IS IMAGE OF M
G$=MID$(P%,C,M)I REM C MARKS START COF CHAR.

GOSUBR 5S040 REM GET OPERAND UVALUE

IF R>0 THEN RETURN

IF MID$(A$.C-1,1)="~-" GOTO 5150 REM SUBRSTRACT?
S(U)y=5(wW-1)+DI GOTO S155

S(W)=5(U-1)-D

IF K<@ THEN C=K+1: VU=VU+1! M=Q! GOTO 5120 REM MORE
D=5(V) I RETURN

EFT TQ RIGHT

oMt
ETWEEN SIGN AND COPERAND

REM

REM --- ASCII DATA ---

REM

M=M-2 : REM NO COUNT ON Z " '*
REM

REM CHECK ASCII PERMITTING FLAG AND SYNTAX ERROR
REM

IF M>Z2~-1 OR RIGHT$(G#$,1)7>"’" THEN R=5] RETURN

REM

G$=MID$(G$.2,M) I REM TAKE 2 "'" QFF
REM
REM POKE EACH ASCII INTO MEMORY BUFFER
REM

FOR I=1 TO M. D=ASC(MID$(G%,I,1)): GOSUB 47007 NEXT I
REM

REM SET ASCII MESSAGE FGR RETURN

REM

199

5280
5290
S300
S301
5302
530S
S306
5308
5310
S3135
S320
5330
5340
5345
5350
S3R0
5400
5401
S410
5415
35420
5425

5430 ¢

5435
S440
5450
3455
S470
5480
3500
5501
5502
5503
5504
5505
5506
5507
S508
5510
5520
5330
5540
S550
5560
5000
5001
[c1elaled
G003
500S
G006
5007
5008
Goog
Go10
5020
5030
6040
6050
50G0
8000
8001
8002
8003
3004
8005

200

G="'" I RETURN

REM

REM --—- HEXADECIMAL DATA ---

REM

H$=LEFT$(GH,M~1) . REM GeT RID OF TAIL "H"
REM

REM CHECK EACH CHARACTER IF VALLID HEX

REM

FOR I=1 TO M-1 [T=ASC(MID®(H%,I,1))

IF 7448 OR T>»70 GOTO 5350

IF T>57 AND T<B5 GOTO S350

NEXT I

IF I:>5 THEN R=7 [RETURN ! REM 4 DIGITS AT MOST
GOsSU2 8000 I RETURN . REM CET DEC.A&ND E£XIT
R=G [RETURN : REM ERROR EXIT

REM .

REM —--— BINARY DATA ---

M=M-1 [G$=LEFT$(G%,M) . REM GET RID OF TAIL "e"
REM CHECK EACH CHARACTER IF 1 OR O

OM I T=ASC(MID$(G$,I.1))
R T-48 GOTO S350 I REM SHARE WITH HIX

M 8 DIGITS AT MOST

7 I3 THEN R=7 [RETURN [R
REM ERROR FREE EXIT

G0sUe 8200 I RETURN :
REM

REM

REM —————mm—— SUBROUTINE CHKSIGN —--——-———----
REM

REM SCANNING Aas$ FOR PLUS OR MINUS SIGN

REM CALLED PY ARITHMETIC OPERATION ONLY

mm

REM

REM ENTRY : C= POSITION OF STARTING

REM RETURN: K= POSITION OF SIGN OR ENDING
REM - e
REM

FOR K=C TO M

T=ASC(MID3(A$,K,1))

IF T<{>43 AND T+ »45 THEN NEXT X

RETURN

REM

REM

REM —————————= SUBROUTINE: RECOVER -—=——————-—
REM

REM RECOVER THE INSTRUCTICN MNEMONICS., B
REM AND THE DIRECTIVES FOR TABLE BUILD-U
REM

REM ENTRY © A= POSITICN 0OF NEXT CHARACTER

ASE QPCODES:,
P

REM RETURN! T$=CHARACTER T=24S% 0P CODE
REM == — e e e
REM

T$="" I REM INIZ

T=PEEK(A)! A=A+1. IF T=0 GOTO GO40: REM END FOR CHAR.
T$=T$+CHR$(T) GOTO GO20: REM RECOVER CHAR.
T=PEEX(A) . RETURN

REM

REM

REM -——---m———- SUBROUTINE: HEX-DEC ------—-=--
REM

REM CONVERT INPUT HEX TO DECIMAL 0OUT

REM

REM ENTRY : H$ RETURN I D

REM -

8010
2020
8030
8035
8040
8045
8050
80GO
8070
8080
808S
8090
8100
8101
8102
81073
8104
8105
2108
8110
2120
8130
8135

J=LEN(H$) [D=0

FOR I=1 70O J I T=A4SC(MID$(H%,J+1-1,1)
S1=D+1G"(I-1)#(T-55)

IFT-G4THEND=S2

SZ2=D+1G"(I-1})%(T-48)

RETURN

I T:>G4 THEN D=Si

IF T:64 THEN D=82

NEXT

RETURN

REM

REM

REM -—=--mm———- SUBROUTINE! DEC-HEX -—===————-
RZM

7EM CONWVERT INPUT DECIMAL TO 4 DIGITS HEX

REM

REM ENTRY I D RETURN I H$

REM ——---mmmmmm e e
REM

D(D)=D

FCR I=1 TO 4

D(IN=INT(D(I-1)/16) [P(I)=D(I-1)-D(I)*iG [J=I
IF INT(D(I))=0 GOTO B140

8138 NE

8140
8145
8130

2155
8iB0 !

8165
2170
8175
8180
8135
8200
8201
8202
8203
8204
8210
8220
3230
8240
8250
8250
3270
8500
8501
8502
8503
8505
8508
8510
8515
5520
B530
8540
6550
8560
8570
8600
8601
8602
8G03
3605

NEXT I

FOR I=1 TO J

E$(J+i1-I)=CHR$(4B+P(I))

IF P(I;>8 THEN E$(J+1-1)=CHR$(SS+P(I))
NEXT I

Hg=nn

FOR I=1 TO J 1 He=H$+ES(I) I NEXT I

IF J=4 THEN RETURN

H$="0"+Hs$ [J=J+1 [GOTO 8170

REM

REM

REM == SUBROUTINE! BIN-DEC ----=—----

REM

REM CONVERT BINARY INPUT TO DECIMAL OUT

REM - e e

REM

D=0

FOR I=1 TO M

D=D+Z27(I-1)#VUAL(MID$(Gs,M+1-1,1))

NEXT I

RETURN

REM

REM

REM -——m——e SUBROUTINE: SEARCH MNZ -——-—---

REM

REM COMPARE G$ WITH ALL ENTRIES OF THE INSTRUCTION
REM TABLE. RETURN Z AND T

REM -——m--mmmm e s

REM

FOR T=0 TO 79 ! IF G$<{>BH(T) THEN NEXT T

REM

IF T<{458 THEN Z=1
IF T<{S7 THEN Z=2
IF T<80 THEN Z=3
Z=0 . RETURN

REM

REM

REM —-———- SUBROUTINE: SYMBOL SEARCH -----
REM

REM COMPARE G% WITH DEFINED SYMBOL TABLE.
REM RETURN WITH T.

REM —-mm e e

: RETURN [REM 1-BYTE
RETURN ! REM 2-2YTE
RETURN I REM 3-BYTE

¢ REM NOT FIND

MNEMONIC

8G10
8615
8520
8630
86540
8650
8650
8700
8701
8702
8703
8708
8720
8730
8735
8740
87350
8750
8770
8775
8780
9000
a001
900z
9003
9004
9005
S00G6
9007
9009
goto
9012
9014
9018
3018
9020
2022
9023
g0za
9025
9025
9030
90335
9038
9040
9050
9050
9032
9063
9056
9068
8080
9085
90890
9095
9100
9110
9120
9125
9130
9135
9140
9150
9160
9170

T$=LEFT$(G$,6) I REM LOIK B CHARAZTERS ONLY

REM

FOR T=0 7O Y » REM Y IS NUM2ER OF DEFINED SYMRPOL + 1
IF T$<>T3(T) THEN NEXT T

RETURN

5
REM

REM #s#3## ERROR DISPLAY PROCEDURE

REM

REM DISPLAYS ERROR CODE AND LINE NUMSER.

REM ALWAYS BACK TO NEW LINE SCANNING.

REM

IF P=1 AND R>4 GOTO 11S : REM PASS 1 DISPLAYS ERROR 1-4
IF P=2 AND R<S GOTO (1S ! REM P4SS 2 DISPLAY ERROR S5-3
E=g+1] . REM INCREMENT ERROR COUNTER
IF 0=2 THEN PRINT"Error #";R;" in lipe";L [03370 8720
PRINT #1,"Srror #":R:" in line"IL

IF R¥9 GOTC 113 I REM NOT ‘NO END ERR’, GO NEXT LINE
REM ’NO END ERR’, ENTER THE ENDING PRROCEDURE

REM

REM
REM ###% ENDING PROCZDURE (OPERATION FOR “END’)
REM
REM P=1 -ZNTER PASS 2 pP=2 -EXIT ASSEMBLER
REM

REM EITHER ‘END’ OR HITS THE ENDING MARK

REM SET 2Y THE EDITOR, WILL END ASSZM2LING.

REM IF DURING ASSEMRLING, THERE IS A&NY ERROR

REM HAPPENS, NO LISTING WILL BE PREPARED.

REM

IF S<22528 GOTO 8020 : REM NOT ZXCEEDS THE BUFFER YET
PRINTI PRINT "“Exceeds buffer caracitv": GOTO 9040
REM

REM CHECK PASS CONDITION

REM

IF P=2 GOTO 9025

P=2: PRINT: PRINT EZi;"errors in PASS 1" PRINT
PRINT "Continue PASS 2"I PRINT. 30TO 110
REM

PRINT: PRINT "End assemblins. Total";Z:"errors"
IF E=0 GOTO 9080

REM

REM ERROR EXIT, REQUEST DESTINATION

REM

PRINTIINPUT"“Go back to Editor for corrections (Y/N)":A%$
IF LEFT$(A%,1)="N" THEN RUN "BEXECs"

POXE 133,87 . RUN "EDIT"

REM

REM

REM ERROR-FREE EXIT, STORE OBRJECT CODES TO DISK
REM

A=U ! P=S : REM SAUE POINTERS

§=21504 ! REM PREPARE FOR ST.& TMD ATDR.
D=U-(2-21508) :GOSUL 4B600IREM POXE STARTING ADDRESS
D=A-11: GOSUB 4GO0:REM POKE ENDING ADDRESS

DISK!"SAVE 3G,1=5400/4": REM 1K SUFFER T2 TRAI~ 3
PRINT "“Done!"I PRINT

REM

REM REQUEST DESTINATION

REM

INPUT "Do vou want a completed listina (Y/N)"7A$

IF LEFT$(A$,1i)="Y" THEN RUN “SCRIBE"

RUN "“BEXECH"

REM

REM

202

O A D W)

<

12

35
40
45
SO
S5
g0
55
70
80
10
10
10
10
11
11
11
12
12
12
13
13
13
14
14
14
14
15
15
16
16
17
17
18
19
20
20
20

21

203

APPENDIX H - ASSEMBLED FILE LISTING PROGRAM (SCRIEE)

REM SCRIBE - Listins Program for Assembled 8080/8085 QObject File
REM

DISK!"CALL S400=33,4". REM Load reference table information

DIM B$(79),T$(100),T(100)

REM .

REM Recowuver the Mnemonic table only
A=21504

FOR X=0 TO 79

Be(X)=""

T=PEEK(A): A=A+1

IF T>0 THEN B3$(X)=P$(X)+CHR$(T): GOTO 18

A=A+1

NEXT

REM

REM Load the first tracK of sourcz files and obdect code fFile
DISK!"CALL S400=3G,1"“IDISK!"CALL S800=37.,1"

REM

REM Request listing destination & list the head messase
B$="2080/8085 CROSS ASSEMBLER, RELEASED 1982. E.£. OHIO U."
C$="ADDR 0P DATA SEQ SOURCE STATEMENT"
PRINTIPRINTIINPUT"List on Printer instead of screen (Y/N)":A2%
IF LEFT$(A%,1)="Y" THEN 0=1: GOTO G5! REM PRINTER
O0=2:PRINTIPRINTBS:PRINTIPRINTIPRINTCS$IPRINTIGOTOLIOOC
PRINT#1IPRINT#1,P$IPRINT#1IPRINT#1IPRINT#1,C3IPRINT#1

REM

REM Initializaticn
0 A=22528I1S=21508IU=0IF=01Y=01F2=11X$=" "ilYs=" "

1 REM
2 REM Entrv of recoverins a source statement
S D$=""IR=0IP=0IN=PEEK(A)IIF N=0O CGQOTO 700
0 A=A+1. GOSUR 950 REM Uedate source buffer if need
2 I=0
S T=PEEX(A)! A=A+1. GOSUR 950 REM Uedate source huffer if need
O IF T<>32 GOTO 140 .
2 REM Recover seaces
S FOR X=1 TO PEEK(A)-54
O D$=D$+" "I NEXT X
S A=A+1IG0OSUP S850:I=1+2:G0OT0 115
8 REM Recowver non-space characters
O D$=D$+CHR$(T)II=I+11IF I<N GOTC 115
S N=LEN(D$)
5 REM
8 REM Isolate statement between line number and comments
0O FOR X=1 TO NI REM Search comments
S IF MID$(D$,X,1)<>"7" THEN NEXT
O N=X-1. I$=LEFT$(D$,N)I REM Exclude comments
S FOR X=1 TO NI REM Pass number characters
O T=ASC(MID$(I$,%,1))I IF T>47 AND T4<58 THEN NEXNT
2 REM X pPoints the first non-number character
0O REM)
O REM First field scannins
0 GOSUB S900:IIF R=1 THEN A%$=Y$:B$=X$:Cs=Y$:G0TO 8700 REM Comments
2 REM Check if directives
S IF G$="0RG" GOTO S00
O IF G$="END" GOTO 9000

218
220
22s
228
_ 230
232
23S
236
238
240
242
245
250
255
260
265
500
505
3510
S20
530
540
700
705
710
720
900
90s
910
912
914
915
916
218
920
9z2
azs
930
932
a3s
940
Qa6
948
950
955
960
962
965
968
970
980
1000
1005
1010
1020
1030
1040
1050
1060
1070
1080
3000
3005
3010
3020

204

IF Gs$="De" GOT3O 4500
IF G$="DS" GOTO 3500
IF G3="DW" GOTO 4000
REM ChecK if mnemonics
GOSuUe 85007 IF Z>0 GOTO 1000
REM Rebuild svmbol table
T(Y)=LEFT$(G$,6) iT(Y)=UIY=Y+1
REM
REM Second field scannina (must be either directive or mnemonic)
GOSuUe 900: GOSU2 85007 IF Z>0 GAOTO 1000: REM Mnemonic
REM Either one of the following
IF G$="EQU" GOTO 3000
IF G$="DS" GOTO 3500
IF G$="DW" GOTO 4000
GOTO 4500 REM Then must be DB directive
REM
REM ####% ORG OpPeration
REM Scan scurce statement and evaluats the Proaram Counter
GOSUB SO00IIF F=0 THEN U=DIF=1:G0T0 S30
S=S+(D-U) :U=U+(D-U)
D=UIL=4:GOSUR B100:A%=HIP=X$:C$=Y$.GOTC 8700
REM
REM s####3# EXTEND Routine
RcM Set Extended flag, reinitialize HufFfer w/ Extended source file
F2=2IDISK!"CALL S5800=25,1"1A=22528:307T0 105
REM
REM ###3## ISOLATE Subroutine
REM Collect a field of characters from source statement
IF XXN GOTO 922
FOR K=X TO NI REM Search valid start character
I=ASC(MID$(I%$,K,1))
IF I1>47 AQND I<S5S8 GOTO 925
IF I>64 AND I<91 GOTO 925
IF I=39 GOTO 925
NEXT
R=1:RETURN
X=K. REM MarK the start eosition
FOR X=K TO NI REM Search delimiter or line end
I=ASC(MID$(I%$,X,1))
IF I=58 0OR I=44 OR I=32 GCOTO 246
NEXT
G$=MID$(I%,K,X-K) IRETURN
REM
REM ####% CHKBUFF Subroutine
REM ChecK if the bhuffer needs the 2nd tracKk file
IF A<24576 THEN RETURN
REM Filetvee fFlaa desisnates the disk access
IF F2=1 THEN DISK!"CALL 5800=38,1":G0TO 970
DISK!"CALL S800=30.,1"
A=223528IRETURN
REM
REM ##### INSTRUCTION Collection Routine
REM Use the orpcodes in oepcode buffer
D=U:L=4:G0SUB B100.A%=H%
GOSUB 4700:B%=H%
IF Z>1 GOTO 1050
C$=Y$:G0T0 8700
IF 2>2 GOTO 1070 :
GOSUB 4700:C$=H$+X%$:G0OTO 8700
GOSUB 4B00:C$=H3%:GOTO 8700
REM
REM #####% EQU Operation
REM Rebwild the definition to svmbol table
GOSUB SO00:T(Y-1)=D:L=4:G0OSUB B8100:C$=H$:A$=Y$:R$=X$IGOTA 2700
REM -

3500
3505
3510
3520
3530
4000
40035
4010
4020
4030
4040
4030
4060
4300
45085
4510
43520
4330
4540
43550
4560
4B00
4605
4610
4650
4700
470S
a710
47350
S000
S00S5
S010
S01S
5020
502S
S030
S03S5
5040
S045S
S050
S03S
5090
5100
5105
S110
S120
5125
5130
5135
5140
5145
5150
5155
S160
5500
5505
5510
5520
5530
5540
S600
5602
S60S
3610
5620
5630

205

REM #3###% DS (Oseration

REM Increment Program Counter to a new setting
GOSUR S000IC=DID=UIL=4:G0SUB B100IA%=H$:D=CIGOSUR B100
C$=H$:2$=X3$:S5=5+C:U=U+C:G0OTD 8700

REM

REM ##t¥% DW Directive Data-Collection Routine

REM Collect word(s) from the obJdect code buffer
GOSUB SGO0ID=UIL=4IGOSUB B8100:A%=H$:GOSUR 4B00ICH%=HS$
P$=X$.P=1:G0SUB B700

C=C-1:IF C=0 GOTO 10S

D=U:L=4:G0SUB B8100:A%=H$:G0SUB 4BO0Q:C$=HS$
D$=""1GASUR B8700:GOTO 4030

REM

REM #3###3% DB Directive Data-Collection Routine

REM Collect bvte(s) from the obdect code burfer
GOSUB SBEO0:D=U:L=4:G0SUR B8100:A%=H$:GOSUBR 4700:C3$=H$+X$
2¢=X%.:P=1:G0SUB 8700

C=C-iIIF C=0 GOTO 105

D=UIL=4:G0OSURL B100:A%=H$:GOSUB 4700:C3%=H$+X$
De=""G0OSUR 8700:GOTO 4530

REM)

REM ##3#%3% GETWORD Subroutine

REM Get a word frem the object code buffer

GOSUB 4700:L$=H$:G0OSUR 4700 :H$=L$+HSIRETURN

REM

REM s###x3#% GETBYTE Subroutine

REM Get a bvte from the obdect code buffer
D=PEEK(S):L=2:G0SUB B8100:5=5+11U=U+1IRETURN

REM

REM s####% GETDATA Subroutine

REM Get an orerand value from the field characters
GOSU2 200IM=X-KIA$=G3%:C=1

GOSUB SSO0IIF K<M GOTO 5100 REM Arithmetic orerand
IF LEFT$(G%,1)<{>" " GOTO S030
D=ASC(MID$(G$,2,1))IRETURN: REM ASCII oprerand(s)
GOSUP B8GOO:IF T<LY THEN D=T(T):RETURN: REM Symbol oeerand
IF RIGHT$(G$,1)<>»"H" GOTO S045
H$=LEFT$(G%,M-1)GOSUB BOOOIRETURNI RE Hexadecimal opPerand
IF RIGHT$(G$,1)<{>"B" GOTO S0O5S5
M=M-1.:G$=LEFT$(G%.M) :GOSUB B200: REM Birnarv oeerand
D=UAL(G%) iRETURNI REM Decimal operand

REM

REM Arithmetic Procedures

U=0IW=0

Q=MIM=K-C:G$=MID$(A%$,.C,M) :GASUB S030

IF W=0 THEN S(0)=D:GOTO 5150

IF MID$(A%,C-1,1)="-" GOTO S13S

S(V)=5(V-1)+D:GATO S140

S(Y)=5(v-1)-D

IF W=0 G370 5150

D=S(V) IRETURN

U=U+1 I1C=K+1IM=0.G0SUB SSO0IIF K>M THEN W=1

GOTO Si10

REM

REM ###3#% SEARSIGN Subroutine

REM Search if any ‘+’ or ‘-’ sian in the source statement
FOR X=C TO M

T=ASC(MID$(A%$,K,1))IIF T<»43 AND T<>45 THEN NEXT
RETURN

REM

REM ###%##* COUNTOPERAN Subroutine

REM Count the number of succeedins orerand(s)

C=0

GOSUB 900IIF R>0 THEN RETURN

IF LEFT$(G$,1)="'" GOTO SBSO

C=C+1:G0T0 5610

SGS0 C=C+((X-X)-2):G0T0 S610

S660 REM

8000 REM ####% HEX-DEC Subroutine

8010 J=LEN(H$):D=0

8020 FOR I=1 70 J

8030 T=ASC(MID$(H$,J+1-1,1))

8040 S1=D+1G"(I-1)#(T-55):S2=D+1G"(I-1)%#(T-43)
8050 IF T-»64 THEN D=Si

8060 IF T164 THEN D=S2

BO70 NEX

8080 RETURN

8030 REM

8100 REM ####% DEC—-HEX Subroutine

8110 D(D)=D

8115 FOR I=1 70O 4

8120 D(IN=INT(D(I-1)/1B):P(I)=D(I-1)-D(I)*16
8125 J=I:IF INT(D(I))=0 GOTO 8135

8130 NEXT

8135 FOR I=1 TO J

8140 E$(J+1-1)=CHR$(48+P(I))

8145 IF P(I)>3 THEN E$(J+1-1)=CHR$(SS+P(I))
8150 NEXT

8155 H$=""IFOR I=1 7O J

8160 H$=H$+ES(I) INEXT

8165 REM MAKE UP L DIGITS

8170 IF J=L THEN RETURN

8175 H$="0"+4H$:J=J+1.G0OTO 8170

8180 REM

B200 REM ##### RIN-DEC Subroutine

8210 D=0! FOR I=1 TO M

8220 D=D+2"(I-1)*YVAL(MID$(G$, M+1-1,1))

8230 NEXT

8240 RETURN

8250 REM

8500 REM s###%% CHKMNEMONIC Subrcutine

8505 REM ChecK with mnemonic table to see it is instruction mnemonic
8510 FOR T=0 YO 79

8520 IF G#<>B$(T) THEN NEXT

8530 IF T<46 THEN Z=1IRETURN

8540 IF T<S7 THEN Z=2:RETURN

8350 IF T<80 THEN Z=3:IRETURN

8560 Z=0IRETURN

8570 REM :

8BGO0 REM #x#### SEARSYMBOL Subroutine

8605 REM Compare with svmbol table entries
B8G10 T$=LEFT$(G%.,6) -
8620 FOR T=0 TO Y

B630 IF TH<>T$(T) THEN NEXT

8640 RETURN

8650 REM

8700 REM ##### DISPLAY Subroutine

8705 REM Organize a Pprint statement for listins
8710 D$=A%+" "+B3$+" “+Cs+" "“+D$

8720 GOSUB BBOO:IF P=0 GOTO 10S

8720 RETURN

8740 REM

8800 REM #####* PRINT Subroutine

8803 REM Print a statement to either screen or Printer
8810 IF 0=2 THEN PRINT D$:RETURN

8820 PRINT#1,D$:RETURN

8840 REM

9000 REM s##### END Operation

9005 REM Print the symbol table entries and exit
9010 A$=Y$.B$=X$:Ce=Y$:P=1.1GAOSUB 8700

9500 A$="SYMBOL TABLE:":IF 0=2 THEN PRINTIPRINTA$:PRINT:GOTO950S
9502 PRINTH#1:PRINT#1,ASIPRINT#! ‘

Q505
9510
9520
952s
as30
9540
gstso
2600
9610
9620
9630
96335
9640

K=0
Dg=nn
FOR X=1 TO S

TE(K)=T$(K)+" "“IIF LEN(T$(X))<7 GOTO 9525

D=T(K)IL=4:G0SU2 B8100:D$=Ds+TS$ (K)+HS+XN$IK=K+1

IF K<Y THEN NEXT

GOSuUR 8800:IF K{Y GOTO 9510
OSRINTIPRINT"OK" IPRINT

INPUT"Do vou want to ao to Loader
IF LEFT$(A%,1)="N" GOTO 2640

POKE 133,85:DISK!"CALL SGO0=36,1"
DISK!"CALL SEQ0=39,1"IRUN"CSI-83"
RUN"BSEXEC*"

(Y/N)"7P%

207

