Laboratory 15 - Introduction to the SDK-8085 Microcomputer

Goals:
- Understand the fundamental hardware and software structure of a microcomputer.

- Program and execute some machine language programs.

Background:
The SDK-8085 (the SDK) is a single board microcomputer with an 8085 CPU. This is the grandfather of the 8088, 80286, 80386, 80486, and PENTIUM processors used in IBM and compatible computers. It has an eight bit wide data bus and sixteen bit wide address bus. The following details the hardware memory design of the SDK.

Memory Map for the SDK-8085 with NVRAM and EPROM addition.
The memory is decoded into eight 2K byte blocks at two different places in memory. Sixteen kilobytes of memory is one quarter of the whole memory addressing space. The four ranges are:

Hex Address

Hex Address

Comments
0000H

3FFFH

The SDK area

4000H

7FFFH

Not decoded

8000H

BFFFH

NVRAM and EPROM area

C000H

FFFFH

Not decoded

A closer look at the lowest 16K addresses yields:

Hex Address

Hex Address

Comments
0000H

07FFH

Monitor Rom (2K)

0800H

0FFFH

Expansion Rom (not used)

1000H

17FFH

Not used

1800H

1FFFH

Keybd/Display Control

2000H

27FFH

RAM (1/4 Kbyte folded over

eight times)

2800H

2FFFH

 "

3000H

37FFH

Not used

3800H

3FFFH

Not used

A closer look at the third 16K block of memory:

Hex Address

Hex Address

Comments
8000H

87FFH

NVRAM (eventually 2K, now

1/2 K 8600-87FF)

8800H

8FFFH

Not used

9000H

97FFH

EPROM (2K 2716 type)

9800H

9FFFH

Not used

A000H

A7FFH

Not used

A800H

AFFFH

Not used

B000H

B7FFH

Not used

B800H

BFFFH

Not used

Each of the "Not used" 2K blocks of memory has a Chip Select pulse available. These are from the 8205 decoder on the main board and the 74138 (identical to the 8205) on the expansion area. For a description of this decoding, see the "MCS - 80/85 Family User's Manual" and the "SDK - 85 System Design Kit User's Manual."

Appendix E is a listing of some of the instructions available in the 8085 CPU instruction set. There are one, two, and three byte instructions available for your use. The instruction allow the movement of data from register to register, between memory and registers, math, logic, etc.

Appendix F is a list of available programs (they start with PR) and subroutines (they start with SR). The programs are stand alone. They are used for various experiments and for certain system operations. The subroutines are to be used within other programs. They do such tasks as displaying to the display, reading the keyboard, random number generator, etc.

Procedure:
1.) You are going to look at the decoding scheme for the SDK. The decoding is done by a 74138 decoder (an 8205 or 3205) on the computer. See Appendix C for more information about this IC. It is directly above the 8085 CPU. It is a 3 to 8 decoder with three enables, one high , two low. It is wired as shown below

[image: image1.wmf]A15

A14

A13

A12

A11

A10

....

A0

A0

A1

A2

O1

O0

O2

O3

O4

O5

O6

O7

8355 below CPU

Empty Slot below 8355

Not used

Keyboard Display

Upper 8155 RAM by Keyboard

Lower 8155 RAM by Keyboard

Not used

Not used

Pin 15

Pin 14

Pin 13

Pin 12

Pin 11

Pin 10

Pin 9

Pin 7

The A15 to A0 lines are the sixteen address lines. (1) In hexadecimal notation, give the range of addresses which will activate each of the outputs O0 to O7. (2) Do your values agree with the values from the previous memory map?
2.) Turn the computer on by turning on the blue power supply. The basic operation of the SDK-8085 is quite simple. The four operations we will use are: RESET, EXAMINE MEMORY, SUBSTITUTE MEMORY, and GO. Key strokes entered from the keypad will be given by < >, and the contents of the display will be given by ().

RESET
The RESET key on the keypad will cause the computer to "start over." The current contents of the RAM memory are not lost, but any program execution is halted and the monitor program starts over. This RESET is a "hardware reset". The message "-8085" will be displayed in the display just as it is when the power is turned on.

<RESET>

(-8085)

Used for breaking out of a program or reinitializing the system.

EXAMINE MEMORY CONTENTS
The contents of any memory location, RAM or ROM, may be examined. For example, to examine the contents of memory location 92ACH push the following keystroke sequence.

<RESET>

(- 80 85)

<SUBST MEM>
(.)

< 9 >

(0 0 0 9)

< 2 >

(0 0 9 2)

< A >

(0 9 2 A)

< C >

(9 2 A C)

< NEXT >

(9 2 A C 0 7)

After the NEXT key is pushed, the 0 and 7 in the data field of the display will be the data (in Hex numbers) of the memory address 92ACH. This address is shown in the address field of the display.

If the NEXT button is pushed again, the address 92ACH is incremented by one and the contents of this new memory locations shown in the data field of the display. This may be repeated as many times as you like. You cannot go backwards to smaller numbers.

To escape, you may push either the RESET or EXEC buttons.

The RESET starts the monitor over again, and the EXEC button causes an escape from the Examine Memory sequence and waits for the next command from the keypad.

CHANGE MEMORY CONTENTS
To change the contents of a memory location the same sequence as above is used, but after the NEXT is pushed the next two keystrokes will appear in the data field of the display. If NEXT is now pushed, this new data is put into the memory location just examined and the address and the contents of the next memory are displayed. Again, two keystrokes from the keyboard followed by the NEXT button will cause this data to be entered into the memory. Only pushing NEXT or EXEC will cause the new data entered from the keypad to be written into the memory. The EXEC will cause an escape from the examine memory sequence and so will the RESET. However, the RESET will not write the last data change into memory.

PROGRAM EXECUTION
The following sequence will cause a program to execute starting at a memory location of your choice.

< GO >

(.)

< Hex num 1 >
(0 0 0 n1)

< Hex num 2 >
(0 0 n1 n2)

< Hex num 3 >
(0 n1 n2 n3)

< Hex num 4 >
(n1 n2 n3 n4)

< EXEC >

(E)

The computer will begin the execution of your program at the memory address n1 n2 n3 n4. The "E" in the display indicates the computer is executing a program. Unless your program eventually jumps to the monitor restart point, the only way out of the program execution is the RESET button.

a.)
Examine memory location 07D1 (generally written 07D1H where the H indicated that the number preceding it is a Hex number.) (3) What number is at this location?

b.)
Change the contents of RAM memory location 2050H to D9H and then check to see that the change has been made. (4) How do you do this checking and what did you find?

c.)
Start program execution at location 0000H. This is what the RESET button does. (5) Agree?

3.) Enter and run the following programs. Be sure to understand how each statement contributes to the program. These programs are to introduce machine code in a step by step fashion.

PROGRAM 1 - Load the accumulator and move it to a memory location.
Addr

MC

Assem

Comments

8600

31

LXI SP

;SETUP STACK POINTER

8601

C2

C2

8602

20

20

8603

3E

MVI A

;LOAD ACCUM WITH FOLLOWING BYTE

8604

35

35

;ANY NUMBER

8605

21

LXI H

;LOAD HL PAIR WITH THE FOLLOWING

8606

E4

E4

; L = E4

8607

28

28

; H = 28

8608

77

MOV M,A

;MOVES ACCUM TO MEMORY LOCATION POINTED TO BY HL REG. CONTENTS IN THIS CASE, 28E4

8609

76

HALT

;STOPS EXECUTION

1.)
Load memory location 28E4 with 00 from the keyboard using the SUBST MEMORY key sequence.

2.)
Check it to make sure it is there.

3.)
Load the program using the SUBST MEMORY key sequence.

4.)
Run the program using the GO key sequence.

5.)
Check the contents of 28E4 and verify that the program did indeed write 35 to memory location 28E4.
(6) How would you change the program to write a different number to this memory location?

(7) How would you change the memory location to which the accumulator is stored?

PROGRAM 2 - Displays the accumulator to the data field of the display.
Addr

MC

Assem

Comments

8600

31

LXI SP

;SET UP STACK POINTER

8601

C2

C2

8602

20

20

8603

3E

MVI A

;LOAD ACCUM. WITH FOLLOWING BYTE

8604

42

42

;BYTE TO MOVE INTO ACCUM

8605

CD

CALL

;CALL TO SUBROUTINE, THE

8606

C0

C0

ADDRESS IS GIVEN IN THE TWO

8607

90

90

BYTES FOLLOWING THE INSTRUCTION LOW BYTE OF ADDRESS FIST

8608

76

HLT

;WHERE THE COMPUTER RETURNS FROM THE SUBROUTINE AND ENDS EXECUTION

1.)
Load the program and verify its operation.
(8) How would you display a different number to the data field?

PROGRAM 3 - A counter in the address field of the display.
Addr

MC

Assem

Comments

8600

31

LXI SP

;SET UP STACK POINTER

8601

C2

C2

8602

20

20

8603

11

LXI D

;LOAD DE REGS WITH FOLLOWING

8604

00

00

E = 00

8605

00

00

D = 00

8606

CD L1:
CALL

;SUBROUTINE FOR DISPLAY OF DE

8607

B0

B0

IN THE ADDRESS FIELD OF

8608

90

90

OF THE DISPLAY

8609

13

INX D

;ADDS ONE TO THE 16 BIT REG MADE UP OF DE TOGETHER

860A

C3

JMP L1

;UNCONDITIONAL JUMP TO

860B

06

06

FOLLOWING LOCATION LABELED L1

860C

86

86

;ENDLESS LOOP

Load and execute the program.
(9) Why is it going so fast?
PROGRAM 3a - Slowing the counter down.
Leave everything up to 860A alone and add the following.

860A

D5

PUSH D

;SAVES DE ON THE STACK

860B

11

LXI D

;LOAD DE AGAIN WITH NUMBER FOR

860C

FF

FF

DELAY LOOP. FFFF IS THE

860D

FF

FF

LONGEST AND 0001 SHORTEST

860E

CD

CALL

;CALL TO DELAY ROUTINE

860F

D0

D0

COUNTS DOWN THE CONTENTS

8610

90

90

OF THE DE REG PAIR

8611

D1

POP D

;RESTORES DE (YOUR COUNTER)

FROM THE STACK

8612

C3

JMP L1

;JUMP BACK TO THE LOOP L1

8613

06

06

NEVER ENDING LOOP FROM

8614

86

86

8606 (L1) TO HERE

Load this addition and execute the program.
(10) Did it slow it down?

(11) Change the contents of the delay subroutine (change DE regiser pair before the CALL) and verify that this does change the counting rate.

(12) What hex number is half the size of FFFF?

PROGRAM 4 - Fill in a page of memory with zeros.
Addr

MC

Assem

Comments

8600

31

LXI SP

;SET UP STACK

8601

C2

C2

8602

20

20

8603

21

LXI HL

;PICK PAGE OF MEMORY FOR

8604

00

00

ZEROING I PICK THE EXPANSION

RAM

8605

28

28

8606

AF

XRA A

;EXCLUSIVE ORS ACCUM WITH ACCUM ZEROS ACCUM IN ONE STATEMENT

8607

77
 LP:
MOV M,A

;MOVES ZERO TO FIRST MEM LOCATION

8608

2C

INR L

;INCREMENTS L

8609

C2

JNZ LP

;JUMPS IF L DID NOT SET THE ZERO FLAG

860A

07

07

860B

86

86

860C

CF

RST1

;INTERRUPTS BACK TO MONITOR

1.)
Look at 2800 page and see if it contains zeros before you start.

2.)
Load and run the program.
3.)
Look at 2800 again and see if it contains zeros.
(13) Did it work? (14) What does the commmand at location 8606 do? (15) How would you change the program to load the 2800 page with something else?

(16) How would you change the page you wished to fill with something?

PROGRAM 5 - A quick look at the IN instruction.
Addr

MC

Assem

comments

8600

31

LXI SP

;SET UP STACK

8601

C2

C2

8602

20

20

8603

DB

IN

;INPUT FROM PORT ADDRESS OF

8604

21

21

THE NEXT CHANNEL (21 IN THIS CASE)

8605

CD

CALL

;SUBROUTINE TO DISPLAY THE

8606

CO

CO

ACCUMULATOR

8607

90

90

8608

C3

JMP

;UNCONDITIONAL JUMP BACK TO

8609

03

03

THE IN INSTRUCTION WHICH

860A

86

86

LOOPS OVER AND OVER

1.)
Load and execute this program. Touch Port 21 on the SDK -8085 and watch the display. The ports are along the right edge of the wire wrap area of the computer. Port 21 (and 22 and 23) have a header in them (little metal posts sticking up). (17) Does it work?
2.)
Touch other Ports and watch the display. They should not have as much influence on the state of the display as Port 21 does. (18) Why?
3.)
Change the program to input from Port 2B, find it on the computer and verify that you are now inputing from this Port and no longer from Port 21. (19) How can you tell?
(20) How many different Input Ports are available?

PROGRAM 6 - Output ports.
Addr

MC

Assem

Comments

8600

31

LXI SP

;SET UP STACK

8601

C2

C2

8602

20

20

8603

3E

MVI A

;LOAD STATUS CONTROL REGISTER

8604

01

01

WITH 01 WHICH WILL MAKE

PORT 21 AN OUTPUT PORT

8605

D3

OUT

;OUTPUTS 01 TO PORT 20 THE

8606

20

20

COMMAND STATUS REGISTER

FOR PORTS 21, 22 AND 23

NOTE: 22 AND 23 ARE STILL INPUT PORTS!

8607

3E

MVI A

;LOAD A WITH ALL ZEROS IN THE

HIGHEST FOUR BITS AND ONES IN THE LOWEST FOUR BITS

8608

OF

OF

8609

D3

OUT

;OUTPUT THIS BIT PATTERN TO

860A

21

21

PORT 21

860B

76

HLT

;STOP EXECUTION

1.)
Run the program and use the logic probe to determine whether you have put the correct bit pattern out to Port 21. (21) Agree? Look at other ports with the logic probe. Since they are input ports (the default for this computer) they are high impedance and thus are not high or low. (22) Agree?
2.)
Hit the RESET button and check Port 21 again. You will find if you check with the logic probe that it is now back to an input port. (23) Agree? The monitor program does this on RESET.

(24) How would you make both Ports 21 and 22 output ports? Try this and put out two different numbers to these ports and check them with your logic probe. Map the bit order at the Port 21 by setting one bit at a time and seeing to which pin this corresponds. (25) What numbers (hex and decimal) set each of the eight bits?
48

_1001919836.unknown

