THE 6800
MICROPROGESSOR

A Seli-Studv Gourse with Applications

REVISED EDITION

LANCE A.LEVENTHAL

Engineering Technology Department
Grossmont College

]

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

ISBN 0-8104-5120-4
Library of Congress Catalog Card Number 78-56262

Copyright © 1977 by Electronic Product Associates, Inc. Copyright © 1978
by Hayden Book Company, Inc. All rights reserved. No part of this book
may be reprinted, or reproduced, or utilized in any form or by any elec-
tronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage and
retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

78 79 80 81 82 83 84 85 86 YEAR

PREFACE

I have planned this laboratory manual as a simple introduction to the use of microcom-
puters. It assumes almost no hardware beyond that supplied with a basic Motorola 6800
Computer. The last two exercises require an edge connector and a few simple switches and
lights — all of which can be purchased from electronic or radio stores at very low cost. Thus
the manual should be particularly suitable for use in colleges, trade schools, adult education
courses, secondary schools, small companies, homestudy courses, and other situations where
extensive laboratory facilities and materials are not available.

The exercises are aimed at electrical engineering and technology students. However, |
have assumed no particular knowledge of either programming or digital logic so the manual
should be useful for students of data processing, mathematics, computer science, other engi-
neering or technical disciplines, health sciences, and other fields. It should also be suitable
for those who are just curious about how computers work. Even if the student plans to use
a high-level language in actual applications, a little knowledge about how the computer
operates at the machine language level may be useful and interesting; it may also provide
insight into more complex problems.

The emphasis here is on the use of the microcomputer as a controller which responds to
inputs and prepares suitable outputs. Simple control applications are common in industry,
easy to understand, and require little extra hardware. However, I should mention that the
microcomputer is equally useful in industrial control, communications, data acquisition,
business data processing, simulation, data logging, interfacing, human interaction, signal
processing, and other applications. Perhaps subsequent manuals will explore some of these
areas. The microcomputer can do anything that a large computer can do. Furthermore, the
low cost of the microcomputer makes it an ideal teaching tool since students can have ready
access to it and complete control over its facilities.

The laboratory exercises contain many short programs. I have used the notation from
the standard Motorola 6800 assembler (# means immediate, $ means hexadecimal, % means
binary) so that the programs have the same format as those available in manuals from
Motorola and other sources and in textbooks and articles. I have provided hexadecimal
listings of many programs to provide students with reasonable starting points for relatively
brief laboratory sessions. I have tried to make the programs clear, simple, well-structured,
and well-documented rather than efficient. All of the programs have, of course, been fully
tested on the 6800 and I take responsibility for any errors. This manual does not describe
the Motorola 6800 in great detail; more extensive discussions are available in the standard
manuals and in my textbooks.*

I would like to thank Mr. Tim Mathis, Mr. Bill Sheets, and Mr. Joe Stapczynski of
Southwestern College, Mr. Colin Walsh of Grossmont College, and Mr. Victor Wintriss and
Ms. Patti Neumann of Electronic Product Associates, Inc., for their help in producing this
manual. Mr. Karl Amatneek of KVA Associates has provided many useful suggestions and
has kept me from straying too far from the main subject of interest.

Lance A. Leventhal
Solana Beach, CA

*Microprocessors, published by Prentice-Hall, and 6800 Assembly Language Programming, published
by Adam Osborne and Associates.

INTRODUCTION

The 6800 Laboratory Manual is designed as the
basis of a self-study course in microprocessor appli-
cations for use with a minimal Motorola 6800
computer.

We recommend that the Motorola M6800 Program-
ming Reference Manual and the Motorola M6800
Microcomputer System Design Data Manual be used
as reference sources with this Manual.

ARITHMETIC

DECIMAL .
MULTI-WORD
16-BIT

ARRAYS
BREAKPOINT

COMMON ERRORS (IN PROGRAMS) .

CONNECTOR (40 PIN) .
DEBOUNCING
DEBUGGING

DELAY PROGRAM
DISPLAYS .

DISPLAY PATTERNS .
SEGMENT PATTERNS .

SEVEN-SEGMENT CODES.

ENDING MARKER
FLOWCHARTING .
HEXADECIMAL CODES
INDEXING .
INTERRUPTS .
KEYBOARD

IDENTIFYING KEYS .
ORGANIZATION

MONITOR COMMANDS
MONITOR SUBROUTINES
PIA .

POLLING

RESET

ROUNDING
SEVEN-SEGMENT CODES .
STACK (FOR DEBUGGING) .
SUBROUTINES .

BRIEF INDEX

55-63

56,57
62, 63
58,59

23-35

39

44

76

17,18

37-45

14, 65, 66

11-14, 26-28, 47-53

13
. 13
48, 49

25

37-39

2

23

85-92

7-9, 17-22, 31-35

19-21
7

1,3
68, 69
73-83
90, 91

1
59-62
48, 49
38, 39
65-72

LABORATORY 0

Introduction to the 6800

The computer used throughout this book is called Micro-68. The Micro-68 is an in-
expensive microcomputer based on the Motorola 6800 microprocessor. Besides the micro-
processor, the Micro-68 has program and data memory, input/output circuitry, a 16 key
keyboard, 6 seven-segment displays, power supply, and case. The instructions in this
manual will be applicable to any 6800 processor.

Figure 0-1
Logical View of the 6800 Computer
Memory Registers
Accum A —
program Accum B
Instruction Index X
1 Stack Pointer
data - Program Counter 1/0
Status Flags

keyboard
&
displays

The microcomputer is under control of a monitor program stored in read-only
memory. This program allows you to place programs and data in read-write memory, execute
programs, and examine the contents of memory. Each memory location has a 16 bit address
(four hexadecimal digits) and contains 8 bits of data (two hexadecimal digits). Table 0-1 is a
list of the hexadecimal digits and their binary equivalents.

The Micro-68 has two working registers, A and B. Each register is 8 bits wide and is
able to hold two hex digits.

The index register X is a third internal register used to offset an address by an amount
stored in X. The contents of the X register are added to the instruction address to determine
the absolute address of an operand.

The stack pointer register contains the address of the top-of-stack element in memory.

The program counter register contains the address of the next instruction to be
executed.

The status flags are single bits used to indicate conditions and processor status.

These registers and their values will be fully discussed in the following laboratory
exercises.

Table 0-1

Hexadecimal Code Table
Hexadecimal Digit Binary Equivalent Decimal Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Note that the Micro-68 uses the lower case letters b and d for those hexadecimal digits.

LABORATORY 1

Simple Programming

ONES COMPLEMENT

The first program we will write is an inverter or complement program. It will simply
take the contents of memory location 40, complement each bit, and place the result in mem-
ory location 41. The program is:

LDAA $40 GET DATA
COMA COMPLEMENT
STAA $41 STORE RESULT
SWI

Let’s now look at each instruction:

1) LDAA $40 loads accumulator A with the contents of memory location 0040
(hexadecimal). The “$” means hexadecimal rather than decimal. Remember that the
address is 4 digits long. However, when the first two digits are zero we can often drop them
and use the DIRECT mode (second addressing mode on the 6800 instruction card).

2) COMA complements accumulator A, i.e., replaces each “0” bit with a “1”’ and
each “1”” with a ““0” just like a set of inverter gates.

3) STAA $41 stores the contents of accumulator A in memory location 41 (hex).
Again, you can use the direct mode since the first two digits of the address are zero.

4) SWI (software interrupt) returns control to the monitor. You should put this
instruction or some exit instruction at the end of all programs so that the computer goes
back to the monitor rather than wandering off aimlessly.

To enter the program, you must look up the hexadecimal codes on the 6800 pro-
grammer’s instruction card. Remember to use the direct mode for LDAA and STAA. The
column marked # on the programmer’s card tells how many words of memory the instruction
requires, the column marked ~ tells how many clock cycles it takes to execute.

The hexadecimal program (starting in memory location 0) is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAA $40 96
01 40
02 COMA 43
03 STAA $41 97
04 41
05 SWI 3F

Note that both the LDAA and STAA require a second byte for an address.

Enter the program and place the data (36 hex) in memory location 40. Then run the
program. The answer should be C9 (hex). Why? (Look at the bit patterns.) Examine
memory location 41 and see if it contains C9.

Run the program again with the data 00. The answer should be FF.

TWOS COMPLEMENT

The instruction NEGA (40 hex) will produce the twos complement (the ones comple-
ment plus 1). Modify the program so that it produces the twos complement and run the fol-
lowing examples. (The location enclosed in parentheses means ““the contents of location.”)

1) Data = (40) = 36

Result = (41) = CA
2) Data = (40) = 00
Result = (41) = 00

USING ACCUMULATOR B

The Motorola 6800 has two accumulators (A and B) which are generally equivalent.
Rewrite the two earlier programs so that they use accumulator B and run them. Remember
to use the codes:

LDAB DIRECT D6
STAB DIRECT D7
COMB 53
NEGB 50

LABORATORY 2

Introduction to Motorola 6800 Input/Output

The Motorola 6800 treats input/output devices just like memory locations. For exam-
ple, the keyboard of the Micro-68 used in this book uses memory addresses 8004 and 8006.
Memory location 8004 has 1 bit for each of keys 0-7 organized as follows:

Bit 7 6 5 4 3 2 1 0

8oo4 | [T T T T T 7]
Key 7 6 5 4 3 2 1 0

Memory location 8006 similarly has 1 bit for each of keys 8-F:
Bit 7 6 5 4 3 2 1 0

soos | [| [T T [T 7]

Ky F E D C B A 9 8

The bit is “0” if the key is being pressed, “1” otherwise.

You may use memory locations 8004 and 8006 just like any other locations except that
it doesn’t make much sense to store data there. Note that the first two digits of these

addresses are not both zero so you’ll have to use the EXTENDED mode (the fourth address-
ing mode on the instruction card).

The programs for keyboard I/O are written in symbolic form, where STATUS has
value $8004 in the following examples.

WAITING FOR A KEY CLOSURE

The following program will wait until you press key S and will then return control to
the monitor:

WAITK LDAA STATUS GET KEYS 0-7
ANDA #%00100000 IS KEY 5 BEING PRESSED?
BNE WAITK NO, WAIT UNTIL IT IS
SWI

Let us now look at each instruction:

1) LDAA STATUS loads accumulator A with the contents of memory location
STATUS, i.e., with the state of keys O through 7. Remember that you must use the code for
LDAA extended (B6).

2) ANDA #%00100000 logically ANDs the contents of accumulator A with the
binary number 00100000. The # means “immediate” (i.e., the data is right there in the next
word rather than somewhere else in memory), and the % means “binary”. The result of the
logical AND is O if key 5 is being pressed (bits = 0), and 00100000 if switch S is not being
pressed. This process is called masking.

3) BNE WAITK causes the computer to execute the instruction at memory location
WAITK next if the ZERO bit is 0. Otherwise, the computer proceeds to the next instruction

in sequence (i.e., SWI). Remember that the ZERO bit is “1”’ if the result of the last operation
was zero. '

The program in hex is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 WAITK LDAA STATUS B6
01 80
02 04
03 ANDA #%00100000 84
04 20
05 BNE WAITK 26
06 F9
07 SWI 3F

Note the following:

1) LDAA STATUS uses the extended mode and has the complete address in the next two
words (most significant digits first).

2) ANDA #%00100000 uses the immediate mode and has the data in the next word.
Note that the function of the mask is clearest in binary.

3) BNE WAITK uses a relative address which tells the computer how far to branch
from the end of the instruction. The distance is a twos complement number so it can be
either positive or negative. You can calculate the distance by subtracting the address of the
next instruction from the address of the destination. In this case, the distance is:

0000 0000
-0007 = +FFF9
F9

Hexadecimal subtraction is tricky and you should always check the result. You can drop the
2 most significant digits. Remember that subtraction is the same as adding the twos complement.

Enter and run the program. What happens when you press key 07 What happens when
you press key 57

Change the program so that it responds to key 6 and run it. Next make the program
respond to key 3.

Key 7 is particularly simple to use since you can test bit 7 as the negative (N) bit. The
following program will do the job:

WAITK LDAA STATUS GET KEYS 0-7
BMI WAITK WAIT IF KEY 7 IS NOT BEING PRESSED
SWI

The hexadecimal program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 WAITK LDAA STATUS B6
01 80
02 04
03 BMI WAITK 2B
04 FB
05 SWI 3F

Note here that:

1) BMI causes a branch if the NEGATIVE bit is 1. The NEGATIVE bit is the most
significant bit (bit 7) of the previous result.

2) The offset for BMI is:

00 00
-05 = +FB
FB

(Check it!)

Enter and run the program for key 7. Key 0 is also simple to use with the following program:

WAITK LSR STATUS IS KEY 0 BEING PRESSED?
BCS WAITK NO, WAIT
SWI

Enter and run this program. LSR extended is 74 and BCS is 25.

WAITING FOR 2 CLOSURES

You can combine programs to wait for more than one closure. The following program
will wait for keys 2 and 5 in that order:

WAIT1 LDAA STATUS
ANDA #%00000100 ISKEY 2 BEING PRESSED?
BNE WAIT1 NO, WAIT

WAIT?2 LDAA STATUS
ANDA #%00100000 IS KEY 5 BEING PRESSED?
BNE WAIT?2
SWI

The hexadecimal program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 WAITI LDAA STATUS B6
01 80
02 04
03 ANDA #%00000100 84
04 04
05 BNE WAITI1 26
06 F9
07 WAIT2 LDAA STATUS B6
08 80
09 04
0A ANDA #%00100000 84
OB 20
oC BNE WAIT2 26
oD F9
OE SWI 3F

Enter this program and run it. Note that the two relative addresses in the program are:

1) BNE WAITI

00 00
-07 = +F9
F9
2) BNE WAIT2
07 07
-0E = +F2
F9

Modify the last program to perform the following tasks:

1) Wait for key O followed by key 7.

2) Wait for keys 2 and 5 followed by keys 0 and 7.

3) Wait for either key O followed by key 7 or key 7 followed by key 0.
What is the difference if you replace ANDA with SUBA?

10

LABORATORY 3

Using the Micro-68 Displays

The Micro-68’s LED (light-emitting diode) displays use memory locations 8008 and
800A. Memory location 8008 is the data, and memory location 800A determines which dis-
plays are on.

The basic LED configuration is simple:

ANODE

~
ANV @

CATHODE

Current flows (and the LED lights) when the anode is positive with respect to the cathode.

The resistor limits the current through the LED. The computer can control the LED either
by placing a logic “1” at the anode (if the cathode is grounded) or by placing a logic “0” at
the cathode (if the anode is tied to +5 volts).

Each 7-segment display consists of 7 segment LEDs and a decimal point organized as
shown in Figure 3-1. The Micro-68 uses the following arrangement to control the LEDs:

1) Memory location 8008 has one bit for each segment and the decimal point as follows:
Bit 7 6 5 4 3 2 1 0
8008 | a|[b]c[dJe]f g [dp|

A zero in the bit position turns the LED on, a one turns it off.

2) Memory location 800A has six bits which control whether entire seven-segment
displays are on or off; it is organized as follows:

Bit 7 6 5 4 3 2 1
800A Not LED LED LED LED LED LED Not
Used 6 5 4 3 2 1 Used

A one in the bit position turns the display on. The LED numbering is:

LED LED LED LED LED LED
1 2 3 4 5 6

where LEDs 1 through 4 are the address displays (on the left) and 5 and 6 are the data dis-
plays (on the right). We will use LIGHTS in place of $800A, and GLOW in place of $8008 in
the following programs, but remember their values.

TURNING ON AN LED

The following program will light all the decimal point LEDs.

LDAA #$FF

STAA LIGHTS TURN ALL DISPLAYS ON
LDAA #%11111110

STAA GLOW DECIMAL POINTS ON

SWI

11

The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAA #SFF 86
01 FF
02 STAA LIGHTS B7
03 80
04 0A
05 LDAA #%11111110 86
06 FE
07 STAA GLOW B7
08 80
09 08
0A SWI 3F

Note that LDAA immediate (86) loads accumulator A with the data in the address following
the instruction.

Enter and run the program. What happens?

The problem is that the program only turns the displays on for a few microseconds be-
fore the monitor takes control. You can solve the problem by not returning to the monitor.
End the program with:

HERE BRA HERE

or
0A HERE BRA HERE 20
0B FE

This instruction just jumps to itself until you reset the computer. The relative offset is:

0A 0A
~0C = +F4
FE

Now run the program and see what happens. Table 3-1 contains the patterns required in
LIGHTS to turn on the various displays; Table 3-2 contains the patterns required in GLOW
to turn on various segments. Try some combinations. Remember that ZERO is on, ONE is
off. To turn on more than one segment, clear each bit. For example:

Segments Pattern (Hex)
aand b 3F
aande 77
bandc 9F
bandg 8D
eand f F3

12

Figure 3-1
Seven-Segment
Display

—E_

o [
J |

E

Table 3-1
Patterns for Turning on Displays
(Memory Location 800a)

Display Pattern
Number (Hex)
) Al
3 91
4 89
5 85
6 83

Remember that bits 0 and 7 really don’t matter since they’re 210t used. To turn on more than
one display, just set each bit. For example:

Display Pattern
Number (Hex)
1 and 2 El
land 5 C5
2and 3 B1
3and 5 95
4 and 6 8B
Table 3-2

Patterns for Turning on Segments
(Memory Location 8008)

Segments Pattern (Hex)

7F

BF
DF
EF
F7

FB
FD
FE

o
,.OOQ"“a(D o0 o e

13

PROVIDING A DELAY

Of course, in most real applications, we’ll want to turn things on for a specified amount
of time. The following program provides a delay by counting with the index or X register:

LDX #0 DELAY LOOP

COUNT INX

BNE COUNT

Remember that the X register is 16 bits or 4 hexadecimal digits long so the program counts
from 0000 to FFFF before it reaches zero again. When the computer adds 1 to FFFF, the

result is zero.

Enter the delay loop at the end of the display program, i.e.:

0A
OB
0oC
0D
0E
OF
10

LDX #0 CE

00

00

COUNT INX 08
BNE COUNT 26

FD

SWI 3F

Run the program. What happens? You can change the length of the delay by changing
memory locations OB and OC (the starting count). Try the values in the following table until

you can no longer see the display.

Delay (seconds)

Contents of 000B (Hex)

1
1/2
1/4
1/8
1/16
1/32
1/64
1/128
1/256

00
80
Co
EO
FO
F8
FC
FE
FF

You can turn on first one segment (decimal point) and then another (g) with the fol-

lowing program:

LDAA #$FF ALL DISPLAYS ON
STAA LIGHTS
START LDAA #%11111110
STAA GLOW DECIMAL POINTS ON
LDX #0
DLY1 INX DELAY 1
BNE DLY1
LDAA #%11111101
STAA GLOW SEGMENT G ON
LDX #0

14

DLY2 INX DELAY 2
BNE DLY?2
JMP START REPEAT FOREVER

The hexadecimal version is:

Memory Memory
Address Instruction Contents
(Hex) {Mnemonic) (Hex)
00 LDAA #SFF 86
01 FF
02 STAA LIGHTS B7
03 80
04 0A
05 START LDAA #%11111110 86
06 FE
07 STAA GLOW B7
08 80
09 08
0A LDX #0 CE
0B 00
0oC 00
0D DLY1 INX 08
OE BNE DLY1 26
OF FD
10 LDAA #%l11111101 86
11 FD
12 STAA GLOW B7
13 80
14 08
15 LDX #0 CE
16 00
17 00
18 DLY2 INX 08
19 BNE DLY2 26
1A FD
IB JMP START 7E
1C 00
1D 05

Try running this program. What happens when you reduce the delays (location 000B
and 0016) according to the previous table? If you want to form some digits or letters, use
the codes in Tables 8-1 and 8-2.

15

LABORATORY 4

Using the Micro-68 Keyboard

Actually identifying which key has been pressed requires some manipulation. Note
that the Micro-68 uses its keyboard both for data and for commands. Let’s first investigate
using the keyboard for data.

Table 4-1 contains the binary patterns which are produced in STATUS by pressing the
various keys 0 to 7. If no keys are pressed, the pattern is all “1°’s” (i.e., FF hexadecimal). So
the following program will wait until you press a key in the 0 to 7 group.

WAITK LDAA STATUS GET KEYS 0-7
CMPA #SFF ARE ANY BEING PRESSED?
BEQ WAITK NO, WAIT
SWI
The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 WAITK LDAA STATUS B6
01 80
02 04
03 CMPA #SFF 81
04 FF
05 BEQ WAITK 27
06 F9
07 SWI 3F

Note that the instruction CMPA #S$FF subtracts FF from the contents of accumulator A
and changes the flags appropriately but doesn’t store the result anywhere.

Enter and run the program. Now change the program so that it waits until you stop
pressing a key.

Table 4-1
Patterns Produced by Various Key Closures
Pattern
Key Pressed Binary Hex
0 11111110 FE
1 11111101 FD
2 11111011 FB
3 11110111 F7
4 11101111 EF
5 11011111 DF
6 10111111 BF
7 O1111111 7F
None 11111111 FF

17

Now combine the two programs with the original version first. The combined program
should wait for you to press a key and then release it.

The combined program is:

WAITC LDAA STATUS GET KEYS 0-7
CMPA #$FF ARE ANY BEING PRESSED?
BEQ WAITC NO, WAIT UNTIL ONE IS
WAITO LDAA STATUS
CMPA #SFF YES, WAIT FOR IT TO BE
RELEASED
BNE WAITO
SWI
The hexadecimal version is:
Memory Memory
Address Instruction Contents
(Hex) {(Mnemonic) (Hex)
00 WAITC LDAA STATUS B6
01 80
02 04
03 CMPA #SFF 81
04 FF
05 BEQ WAITC 27
06 F9
07 WAITO LDAA STATUS B6
08 80
09 04
0A CMPA #S$FF 81
0B FF
ocC BNE WAITO 26
0D Fo9
OE SWI 3F

DEBOUNCING A KEY

If you try the combined program several times, you’ll probably find that it often
doesn’t wait for you to release the key. This is because a mechanical key (or any other
switch) doesn’t provide a clean closure. Instead, the switch bounces back and forth for a
while until it settles down. The computer, however, cannot tell the bounce from an actual
release of the key since the effects of the bounce and the release are the same (a logic ‘1’ in
the corresponding bit).

The solution to this problem is not to examine the key again until it has stopped bounc-
ing. Since the settling (or debouncing time) is usually less than 1 millisecond, a delay of one
millisecond will do the job. A simple delay program is:

LDX #N
DLY DEX
BNE DLY

18

If you look up the instructions on your card, you’ll find that they require the following num-
ber of clock cycles:

LDX # (immediate) -3
DEX —4
BNE —4
So the delay program takes:

te X (NX(4+4) + 3) microseconds

where t is the number of microseconds in a clock cycle.

To get a delay of 1 millisecond (1000 microseconds) at the standard 500 KHz rate of
the Micro-68 requires an N given by:

2X(8N+3) = 1000
I6N = 994
N = 62 (decimal)
= 3E (hex)

(See, high school algebra really is good for something besides counting apples and oranges).

The one millisecond delay program is:

LDX #3$3E
DLY DEX
BNE DLY
or in hexadecimal:
. Memory
Instruction Contents
(Mnemonic) (Hex)
LDX #$3E CE
00
3E
DLY DEX 09
BNE DLY 26
FD

Add the delay routine between the two sections of the previous program and try it. The
Micro-68 should now wait for you to press and release a key. What happens when you press
several keys at once? How would you extend the program so that it responds to any of the
sixteen keys? Does the monitor program respond to the operator pressing or releasing a key?
How can you tell? ‘

IDENTIFYING THE KEY

The next question is how to transform a key closure into the corresponding digit. Look
at Table 4-1 again.

19

The bit which is “0” is the one which identifies the key, i.e., bit 0 is ““0”" for key 0, bit 1 for
key 1, etc. So all you have to do is figure out which bit is ““0.” You can do that by counting
the number of shifts required to get a “0” bit into the CARRY, i.e., if accumulator A con-
tains the key closures from STATUS:

CLRB KEY NUMBER =0
SRKEY LSRA IS NEXT BIT “0”?
BCC DONE YES, DONE
INCB NO, KEY NUMBER = KEY NUMBER + 1
BRA SRKEY
DONE SWI

Accumulator B contains the key number at the end of the program (see the flowchart in
Figure 4-1).

An alternative identification program uses somewhat different initial conditions in order
to eliminate one of the jump instructions, i.e.,

LDAB #S$FF KEY NUMBER = -1

SRKEY INCB KEY NUMBER = KEY NUMBER + 1
LSRA IS NEXT BIT “0?
BCS SRKEY NO, KEEP LOOKING FOR “0” BIT
SwWI

The entire program is:

1) Wait for a key closure
2) Wait 1 ms. to debounce the key
3) Identify key

The assembly language version is:

WAITK LDAA STATUS GET KEYS 0-7
CMPA #S$FF ARE ANY BEING PRESSED?
BEQ WAITK NO, WAIT

LDX #$3E

DLY DEX
BNE DLY
CLRB KEY NUMBER = 0

SRKEY LSRA IS NEXT BIT “0”?
BCC DONE YES, DONE
INCB NO, KEY NUMBER = KEY NUMBER + 1
BRA SRKEY

DONE STAB $40
SWI

This program saves the key code in memory location 40.

20

Figure 4-1
Flowchart for Key Identification

Key = Keyboard Input
Keyno=0

:

Shift Key Right 1 Bit

Keyno = No
Keyno +1

End

21

The machine language version is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 WAITK LDAA STATUS B6
01 80
02 04
03 CMPA #$FF 81
04 FF
05 BEQ WAITK 27
06 F9
07 LDX #83E CE
08 : 00
09 3E
0A DLY DEX 09
OB BNE DLY 26
oC FD
oD CLRB 5F
OE SRKEY LSRA 44
OF BCC DONE 24
10 03
11 INCB 5C
12 BRA SRKEY 20
13 FA
14 DONE STAB $40 D7
15 40
16 SWI 3F

Enter this program and try it for keys 0 through 7. What happens if you press several keys
at once? How could you change the program so that it always takes the highest numbered
key? Now rewrite the program so that it handles all 16 keys (hint: set B to zero before
examining keys 0-7 and to eight before examining keys 8-F).

22

LABORATORY 5

Handling Data Arrays on the Micro-68

Most computer tasks involve applying the same instructions to an entire set of data (or
array). Typical examples of such tasks are calculating averages, finding the largest element
for scaling purposes, editing a line of text, collecting data for storage on magnetic tape, and
arranging a sequence of operations for a process or industrial control system.

INDEXING

The Motorola 6800 uses indexing to apply the same instructions to each element in an
array of data. Indexing means that the processor adds the address in the index register to the
offset (in the word following the instruction) to get the actual address of the data. The actual
address used by the instruction is called the effective address. For example, the instruction
LDAA $20, X works as follows (see Figure 5-1):

1) The processor adds 20 (hex) to the contents of the index register (1000 hex.
The result is 1020.

2) The processor places the contents of memory location 1020 in accumulator A.

Note that the index register is 16 bits (4 digits) long while the offset is 8 bits (2 digits)
long. The important thing, though, is that you can change the address from which the CPU
gets the data in step 2 by changing the contents of the index register. For example, INX (08)
adds 1 to the index register and DEX (09) substracts 1 from it.

SUM OF DATA

The following program will add the contents of memory locations 41, 42, 43, and 44
and place the sum (ignoring carries) in memory location 40.

LDAB #4 COUNT = 4

CLRA SUM = 0

LDX #3541 INDEX REGISTER = START OF ARRAY
ADDW ADDA X SUM = SUM + DATA

INX

DECB

BNE ADDW

STAA %40 STORE SUM

SWI

Note that ADDA X is shorthand for ADDA 0, X.

23

The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAB #4 Co6
01 04
02 CLRA 4F
03 LDX #5541 CE
04 00
05 41
06 ADDW ADDA X AB
07 00
08 INX 08
09 DECB 5A
0A BNE ADDW 26
0B FA
0oC STAA $40 97
oD 40
OE SWI 3F

Note that we have used the indexed form of ADDA (AB). Indexing is the third addressing
mode on the instruction card. The relative offset here is:

0006 06
-000C = +F4
FA

Try running this program with the following array of data:

4 = 07

42) = 23

(43) = 31

44) = 20
The result should be:

(40) = 7B

Remember that all the numbers are hexadecimal.
Now replace (42) with F1. What is the result? Why?

Change the program so that it will handle the following array of numbers:

“4n = 07
(42) = 23
43) = 31
44) = 20
45) = 16
(46) = 38

The result should be (40) = C9.

24

USING AN ENDING MARKER

If you’re not sure how long your array of data is (or don’t want to bother counting it),
you can always end the array with a special marker. In this case, 0 makes a good marker
since it doesn’t add anything to the sum. The program is:

CLRA SUM =0
LDX #341 INDEX REGISTER = START OF ARRAY
ADDW LDAB X IS NEXT ELEMENT (?
BEQ DONE YES, DONE
ABA NO, SUM = SUM + DATA
INX
BRA ADDW
DONE STAA $40
SWI
The hexadecimal program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLRA 4F
01 LDX #3541 CE
02 00
03 41
04 ADDW LDAB X E6
05 00
06 BEQ DONE 27
07 04
08 ABA 1B
09 INX 08
OA BRA ADDW 20
OB F8
0C DONE STAA $40 97
0D 40
OE SWI 3F

Note that:
1)
2)

The relative offsets are:

BEQ DONE

BRA ADDW

ABA adds the A and B accumulators and places the result in A.

oC
-08

04

04 04
-0C = +F4

F8

25

Try this program on the data given before except put zero in the location after the last item.
What happens if you forget the final zero? What happens if you place zero in memory loca-
tion 427

FORMING A CHECKSUM

Change the program so that it EXCLUSIVE ORs the numbers together instead of add-
ing them. This result is called a logical sum or checksum and is often used to check for
errors in tape records. Note that EXCLUSIVE OR is the same as addition except that there
are no carries, i.e.,

A B SUM CARRY A®B
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0

DISPLAYING AN ARRAY

We can use indexing to place different data on each of the six LED displays. The follow-
ing program will do the job:

START LDAB #%00000010 TURN ON DISPLAY 1
STAB LIGHTS
LDX #3$40 INDEX REGISTER =
START OF ARRAY
DSPLY LDAA X GET DATA FROM ARRAY
STAA GLOW SEND DATA TO DISPLAY
STX $50
ILDX #0 DELAY A WHILE (BUT
SAVE X REGISTER)
DELAY INX
BNE DELAY
LDX $50
INX NEXT DATA IN ARRAY
ASL LIGHTS TURN ON NEXT DISPLAY
BPL DSPLY START OVER IF ALL
DISPLAYS HANDLED

JMP START

The program start with a *“1”” in bit 1 of LIGHTS and continues until that “1” moves
into the NEGATIVE (or sign bit). ASL (arithmetic shift left) shifts the contents of LIGHTS
left one bit and clears the empty bit. BPL branches back if bit 7 is still “0.” Remember that
the Micro-68 does not use bits 0 and 7 of LIGHTS.

26

The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 START LDAB #$00000010 C6
01 02
02 STAB LIGHTS F7
03 80
04 0A
05 LDX #%$40 CE
06 00
07 40
08 DSPLY LDAA X A6
09 00
0A STAA GLOW B7
0B 80
0C 08
0D STX $50 DF
OE 50
OF LDX #0 CE
10 00
11 00
12 DELAY INX 08
13 BNE DELAY 26
14 FD
15 LDX $50 DE
16 50
17 INX 08
18 ASL LIGHTS 78
19 80
1A 0A
1B BPL DSPLY 2A
1C EB
1D JMP START 7E
1E 00
IF 00

The offsets are:
BNE DELAY 12 12
~-15 = +EB
FD
BPL DSPLY 08 08
—-1D = +E3
EB

27

Run the program with the following data:

Display 1 = (40) = 91
Display 2 = (41) = 61
Display 3 = (42) = E3
Display 4 = (43) = E3
Display 5 = (44) = 03
Display 6 = (45) = FF

What happens when you reduce the delay by changing memory location 0010 to 80, CO, EO,

FO, F8, FC, FE, FF? Try devising and displaying some other data. You can use the patterns
in Tables 8-1 and 8-2.

Figure 5-1
Execution of the LDAA $20, X Instructions

CPU
Instruction LDAA (A6) ==
Register
A 30 g
X 1000
DATA
MEMORY
1020 30 |t
PROGRAM
MEMORY
LDAA (A6)
20

We can change the location in data memory by changing the value in the index register. If,
for example, the CPU executes an INX instruction, the next LDAA $20, X fill fetch the data
from address 1021.

28

LABORATORY 6

Forming Arrays on the Micro-68

We have already seen how you can handle an array. The question now is how to form
one. The procedure requires a counter and a pointer. The pointer contains the address of
the next empty location in the array; the counter contains the length of the array.

The basic procedure is:

Step | Initialization

Pointer = Start of Array

Counter = 0

Step 2 Place Data in Array

(Pointer) = Data. Remember that the parentheses mean “contents of™.
Step 3 Update Counter and Pointer

Pointer = Pointer + 1

Counter = Counter +1

Of course, this simple procedure assumes that you have all the data available. It also provides
no way to end the array formation. One method is:

Step 4 See if Enough Data has been Collected

If Counter = length, then done; Otherwise, Return to Step 2

CLEARING AN ARRAY

A simple example just clears an area of memory, say memory locations 40 through 47:

CLRA DATA =0
NOP
LDX #$40 POINTER = START OF ARRAY
LDAB #8 LENGTH OF ARRAY =8
CLEARI1 STAA X CLEAR AN ELEMENT IN ARRAY
INX
DECB
BNE CLEARI1
SwWI

(The NOP — no operation — doesn’t do anything except make the program easier to change).

29

The hexadecimal version of this program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLRA 4F
01 NOP 01
02 LDX #%40 CE
03 00
04 40
05 LDAB #8 C6
06 08
07 CLEAR1 STAA X A7
08 00
09 INX 08
0A DECB S5A
0B BNE CLEARI1 26
e FA
0D SWI 3F

Enter the program and run it. Make the necessary changes to have the program do the
following tasks and test each revision.

1) Clear memory locations 40 through 49
2) Clear memory locations 50 through 59

3) Place 80 hex in memory locations 50 through 59
PLACING VALUES IN AN ARRAY

The next step, of course, is to put different numbers in each entry. What happens if,
in the original program, you change STAA X to STAB X (i.e., E7 instead of A7)? How would
you change the program to reverse the order of the numbers? Hint: use INCA but remember
to adjust the offset in BNE CLEARI.

The following program will set each element to twice the preceding element, starting
with 1:

LDAA #1 FIRST ELEMENT IS 1
LDX #3540 POINTER = START OF ARRAY
LDAB #8 LENGTH OF ARRAY =8

SETUP STAA X PLACE ELEMENT IN ARRAY
ASLA NEXT ELEMENT = ELEMENT X2
INX
DECB
BNE SETUP
SWI

30

The hexadecimal version of this program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAA #1 86
01 01
02 LDX #$40 CE
03 00
04 40
05 LDAB #8 Co6
06 08
07 SETUP STAA X A7
08 00
09 ASLA 48
0A INX 08
OB DECB SA
ocC BNE SETUP 26
0D F9
OE SWI 3F

This program really doesn’t require a counter since you can just let the ““1°° bit in position 0
move across the word. Change the program to eliminate the counter. Rewrite the program
so that the sequence is:

(40) = 80 (10000000)
(41) = CO (11000000)
(42) = EO (11100000)
(43) = FO (11110000)
(44) = F8 (11111000)
(45) = FC (11111100)
(46) = FE (11111110)
(47) = FF (11111111)

Hint: Use ARITHMETIC SHIFT RIGHT. Why do you think this instruction is part of the
set? What are the values of the last set of numbers if you consider them as signed twos com-
plement numbers?

ENTERING INPUT DATA INTO AN ARRAY

The next step is to form an array from the keyboard using input data. For the time
being, let’s just use keys 0 — 7.

The procedure for forming the array will be:

Step 1 Initialization

Pointer = Start of Array (40)

Counter = Length of Array (4)

Step 2 Wait for Key to be Pressed

31

Step 3

Step 4
Step 5

(Pointer)
Step 6

Pointer
Counter

Step 7

Step 8

Key

Debounce Key with 1 ms. Delay
Identify Key

Place Key in Array

Update Counter and Pointer

Pointer + 1
Counter + 1

Wait for Key to be Released

If Counter # 0, Return to Step 2

The assembly language program is (see flowchart in Figure 6-1):

WAITC

DLY

SRKEY

STKEY

WAITO

LDX
STX
LDAA
STAA
LDAA
CMPA
BEQ
LDX
DEX
BNE
CLRB
LSRA
BCC
INCB
BRA
LDX
STAB
INX
STX
LDAA
CMPA
BNE
DEC
BNE
SWI

#$40
$50

#4

$52
STATUS
#$FF
WAITC
#$3E

DLY

STKEY

SRKEY
$50
X

$50
STATUS
#$FF
WAITO
$52
WAITC

POINTER = START OF ARRAY
COUNTER = LENGTH OF ARRAY

GET KEYSO0TO 7
ARE ANY BEING PRESSED?
NO, WAIT

1 MS. TO DEBOUNCE

KEY NUMBER =0

IS NEXT BIT “0”?

YES, DONE

NO, KEY NUMBER = KEY NUMBER +1

GET POINTER
SAVE KEY NUMBER IN ARRAY
UPDATE AND SAVE POINTER

GET KEYSO0TO 7

ARE ANY BEING PRESSED?
YES, WAIT UNTIL ALL KEYS RELEASED

32

The hexadecimal program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDX #$40 CE
01 00
02 40
03 STX $50 DF
04 50
05 LDAA #4 86
06 04
07 STAA $52 97
08 52
09 WAITC LDAA STATUS B6
0A 80
OB 04
oC CMPA #S$FF 81
oD FF
OE BEQ WAITC 27
OF F9
10 LDX #$3E CE
11 00
12 3E
13 DLY DEX 09
14 BNE DLY 26
15 FD
16 CLRB SF
17 SRKEY LSRA 44
18 BCC STKEY 24
19 03
1A INCB 5C
1B BRA SRKEY 20
1C FA
1D STKEY LDX $50 DE
1E 50
1F STAB X E7
20 00
21 INX 08
22 STX $50 DF
23 50
24 WAITO LDAA STATUS B6
25 80
26 04
27 CMPA #S$FF 81
28 FF
29 BNE WAITO 26
2A F9

33

Memory /\/ Memory

Address Instruction Contents
(Hex) (Mnemonic) (Hex)
2B DEC $52 7A
2C 00
2D 52
2E BNE WAITC 26
2F D9
30 SWI 3F

Enter this program and run it. Try several different key sequences. Which sequences do
you think would make an adequate test?

Change the program to perform the following tasks:
1) Save six key numbers in memory locations 40 through 45
2) Save four key numbers in memory locations 48 through 4B

What happens if you try to use memory locations 50 through 53 for the closures? How
would you solve this problem?

What happens if you don’t wait for the key to be released? You can try this by branch-
ing around the section that waits for the end, i.e., place 20 (BRA) in memory location 24 and
05 in memory location 25. See also what happens if you press several keys at once.

34

Figure 6-1
Flowchart for Forming Array from Keyboard

Pointer = Start of Array
Counter Length of Array

Wait 1 ms. to Debounce

v
Key Number =0

>y

L Shift key Data Right 1 Bit

Key Number
= Key
Number + 1

(Pointer) = Key Number

v

Pointer = Pointer + 1

|

Is
Key Still
Pressed?

Yes

Counter = Counter - 1

Is

Counter No

0?

End

35

LABORATORY 7

Designing and Debugging Programs on the Micro-68

Now that you’ve seen some fairly complex programs, you’re probably wondering how
such programs get written and tested. In practice, each program goes through many stages,

ie.,
D
2)
3)
4)
5)
6)
7)

problem definition

program design

coding (the actual writing of instructions)
debugging

testing

documentation

extension and redesign

For the present we will concentrate on simple, well-defined problems which can be
designed with flowcharts and can be debugged and tested at the same time. Flowcharting is
the traditional program design method and is useful for small problems. It has a standard
set of symbols and is well-understood even by those with no expertise in computer
programming.

EXAMPLE 1 — COUNTING ZEROES

Purpose: Count the number of zeroes in memory locations 41 through 4A and place the
result in memory location 40.

37

Flowchart:

START

NZERO =0
POINTER =41
COUNT =10

IS
(POINTER)
0?

YES NZERO =
NZERO + 1

POINTER =POINTER + 10 |g———
COUNT = COUNT - 1

NO IS
< COUNT

0?

YES

(40) = NZERO

END

38

EXAMPLE 2 — FIND MAXIMUM

Purpose: Find the largest unsigned number in memory locations 41 through 4A and place it
in memory location 40.

Flowchart:
E— START

MAX =(41)
POINTER =42
COUNT =9

IS
(POINTER)
MAX?

YES | MAX=
(POINTER)

POINTER =POINTER + 1
COUNT = COUNT -1

IS
COUNT
0?

NO

YES

(40) = MAX

END

Note that you don’t have to make the flowchart very elaborate or very detailed. In
fact, the flowchart is most useful when it is a simple, straightforward guide to the logic of
the program. A flowchart with too much detail is difficult to understand.

39

CODING AND DEBUGGING

The next step is to translate the flowchart into a trial program. Make sure that the pro-
gram includes everything in the flowchart, but don’t try to go through it in detail by hand.
Use the debugging facilities in the computer instead.

You can have the program return to the monitor at any point by replacing an opera-
tion code with the instruction SOFTWARE INTERRUPT (SWI or 3F hex). You can resume
the program after the SWI by pressing the “8” or RTI key. This feature is called a breakpoint.

Not only does SWI return control to the monitor, but it also saves the contents of all
the registers so that you can easily examine them. To find out where these contents are, look
in memory locations 0068 and 0069; these locations will contain the address just below (i.e.,
one less than) where the registers are saved. If that address is SAVE, the order is:

Table 7-1
Map of the Micro-68 Stack
(SAVE is address in memory locations 68 and 69)
(MSB=Most significant bit, LSB=least significant bit)

SAVE+] Condition codes register
SAVE+2 Accumulator B

SAVE+3 Accumulator A

SAVE+4 Index Register, 8 MSB’s
SAVE+5 Index Register, 8 LSB’s
SAVE+6 Program Counter, 8 MSB’s
SAVE+7 Program Counter, 8§ LSB’s

Remember that the index register, program counter, and stack pointer are 16 bits long
while the accumulators are only 8 bits long. The condition codes register consists of the
various flags organized as follows:

Table 7-2
Organization of Condition Code Registers

Bit 7 — always 1

Bit 6 — always 1

Bit 5 — half-carry (from bit 3) H
Bit 4 — interrupt (disable) I

Bit 3 — negative (sign) N

Bit 2 — zero Z
Bit 1 — overflow O
Bit O — carry C

40

DEBUGGING WITH THE MICRO-68:

AN EXAMPLE

COUNTING ZEROES (as in earlier flowchart)

Our initial program is:

SRZRO

COUNT

CLRA
LDAB
LDX
TST
BEQ
INCB
INX
DECB
BNE
STAB
SWI

$10
#3541

COUNT

SRZRO
$§40

NUMBER OF ZEROES =0

COUNT =10

POINTER = START OF ARRAY
CHECK AN ELEMENT

IS ELEMENT ZERO?

YES, ADD 1 TO NUMBER OF ZEROES

SAVE NUMBER OF ZEROES

Note that TST just sets flags as if zero had been subtracted from the contents of the
addressed register or memory location.

The hexadecimal version is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLRA 4F
01 LDAB $10 D6
02 10
03 SRZRO LDX #541 CE
04 00
) 41
06 TST X 6D
07 00
08 BEQ COUNT 27
09 03
0A INCB 5C
0B COUNT INX 80
oC DECB 5A
0D BNE SRZRO 26
OE F4
OF STAB $40 D7
10 40
11 SWI 3F

Enter this program. The first debugging step will be to place a breakpoint after the
initialization, i.e., put 3F in memory location 0006. The register should contain:

41

NUMBER OF ZEROES = (A) = 00
COUNT = (B) = OA (10 decimal)
ARRAY POINTER = (X) = 0041

To check the program, enter the SWI and run the program. Now examine memory
locations 0068 and 0069; they should be:

(0068) = 00
(0069) = 60

So the register storage starts in memory location 0061, i.e.,

(B) = (0062)
(A) = (0063)
(X) = (0064)(0065)

Examine those locations. Are they correct? My results were:

(B) = 40
(A) = 00
X) = 0041

Clearly B is incorrect, so the instruction LDAB $10 is wrong. It should be LDAB #10
since we want to put the number 10 in B, not the contents of memory location 10. And,
furthermore, we want the decimal number 10, not the hexadecimal number 10. The instruc-
tion should be:

01 LDAB #10 Co
02 0A

Make this correction and run the program again with the SWI in location 6. Are the
answers right now?

To go further, we must add some data. Let’s try:
(41) through (4A) = 00
Now put the breakpoint at the end of the loop, i.e.,
(0006) = 6D (as in original)

(000D) = 3F (SWID)
After you run this program, since (41) = 00, the register contents should be:
B) = 09
(A) = 01
(X) = 0042

Make sure you understand why these are the proper results.

42

Run the program. What are the register contents? Mine were:

(B) = 0A
(A) = 0D
(X) = 0041

At least these last results are uniform. Everything is wrong. Clearly A and X aren’t
being incremented and B isn’t being decremented. INCB should be INCA and INX should
be 08 instead of 80. The corrections are:

OA INCA 4C
OB INX 08
Running this program gives the results:
(B) = 0A
(A) = 00
X) = 0041

Everything is still wrong. Obviously, the jump instruction is wrong. We can try it by hand.
What we want is:

If (A) # 0, skip to memory location 000B instead of proceeding normally to memory
location O00A.

The proper instruction is

08 BNE COUNT 26
09 01

since the branch should send the computer 1 location ahead if A is not equal to zero.

The results after this change are:

(B) = 09
(A) = 01
(X) = 0042

Now try another iteration. Resume the program at memory location 000D with the
following changes:

(000D) = 26 (the original value)
(0008) = 3F (SWI

The results should be:

B) = 09
(A) = 01
(X) = 0042

43

Instead, (X) = 0041 because the jump is to the wrong place. The program should jump

back to LDAA X, i.e.,

(000E) =

F7

Try this correction by inserting the breakpoint first in memory location 000D, then in 0008.
Remember to put the proper code into the location where you don’t have a breakpoint (i.e.,

26 in 0008 or 000D).

Now try running the program without breakpoints. Are the results correct? Test the
program with some other data that isn’t all zeroes.

The final program is:

CLRA NUMBER OF ZEROES =0
LDAB #10 COUNT =10
LDX #%$41 POINTER = START OF ARRAY
SRZRO TST X EXAMINE AN ELEMENT
BNE COUNT IS ELEMENT ZERO?
INCA YES, ADD 1 TO NUMBER OF ZEROES
COUNT INX
DECB
BNE SRZRO
STAA $40 SAVE NUMBER OF ZEROES
SWI1
In hexadecimal, the program is:
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLRA 4F
01 LDAB #10 C6
02 0A
03 LDX #$41 CE
04 00
05 41
06 SRZRO TST X 6D
07 00
08 BNE COUNT 26
09 01
0A INCA 4C
0B COUNT INX 08
oC DECB S5A
oD BNE SRZRO 26
OE F7
OF STAA $40 97
10 40
11 SWI1 3F

44

Note that common errors to look for are:
1) Forgetting to initialize variables. Don’t assume anything is zero when you start.

2) Confusing data and addresses. The contents of memory location 10 could be any-
thing, including (but not necessarily) the number 10.

3) Branching on the wrong condition, i.e., branching on not equal instead of an equal.

4) Calculating relative offsets incorrectly. Remember that you have to start at the
instruction following the branch.

5) Confusing decimal and hexadecimal numbers. Decimal 10 is OA hex; hex 10is 16
decimal.

6) Accidentally re-initializing a register or memory location by branching to the wrong
place.

7) Incorrect keyboard entries. You should examine the entire program before you
run it.

8) Forgetting to update a counter or pointer. Watch for the loop controls which must
be updated regardless of which path the program follows.

9) Confusing the index register with the address in the index register. LDAA X loads
accumulator A from the address in the index register. Be especially careful with instructions
like CLR X TST X, etc.

Try writing and debugging a program for Example 2 which finds an unsigned maximum. Then
try flowcharting, coding, and debugging the following program:

EXAMPLE 3 — KEY IN A DELAY

Purpose: The program should wait for the D key to be pressed. It should then delay for N
seconds (where you can enter N from keys O to 7).

Le., if you press D and then 5, it will delay for 5 seconds.
Hint: The following routine is a 1 second delay (check it):

LDX #$F423
DLY DEX
BNE DLY

What happens if the delay is ‘0?

Use the breakpoints to debug the program. Remember the common errors which we
noted.

45

LABORATORY 8

Micro-68 Displays 11

We saw earlier how to turn the displays on and off and how to pulse and scan them. Now
we’ll discuss how to send data to the displays and how to combine display control with other
tasks.

The following program places the contents of memory location 40 on all the displays
for one second:

LDAA #3FF
STAA LIGHTS ENABLE ALL LEDS
LDAB $40 GET DATA
STAB GLOW SEND TO LEDS
LDX #$F423 WAIT 1 SECOND
DLY DEX
BNE DLY
SWI
The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) {Mnemonic) (Hex)
00 LDAA #SFF 86
0t FF
02 STAA LIGHTS B7
03 80
04 0A
05 LDAB $40 : D6
06 40
07 STAB GLOW F7
08 80
09 08
0A LDX #$F423 CE
0B F4
oC 23
oD DLY DEX 09
OE BNE DLY 26
OF FD
10 SWI 3F

Enter and run this program. Try the following data in memory location 40: 03, 9F, 25,
0D, 99, 49, 41, IF, 01, 09. Try some other combinations of segments.

Table 8-1 contains the seven-segment codes for the hexadecimal digits. Table 8-2 con-
tains the codes for some letters and symbols. Clearly there is no very obvious relationship
between input and output when we could use to perform the conversion.

47

Table 8-1
Seven-Segment Code Table
Hexadecimal Digits

Digit Hex code

03
9F
25
0D
99
49
41
1F
01
09
11
Cl1
63
85
61
71

MHAANT > 00 IR AWND—O

Table 8-2
Seven-Segment Code Table
Other Symbols

Capital letters

Letter Hex code

11
63
61
71
91
87
E3
03
31
83
89

“oROoOrOD=Imoma >

Lower case letters

Letter Hex code

b Cl
ES5
85
D1
D5
Cs
F5
C7

=" o3 a0

48

Symbols

Symbol Hex code
— 35
- FD

— EF

You can solve the conversion problem by just placing Table 8-1 in memory. Putitin
memory locations 0044 through 0053. The following program will convert a hexadecimal
digit in memory location 40 to a seven-segment code in memory location 41.

LDX
STX
LDAA
ADDA
STAA
LDX
LDAA
STAA
SWI

#$44
$42
$40
$43
$43
$42
X
$41

SAVE BASE ADDRESS OF TABLE
GET HEXADECIMAL DIGIT
USE DIGIT TO INDEX TABLE

GET INDEXED ADDRESS
AND USE IT TO FETCH 7-SEGMENT CODE

Note that STX $42 places the 8 most significant bits of register X in memory location 0042
and the 8 least significant bits in memory location 0043,

If, for example, (40) =0003, then

1)

2)

3)

4)

After STX $42

(0042) = 00

(0043) = 44
After STAA $43

(0043) = (0043) + (0040)

= 47
After LDX $42
(X) = 0047

After LDAA X

(A) = (X)) = 0D

Note that the program takes advantage of the fact that the 8 most significant bits of all the
table addresses are the same so 8 bit operations can be used.

The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDX #$%44 CE
01 00
02 44
03 STX $42 DF
04 42
05 LDAA $40 96
06 40
07 ADDA $43 9B
08 43
09 STAA $43 97
0A 43
0B LDX $42 DE
oC 42
oD LDAA X A6
OE 00
OF STAA $41 97
10 41
11 SWI 3F

Enter the program and run it for all the hexadecimal digits. Normally the table of
codes will be in ROM or PROM since it never changes. Revise the program so as to
eliminate the addition instruction (hint: use the instruction LDAA $E8.X).

COUNTING ON THE DISPLAYS

Now combine the display program and the table so that the program counts on the dis-

plays, i.e.,

STCNT
NXDIG

DLY

LDAA
STAA
LDX
LDAA
STAA
STX
LDX
DEX
BNE
LDX
INX
CMPA
BNE
IMP

#$FF
LIGHTS
#TABLE
X

GLOW
$50
#$F423

DLY
$50

#371

NXDIG
STCNT

50

ENABLE ALL LEDS

GET BASE ADDRESS OF TABLES
GET DATA

SEND TO DISPLAYS

WAIT 1 SECOND

UPDATE COUNT

WAS COUNT F?
NO, KEEP COUNTING
YES, START OVER AT ZERO.

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
10 LDAA #SFF 86
11 FF
12 STAA LIGHTS B7
13 80
14 0A
15 STCNT LDX #TABLE CE
16 FF
17 ES&
18 NXDIG LDAA X A6
19 00
1A STAA GLOW B7
1B 80
1C 08
1D STX $50 DF
1E 50
1F LDX #3$F423 CE
20 F4
21 23
22 DLY DEX 09
23 BNE DLY 26
24 FD
25 LDX $50 DE
26 50
27 INX 08
28 CMPA #$71 81
29 71
2A BNE NXDIG 26
2B EC
2C BRA STCNT 20
2D E7

Enter and run this program. Change the counting delay and see what happens. Note
that we started the program at 0010 to allow for some additions.

Change the program so that it counts down instead of up, i.e., it starts at F and counts
down to zero. Remember to change the starting address (to the end of the table), the direc-
tion of the updating (DEX instead of INX), and the final comparison.

Now change the program so that it waits for the key F to be pressed then counts up
continuously. Looking for key F is simple, i.e.,

WAITF LDAA $8006 IS KEY F BEING PRESSED?
BMI WAITF NO, WAIT

51

or in hexadecimal

0B LDAA $8006 B6
0C 80
0D 06
OE BMI WAITF 2B
OF B

Change the program so that it waits for key B to be pressed and then counts down contin-
uously.

Checking for key B requires a logical AND, i.e.,

WAITB LDAA $8006 GET KEYS &-F
ANDA #%00001000 IS KEY B PRESSED?
BNE WAITB NO, WAIT

Change the program so that it counts up but checks key B after each one second delay
and waits as long as key B is pressed. Remember to use accumulator B since A holds the
seven-segment code. You can improve the responsiveness of the system by dividing the
delay into tenths of a second. The following program is a tenth of a second delay:

LDX #$1869
DLYT DEX
BNE DLYT

Introduce the tenth of a second response. (Use A as a counter but save its old contents!)
Can you notice the difference? Clearly a processor does not have to check keys very often
to provide almost instantaneous response as far as an operator is concerned.

Finally, change the program so that it checks keys B and F every second. Key B
causes the program to wait, while key F causes it to resume counting. How would you
modify the program so that key F acts as a stop/start button, i.e., the first closure stops
the program, the second closure restarts it, etc.?

How would you design a program which started counting forward, changed to counting
backward when key B was pressed, and resumed counting forward when key F was pressed?

Hints:

1) Use memory location 52 as an UP/DOWN flag, i.e., (52) = 0 if the count is for-
ward, FF if the count is backward.

2) Use memory locations 53 and 54 as the starting address, i.e.,
(53)(54)
(53)(54)

FFES if the count is forward

FFF7 if the count is backward.

3) Use memory location 55 for the last code, i.e.,
(55)
(55)

71 (code for F) if the count is forward

03 (code for 0) if the count is backward.

52

The procedures are:

1) Ifkey F is pressed and to start

CLR 352 UP/DOWN FLAG = UP
LDX #SFFES8 START AT BEGINNING OF TABLE
STX $53
LDX #3571 LAST CODE =F
STX $55
2) If key B is pressed
LDAA #S$FF
STAA $52 UP/DOWN FLAG = DOWN
LDX #SFFF7 START AT END OF TABLE
STX $53
LDX #3503 LAST CODE =0
STX $55

53

LABORATORY 9

Arithmetic on the Micro-68

One common task for small computers is simple arithmetic. Typical applications involy-
ing arithmetic include: averaging sets of readings, forming checksums, comparing levels to
thresholds, scaling inputs and outputs, linearizing non-linear inputs (such as thermocouples),
and calculating frequency responses. Decimal arithmetic is necessary in calculators, business
terminals, instruments, appliances, and games.

An earlier exercise showed how to form an 8 bit sum. We will now extend that exercise
to saving carries, forming a 16 bit sum, and performing some simple multiplication, division,
and rounding, and handling multi-word binary and decimal arithmetic.

AN 8 BIT SUM

Purpose: Add together the array of elements starting in memory location 43 and place the

sum in memory location 42 (ignoring carries). The length of the array is memory location
40.

Assembly language program:

CLRA SUM =0

LDX #$43 POINT TO START OF ARRAY
ADDW ADDA X SUM = SUM + DATA

NOP

INX

DEC $40

BNE ADDW
DONE STAA $42 STORE SUM

SWI

Hexadecimal program:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLRA 4F
01 LDX #$43 CE
02 00
03 43
04 ADDW ADDA X AB
05 00
06 NOP 01
07 INX 08
08 DEC $40 TA
09 00
0A 40
OB BNE ADDW 26
0C F7
4])) DONE STAA $42 97
OE 42
OF SWI 3F

55

Enter this program and run it. What happens if (40) = 0? How would you correct the
program to solve this problem:

SAMPLE DATA: (40) = 02
(43) = 6E

(44) = 39

RESULT: (42) = A7

DECIMAL ARITHMETIC

The instruction DAA (decimal adjust accumulator A) corrects a binary sum in accumu-
lator A to a decimal sum, i.e., the two instructions

ADDA
DAA

perform a decimal addition. Note that you cannot decimal adjust accumulator B.

Try the earlier 8 bit addition program with and without the DAA instruction, i.e.,

CLRA SUM = 0

LDX #3543 POINT TO START OF ARRAY
ADDW ADDA X SUM = SUM + DATA

(NOP) (DAA) DECIMAL OR BINARY SUM

INX

DEC $40

BNE ADDW

STAA $42

SWI

Replace the 01 in memory location 0006 with DAA (19).

Use the following set of data:

(40) = 03
43) = 16
(44) = 26
(45) = 35

Result: (42) = 77 (with DAA)
71 (without DAA)

What is the reason for this difference?
SAVING THE CARRIES

You can easily save the carries by placing them in accumulator B. A useful instruction is:
ADCB #0

The result is (B) = (B) + CARRY + 0
= (B) + CARRY

56

Use this instruction to save the carries from the 8-bit addition. Store the carries in memory

location 41.

Run the revised program with the following data:

(40) = 04
(43) = BF
(44) = 78
(45) = E1
(46) = F1

Result:

(41) = 03
(42) = 09

Try a decimal version with the following data:

(40) = 0C
(43) = 93
(44) = 88
(45) = 98
(46) = 97
47 = 94
(48) = 92
(49) = 90
(4A) = 97
(4B) = 93
4C) = 96
(4D) = 95
(4E) = 97
Result:
41) = 11
(42) = 30

Remember to decimal adjust both the sum and the carries. But remember that DAA
only works on accumulator A. You can use the following instruction sequence to produce a

16-bit decimal sum:

ADDW ADDA
DAA
STAA
TBA
ADCA
DAA
TAB
LDAA

§52

SUM = SUM + DATA
DECIMAL SUM

ADD IN CARRIES
AND MAKE THAT DECIMAL

57

The various codes are:

TBA 17
ADCA # 89
TAB 16

PERFORMING 16 BIT ARITHMETIC

You can use the two accumulators together to perform 16-bit arithmetic. The following
program will add a set of 16-bit numbers stored starting in memory location 43 (least signifi-
cant bits first). The length of the set is in memory location 40.

CLRA SUM = 0

CLRB

LDX #$43 POINT TO START OF ARRAY
ADD16 ADDA X ADD IN 8 LSB’s OF ENTRY

INX

ADCB X ADD IN 8 MSB’s OF ENTRY

INX

DEC $40

BNE ADDI16

STAB §41 STORE MSB’s OF SUM

STAA §$42 STORE LSB’s OF SUM

SWI

Hexadecimal version:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLRA 4F
01 CLRB SF
02 LDX #343 CE
03 00
04 43
05 ADD16 ADDA X AB
06 00
07 INX 08
08 ADCB X E9
09 00
0A INX 08
OB DEC $40 TA
oC 00
oD 40
OE BNE ADDI16 26
OF F5
10 STAA $41 97
11 41
12 STAB $42 D7
13 42
14 SWI 3F

58

Enter this program and try it on the following data:

(40) = 03
(43) = F8
(44) = 37
(45) = 19
(46) = 26
(47) = EC
(48) = OB
Result = 37F8§
+2619
+0BEC
69FD
(41) = FD
42) = 69

Change the program so that it performs a 16 bit logical sum (EXCLUSIVE OR). How about
a 16 bit logical AND? Revise the program so that it uses a final “zero” element rather than
a specific count. Try the last program on the following sets of data:

a) (43) = 00
44) = 00
Result: (41) = 00
42) = 00
b) (43) = 67
44) = 02
(45) = 80
(46) = 80
@47 = 00
(48) = 00
Result: (41) = E7
42) = 82

Remember that X +Y = 0 does not mean either X or Y is zero (why?). How can you deter-
mine if a 16-bit number is zero?

ROUNDING BINARY NUMBERS

Rounding binary numbers to a specified bit length is simple since the only bit values
are ‘0" and ‘1’. All you have to do is look at the most significant bit that you plan to drop:

(1) IMSB =1, round up by adding 1.
(2) If MSB =0, round down by truncating.

59

The following program will round a 16 bit number in memory locations 41 and 42
(MSB’s in 41) to an 8 bit number in memory location 40.

LDAA $41 GET MSB’s
LDAB $42 GET LSB’s
BPL STRR DO LSB’S REQUIRE ROUNDING?

INCA YES, ADD 1 TO MSB’S
STRR STAA $40
SWI
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAA %41 96
01 41
02 LDAB $42 D6
03 42
04 BPL STRR 2A
05 01
06 INCA 4C
07 " STRR STAA $40 97
08 40
09 SWI 3F

Try this program on these sets of data:

(a) 41) = 26

(42) = 88

Result = (40) = 27
by 41 =43

(42) = 7F

Result = (40) = 43

You can scale a number down by dividing it by 2;i.e., you can truncate an 8 bit number
to seven bits with the single instruction LSR. You can shift both accumulators right by using
the logical shift on the MSB’s and the rotate instruction on the LSB’s. A left shift uses the
opposite sequence.

16 — BIT RIGHT SHIFT A AND B
(MSB’s IN A)

LSRA
RORB

16 — BIT LEFT SHIFT A AND B
(MSB’s IN A)

ASLB
ROLA

60

Similar sequences will work on two consecutive memory locations, i.e.,
LSR $43
ROL §42

42).

So the following program will scale the contents of memory locations 42 and 43 by a
factor of 2, round the result, and save it in memory locations 40 and 41 (MSB’s in 40 and

LDAA $42 GET MSB’s

LDAB $43 AND LSB’s

LSRA SCALE DOWN BY 2

RORB

ADCB #0 ROUND LSB’s

ADCA #0 ROUND MSB’s

STAA $40 STORE MSB’s

STAB $41 STORE LSB’s

SWI

Memory Memory

Address Instruction Contents

(Hex) (Mnemonic) (Hex)

00 LDAA $42 96
01 42
02 LDAB $43 D6
03 43
04 LSRA 44
05 RORB 56
06 ADCB #0 C9
07 00
08 ADCA #0 89
09 00
0A STAA $40 97
0B 40
0oC STAB $41 D7
0D 41
OE SWI 3F

Try this program on the following data:

a) (42) = 57

(43) = 83
Result = (40) =
41 =

b) (42) = 16

(43) = 80

Result = (40)
41)

2B
C2

0B
40

61

Change the program so that it scales the original number by a factor of 4 and rounds. The

results should be:

Now change the program so that the number of bits to be dropped (>>0) is in memory loca-

a) (42) = 57

(43) = 83
Result = (40) = 15
41) = El

b) (42) = 16

(43) = 80
Result = (40) = 05
(41) = A0

tion 44;i.e.,

a) (42) = 57

(43) = 83

(44) = 01
Result = (40) = 2B
41 = C2

b) (42) = 57

(43) = 83

(44) = 03
Result = (40) = 0A
(41) = FO

MULTI-WORD ARITHMETIC

Operations involving more than 16 bits require a slightly different approach than 8 or
16-bit arithmetic because there are only two accumulators. The procedure is simply to per-
form the correct number of 8-bit operations; e.g.,

40 BIT ADDITION (LSB’s FIRST)

LDAB
LDX
CLC
LDAA
ADCA
STAA
INX
DECB
BNE
SWI

ADDS8

#5
#$40

X
5, X

b

10, X

ADDS

40 BITS = 5 WORDS

POINT TO START OF NUMBER
CLEAR CARRY TO START
GET 8 BITS OF IST NUMBER
ADD & BITS OF 2ND NUMBER
STORE 8 BITS OF RESULT

62

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAB #5 Cé6
01 05
02 LDX #$40 CE
03 00
04 40
05 CLC oC
06 ADDS LDAA X A6
07 00
08 ADCA 5 X A9
09 05
0A STAA 10, X A7
OB 0A
ocC INX 08
0D DECB SA
OE BNE ADDS 26
OF Fé6
10 SWI 3F

Note that you must clear the CARRY initially since there is never a carry into the least sig-
nificant bits.

Modify this program to perform the following tasks:

a)
b)
)
d)

48 bit addition

48 bit addition with the numbers stored with most significant bits first.
12 digit decimal addition (use DAA)

12 digit decimal subtraction

Hint: X-Y=X+(99-~-Y)+1-100

so the procedure is to set the CARRY originally and let it be 1 whenever no borrow is
needed;i.e.,

SEC

DECSB LDAA #§99 GET 99
ADCA #0 100 — BORROW
SUBA X 100 — BORROW - Y
ADDA 6,X 100 — BORROW — Y + X
DAA DECIMAL SUBTRACTION

STAA 12, X STORE RESULT

63

LABORATORY A

Subroutines and the Micro-68 Monitor

Clearly some instruction sequences will be used over and over again, e.g., the delay rou-
tine, keyboard input, display output, etc. You will probably find it convenient to write these
routines once, place them in memory, and simply refer to them as needed. Such a standard
routine is called a subroutine.

You may call the subroutine with the instructions BSR or JSR; these instructions per-
form an unconditional jump to the start of the subroutine and save the old value of the pro-
gram counter in memory. An RTS instruction at the end of the subroutine restores the old
program counter and returns control to the main program.

A DELAY SUBROUTINE

For example, the one second delay routine could serve as a subroutine. The following
program waits for key C to be pressed and then delays for one second. KEY is location
$8006.

WAITC LDAA KEY GET KEYS 8-F
ANDA #%00010000 IS KEY C BEING PRESSED?
BNE WAITC NO, WAIT UNTIL IT IS
JSR DELAY WAIT 1 SECOND
SWI

DELAY LDX #F423 WAIT 1 SECOND

DLY DEX
BNE DLY
RTS

The hexadecimal versions of the program and the subroutine are:
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)

00 WAITC LDAA KEY B6

01 80

02 06

03 ANDA #%00010000 84

04 10

05 BNE WAITC 26

06 F9

07 JSR DELAY BD

08 00

.09 30

0A SWI 3F

65

Memory Memory
Address Instruction Contents
(Hex) {Mnemonic) ' (Hex)
30 DELAY LDX #$F423 CE
31 : F4
32 23
33 DLY DEX 09
34 BNE DLY 26
35 FD
36 RTS 39

Enter this program and run it.

What are the final contents of memory locations 68 and 69? Remember that these loca-
tions contain the address one below where the SWI instruction has stored the contents of all
the registers. What are the contents of the registers?

Now replace DEX in memory location 33 with SWI and run the program. What are the
contents of memory locations 68 and 69? How about 66 and 67 and the various registers?

The reason for the change is that JSR (like SWI) uses the stack pointer to store data in
memory. The procedure for each byte is:

((Stack Pointer)) = Data
(Stack Pointer) (Stack Pointer) - 1

Each byte goes into the address contained in the stack pointer and that address is decre-
mented so the next byte will go into the next lower address. The stack grows downward
(instead of upward as you might expect) so that you can start it at the end of a block of
memory and it won’t interfere with other data.

Since the computer decrements the stack pointer with each use, subroutines can call
other subroutines and so on as long as there is room in the stack. For example, change the
program counter in memory locations 0064 and 65 to 0007 and execute RTI. What are the
contents of memory locations 68 and 69 at the end of the program? Explain what happened.

The instructions RTS and RTT use the stack pointer to retrieve data and addresses
from memory. The procedure for each byte is:

(Stack Pointer) = (Stack Pointer) + 1
Data = ((Stack Pointer))

The address in the stack pointer is incremented before a byte of data is retrieved. The next
byte will be obtained from the next higher address. So RTS and RTI reverse the actions of
JSR and SWI. Note that the program counter is 2 bytes long and the least significant byte
is stored first and retrieved last.

A KEYBOARD SUBROUTINE

The following subroutine waits for one of keys 0 to 7 to be pressed and returns with
the key identification in accumulator B.

66

WAITC LDAA STATUS GET KEYS 0-7
CMPA #$FF ARE ANY PRESSED?
BEQ WAITC NO, WAIT
CLRB YES, KEY NUMBER =0
SRKEY LSRA IS NEXT BIT 0?
BCC DONE YES, DONE
INCB NO, ADD 1 TO XEY NUMBER
BRA SRKEY
DONE RTS
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
37 WAITC LDAA STATUS B6
38 80
39 04
3A CMPA #SFF 81
3B FF
3C BEQ WAITC 27
3D F9
3E CLRB S5F
3F SRKEY LSRA 44
40 BCC DONE 24
41 03
42 INCB 5C
43 BRA SRKEY 20
44 FA
45 DONE RTS 39

Revise the earlier program so that it waits for key C, then waits until one of keys O to 7
is pressed, and then delays for the correct number of seconds. Place an SWI in memory loca-
tion 3A and see what happens to the stack. Be sure that the program works properly for key 0.

A DISPLAY SUBROUTINE

The following program converts the contents of accumulator B to a seven-segment code
and sends the result to the LEDs. The original contents of accumulator B are unchanged.

DSPB LDAA #$FF GET BASE PAGE OF 7 SEGMENT
CODE TABLE
STAA $2E
STAB $2F INDEX TABLE WITH DATA
LDX $2E GET CODE ADDRESS
LDAA $E8, X GET CODE
STAA STATUS
RTS

Remember that the table of seven-segment codes starts in memory location FFE8. Note that
the subroutine uses registers A and X and memory locations 2E and 2F.

67

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
46 DSRB LDAA #SFF 86
47 ‘ FF
48 STAA $2E 97
49 2E
4A STAB $2F D7
4B 2F
4C LDX $2E DE
4D 2E
4E LDAA $E§, X A6
4F E8
50 STAA GLOW B7
51 80
52 08
53 RTS 39

Revise the earlier program so that it displays the number of seconds remaining. How
would you revise the program so that key F turns the displays on and off; i.e., pressing key
F once turns the displays off, pressing it again turns the displays on, etc.

This feature is often convenient when the displays may be distracting to an operator
as in an airplane cockpit.

USING THE MONITOR SUBROUTINES

You can also use JSR to reach the subroutines in the Micro-68 monitor. The
subroutines are:

DISPLAY (Address FFCB) — displays six characters from memory locations 0078
through 007D in a single left-to-right scan of the LEDs. Uses A, B, and X
registers. Each display is pulsed for about 3 ms.

WRDATA (Address FFB6) — converts a 4 bit binary number in A into a seven-segment
display code stored at (0078 + (0077)), increments 0077, and saves the origi-
nal binary number in 007F. Uses A and X. Note that 0077 tells the com-
puter which address to use between 0078 and 007D.

INPUT (Address FF93) — scans the keyboard and refreshes the LED displays. Dis-
plays key input unless (74) # 0. Uses A, B, X. If (74) # O, the LEDs
remain as they were. The routine clears memory location 74.

BYTEOUT (Address FF47) — converts an 8 bit number in A into two hexadecimal
characters. Uses WRDATA twice to convert the characters into seven-
segment codes. Returns with original 8 bit number in B. Uses A, B, X.

ADROUT (Address FED4) — converts a 16 bit number in memory locations 0072
(MSB’s) and 0073 (LSB’s) to four seven-segment codes in memory loca-
tions 0078-007B. Uses A, B, X.

68

BYTEIN (Address FF54) - builds an 8 bit binary number in A from two keyboard
entries (first one is 4 MSB’s). Uses A, B, X.

Remember that DISPLAY only scans the LEDs once. The following program will hold
the contents of memory locations 0040 through 0045 on the LED:s.

Note that we have to move our data to the display locations since the monitor uses the dis-
play locations also.

DSP LDX $40 POINT TO START OF DATA ARRAY
LDAB #6 COUNT = 6 WORDS
MVDSP LDAA X GET A WORD OF DATA
STAA $38, X MOVE IT TO DISPLAY LOCATION
INX
DECB
BNE MVDSP
SCAND JSR DISPLAY SCAN DISPLAYS
BRA SCAND
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 DSP LDX #$40 CE
01 00
02 40
03 LDAB #6 C6
04 ' 06
) MVDSP LDAA X A6
06 00
07 STAA $38, X A7
08 38
09 INX 08
0A DECB } SA
OB BNE MVDSP 26
0C F8
0D SCAND JSR DISPLAY BD
OE FF
OF CB
10 BRA SCAND 20
11 FB

Try the following patterns:

D

(40) = 91
(41) = 61
(42) = E3
(43) = E3
(44) = 03
(45) = FF

69

2) (40) = FF
@y =171
(42) = E3
(43) = 03
(44) = 31
(45) = FF

Make up some patterns of your own and display them.

Change the program so that it only scans the display a certain number of times. How
many times do you have to scan the display in order to make it visible? Remember that
DISPLAY uses the registers so you’ll have to keep your counter in memory.

You can build the data from the keys using INPUT; i.e.,

CLR
LDAA
STAA
JSR
DEC
BNE
JSR
BRA

BUILDE

DSP

$77

#6

$50
INPUT
$50
BUILDE
DISPLAY
DSP

DISPLAY OFFSET = 0
NUMBER OF DISPLAYS = 6

GET A KEYBOARD INPUT

INPUT uses WRDATA to convert the keyboard entry into a seven-segment code. Note that
we use a counter in memory since INPUT uses the registers. You must be very careful about
exactly what changes a subroutine produces; a single subroutine call can have many different
effects on registers and memory locations.

The hexadecimal version of the program is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLR $77 7F
01 00
02 77
03 LDAA #6 86
04 06
05 STAA $50 97
06 50
07 BUILDE ISR INPUT BD
08 FF
09 93
0A DEC $50 7A
0B 00
0C 50
oD BNE BUILDE 26
OE F8
OF DSP JSR DISPLAY BD
10 FF
11 CB
12 BRA DSP 20
13 FB

70

Enter and run this program. What are the final contents of memory location 0077?
Why? How could you change the program so that it only accepts four keys? Try the pro-
gram. Which displays does it use? How could you change the program so that it uses the
rightmost four displays? Hint: blank the first two displays by placing FF in locations 78

and 79 and 2 in location 77.

BUILDING MONITOR COMMANDS

The basic monitor routines are, of course, used to build an address from 4 key entries
and display the contents of that address:

CLR §77
JSR BYTEIN GET 1ST TWO DIGITS
STAA $72
JSR BYTEIN GET 2ND TWO DIGITS
STAA $73
LDX $72 MAKE DIGITS INTO ADDRESS
LDAA X GET DATA FROM ADDRESS
JSR BYTEOUT DATA TO DISPLAY BUFFER
DSP JSR DISPLAY
BRA DSP
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLR $77 7F
01 00 .
02 77
03 JSR BYTEIN BD
04 FF
05 54
06 STAA $72 97
07 72
08 JSR BYTEIN BD
09 FF
0A 54
0B STAA $73 : 97
oC 73
0D LDX $72 DE
OE 72
OF LDAA X A6
10 00
11 JSR BYTEOUT BD
12 FF
13 ; 47
14 DSP ISR DISPLAY BD
15 FF
16 CB
17 BRA DSP 20
18 FB

71

Enter this program and run it. You can also end it by simply returning to the BYTEIN
routine. In fact, this routine automatically refreshes the displays while waiting for the next
key to be pressed.

72

LABORATORY B

Using the Peripheral Interface Adapter

The most complex and expensive part of modern computers is the input/output section.
Each peripheral represents a unique interfacing problem which requires a special circuit
board. However, LSI techniques can simplify interfacing by providing devices which can be
programmed to handle many different situations. The Motorola 6820 Peripheral Interface
Adapter (PTA) is such a programmable device.

The PIA has two I/O ports (A and B) each of which contains the following:

an 8-bit data register which is latched when used for output but unlatched

when used for input

an 8-bit data direction register which determines whether individual data

pins are inputs (*0”) or outputs (‘1)

an 8-bit control register which configures the port

a serial input line CA(B) 1

a serial input or output line CA(B)2

an active-low interrupt output line IRQA(B)

The control register is the key to choosing the configuration for the PIA. The bits
which the programmer places in that register determine how the PIA operates. For example,
bit 0 of the control register determines whether the internal interrupt appears externally
as shown in Figure B-1. If bit O is ‘0’ the output from the NAND gate is always ‘1’ regard-
less of the other input. If bit 0 is ‘1°, the output from the NAND gate is the inverse of the
other input. The programmer can thus decide whether the PIA will operate in an interrupt

or non-interrupt mode.

Controlling the Interrupt Output with Control

PIA
Control
Register

Figure B-1

Register Bit O

Internal

Interrupt

External

Interrupt

/\/

BITO -

The programmer can either permit or inhibit the external interrupt by placing a ‘0’ or ‘1’ in

bit 0 of the control register. The external interrupt is active-low.

73

>

Bit 1 of the control register determines whether the internal interrupt flip-flop will be
set on a high-to-low (‘0%) or low-to-high (‘1”) transition on control line 1. Figure B-2 shows
how this circuitry could be designed. The D flip-flop changes state (to ‘1’ — the D input) on
a high-to-low clock transition. If control register bit 1 is ‘1°, control line 1 is inverted so the
actual transition is low-to-high. The PIA can therefore recognize either transition on the con-
trol line without the need for an external inverter. Sometimes a high-to-low transition is
called a “trailing edge’ and a low-to-high transition is called a ‘leading edge’.

Bit 2 of the control register determines whether the CPU is accessing the data register
(1) or the data direction register (0). The two registers share a system address. Figure B-3
shows how this circuitry could be designed. If bit 2 = ‘0’, the data direction register is
clocked;if bit 2 = “1’, the data register is clocked.

Figure B-2
Controlling the Interrupt Flip-Flop with
Control Register Bit 1

Control
Line 1
——
) > CLK
Bit 1 »—
PIA Interrupt
Control Flip Flop

Register

+5v O— NN\ D

A\ >

If control register bit 1 is ‘0’, the output from the EXCLUSIVE OR gate is the same as con-
trol line 1. If control register bit 1 is ‘1°, the output is the inverse of control line 1. Remem-
ber the truth table for EXCLUSIVE OR,i.e.,

A B A*B
0 0 0
0 1 1
1 0 1
1 1 0

74

External Address

Figure B-3

Controlling the Internal Addresses with

Control Register Bit 2

> L 4

PIA
Control
Register

Bit 2

-—b—.——)—ﬁ

/\/

TNT
DATA
CL Direction
K Register '
DATA BUS
DATA / _
Register
 CLK \f—

L

L

If bit 2 = 1, the data register is clocked while if bit 2 = 0, the data direction register is clocked.

These examples are typical of how the programmer can determine the logic structure of
the PIA by placing data in the control registers. The bit assignments (these are arbitrary) are

as follows:

Bit 7 — internal interrupt latch for control line 1.

Bit 6 — internal interrupt latch for control line 2.

Bit 5 — determines whether control line 2 is an input (‘0’) or
output (‘1°).

Bits 3 and 4 — determine the use of control line 2.

Bit 2 — determines whether the CPU will access data direction
register (‘0”) or data register (‘1°).

Bit 1 — determines whether bit 7 is set by high-to-low (‘0’) or

low-to-high (‘1°) transitions on control line 1.

Bit 0 — determines whether the external interrupt from bit 7
is disabled (‘0’) or enabled (‘1°).

75

Note the following features of the PIA:

1. Reset clears all the registers, making the data and control lines inputs, selecting the
data direction registers, and disabling the interrupts.

2. The CPU can’t write into the interrupt latches, i.e., control register bits 6 and 7.

3. Reading the data register clears bits 6 and 7 so that they can act as DATA READY
signals. Note that writing into the data register does not clear those bits.

AN INPUT PIA

The EPA keyboard PIA is available for external use at the 40 pin connector. Its addresses
are:

DATA OR DATA DIRECTION REGISTER A 8004 DATAA
CONTROL REGISTER A 8005 STATA
DATA OR DATA DIRECTION REGISTER B 8006 DATAB
CONTROL REGISTER B 8007 STATB

The pin connections are:

Table B-1
Connections for 40 Pin Connector
PAQO — PA7 2-9
PBO — PB7 10 — 17
CAl A
CA2 1
CB1 18
CB2 \"

The following program will make the “A” side into an input port:

CLR STATA
CLR DATAA MAKE ALL LINES INPUTS
LDAA #%00000100 ACCESS DATA REGISTER
STAA STATA

So that you can see the contents of the A side data and data direction registers at the
same time, the following program places them in registers A and B respectively,

CLR STATA

CLR DATAA MAKE ALL LINES INPUTS

LDAB DATAA SAVE DATA DIRECTION REGISTER IN B
LDAA #%00000100 ACCESS DATA REGISTER

STAA STATA

LDAA DATAA SAVE DATA REGISTER IN A

SWI

76

The hexadecimal version of the program is:

Memory Memory

Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLR STATA 7F
01 80
02 05
03 CLR DATAA 7F
04 80
05 04
06 LDAB DATAA Fé6
07 80
08 04
09 LDAA #%00000100 86
0A 04
OB STAA STATA B7
oC 80
0D 05
OE LDAA DATAA B6
OF 80
10 04
11 SWI 3F

Enter and run the program. What are the values of the data and data direction registers
at the end? Remember that we obtained both values from the same address. Try the same
program but use the PIA “B” side (addresses 8006 and 8007).

Attach one end of an SPST (single-pole, single-throw) switch to data bit PA7 and the
other end to ground. The following program will make the PIA into an input port and wait
for you to close the switch:

CLR STATA

CLR DATAA ALL LINES INPUTS

LDAA #%00000100 ACCESS DATA REGISTER
STAA STATA

WAITS LDAA DATAA GET SWITCH STATUS
BMI WAITS WAIT IF OPEN
SWI
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLR STATA 7F
01 80
02 05
03 CLR DATAA 7F
04 80
05 ~N 04

77

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
06 LDAA #%00000100 86
07 : 04
08 STAA STATA B7
09 80
0A 05
OB WAITS LDAA DATAA B6
0oC 80
0D 04
OE BMI WAITS 2B
OF FB
10 SWI 3F

Note that clearing the control register to start allows us to place values in the data direction
register. Enter this program and run it. Try attaching the switch to some of the other data
bits on side A.

Attach the switch to control bit CA1. The following program will configure the PIA,
wait for you to close the switch, and place the contents of the control register before and
after the data register has been read in accumulators A and B respectively.

CLR STATA

CLR STATA ALL LINES INPUTS

LDAA #%00000100 ACCESS DATA REGISTER
STAA STATA

WAITS LDAA STATA HAS SWITCH BEEN CLOSED?
BPL WAITS NO, WAIT
LDAB DATAA CLEAR STATUS BIT
LDAB STATA GET NEW CONTROL REGISTER
CONTENTS
Swi
Memory Memory
Address Instruction Contents
(Hex) {(Mnemonic) (Hex)
00 CLR STATA 7F
01 80
02 05
03 CLR DATAA 7F
04 80
05 04
06 LDAA #%00000100 86
07 04
08 STAA STATA B7
09 80
OA /\/ 05

78

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
OB WAITS LDAA STATA B6
oC 80
0D 05
OE BPL WAITS 2A
OF FB
10 LDAB DATAA F6
11 80
12 04
13 LDAB STATA Fé6
14 80
15 05
16 SWI 3F

Run the program. What are the final contents of accumulators A and B? Change the
program so that it debounces the switch by waiting for 1 ms., i.e.,

Memory Memory
Address Instruction Contents
(Hex) {(Mnemonic) (Hex)
10 LDX #3$3E CE
11 00
12 3E
13 DLY DEX 09
14 BNE DLY 26
15 FD
16 LDAB DATAA Fé6
17 80
18 04
19 LDAB STATA Fé6
1A 80
1B 05
1C SWI 3F

Now what are the final contents of accumulators A and B? Explain the difference.
What happens if you replace LDAB DATAA with STAB DATAA? How about ADDB
DATAA, TST DATAA, CLR DATAA, or ROR DATAA? Why is this feature useful and
what happens if the program doesn’t read the data register? How would you change the
program to use line CA2 rather than CA1?

AN OUTPUT PIA

The following program makes the PIA B side into an output port and stores the data
and direction registers in registers A and B respectively,

79

CLR STATB
LDAA #S$FF
STAA DATAB ALL LINES OUTPUTS
LDAB DATAB SAVE DATA DIRECTION REG. IN B
LDAA #%00000100 ACCESS DATA REGISTER
STAA STATB
LDAA DATAB SAVE DATA REGISTER IN A
SWI
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)

00 CLR STATB 7F

01 80

02 07

03 LDAA #SFF 86

04 FF

05 STAA DATAB B7

06 80

07 06

08 LDAB DATAB Fé6

09 80

0A 06

0B LDAA #%00000100 86

oC 04

oD STAA STATB B7

OE 80

OF 07

10 LDAA DATAB B6

11 80

12 06

13 SWI 3F

Enter and run the program. What are the values of the data and direction registers at
the end? Change LDAA #%00000100 to LDAA #%11000100 and change LDAA DATAB
to LDAA STATB. What is the final value of accumulator A? Explain this.

Attach the cathode of an LED to data line PB7 and its anode to +5 volts. The follow-
ing program will configure the PIA and light the LED.

CLR STATB

HERE

LDAA #S$FF

STAA DATAB
LDAA #%00000100 ACCESS DATA REGISTER
STAA STATB

CLR DATAB

BRA HERE

80

ALL LINES OUTPUTS

LIGHT THE LED
AND WAIT

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLR STATB 7F
01 80
02 07
03 LDAA #$FF 86
04 FF
05 STAA DATAB B7
06 80
07 06
08 LDAA #%00000100 86
09 04
0A STAA STATB B7
OB 80
0C 07
0))) CLR DATAB 7F
OE 80
OF 06
10 HERE BRA HERE 20
11 FE

Run the program. Change it so that it turns the LED on for one second. How would
you change the program so that it only affects one bit in the PIA data register?

THE BIDIRECTIONAL CONTROL LINE

Control line 1 is always an input line. Transitions on that line generally indicate the
presence of new data from an input device or the readiness of an output device to accept
data. Control line 2 may be either an input or an output line. As an output line, it may
indicate the presence of new output data, mark the completion of a transfer (or the readi-
ness of the CPU to accept data), or serve as a latched serial output.

Attach a switch to CB1 and an LED to CB2. The following program will use CB2 as a
serial output to turn the LED on for one second.

DLY

CLR
CLR
LDAA

STAA
LDX
DEX
BNE
LDAA
STAA
SWI

STATB
DATAB
#%00110100

STATB
#3F423

DLY

#%00111100
STATB

81

DATA LINES INPUTS
ACCESS DATA REGISTER AND
TURN LED ON

DELAY 1 SECOND

TURN LED OFF

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 CLR STATB 7F
01 80
02 07
03 CLR DATAB 7F
04 80
05 06
06 LDAA #%00110100 86
07 34
08 STAA STATB B7
09 80
0A 07
0B LDX #$F423 CE
oC F4
0D 23
OE DLY DEX 09
OF BNE DLY 26
10 FD
11 LDAA #%00111100 86
12 3C
13 STAA STATB B7
14 80
15 07
16 SWI 3F

Does the switch have any effect on the program? In this configuration, the level and pulse
length of the serial output are controlled by the program.

Change the program so that key 7 turns the LED on and key O turns it off. Remember
that you can wait until key D is pressed with the instructions.

WAITO ISR STATUS IS KEY 0 PRESSED?
BCS WAITO NO, WAIT
WAITO LSR STATUS 74
80
04
BCS WAITO 25
FB

CB2 can also act as an acknowledge or “COMPUTER READY” signal. In this case, it
goes low after the CPU writes into the PIA and remains low until there is a transition on
CB1. The following program will produce this type of CB2 signal.

82

CLR STATB

CLR DATAB DATA LINES INPUTS
LDAA #%00100100 TURN LED ON

STAA STATB

CLR DATAB

HERE BRA HERE
Memory Memory
Address Instruction Contents
(Hex) {(Mnemonic) (Hex)

00 CLR STATB 7F
01 80
02 07
03 CLR DATAB 7F
04 80
05 06
06 LDAA #%00100100 86
07 24
08 STAA STATB B7
09 80
0A 07
OB CLR DATAB 7F
oC 80
0D 06
OE HERE BRA HERE 20
OF FE

What happens when you open and close the switch on CB1? What happens if you re-
place CLR DATAB with LDAA DATAB? How about STAA DATAB, ADDA DATAB, LSR
DATAB, TST DATAB? Why is this feature useful? Note that PIA side ‘A’ produces an
equivalent signal in response to a read operation. Try side A and see which instructions turn
the LED on.

Another control line option produces a brief pulse which can indicate the presence of
new data to the peripheral. You can employ this option by replacing LDAA #%00100100
in the last program with LDAA #%00101100. Run the program with this change. What
happens?

This pulse or strobe is too brief for you to see. You can check for its presence by
attaching CB2 to CB1. The following program will end with the old contents of the control
register (before the strobe) in accumulator A and the contents after the strobe in accumula-
tor B.

LDAA STATB A = OLD CONTROL REGISTER
CLR DATAB PRODUCE STROBE

LDAB STATB B = NEW CONTROL REGISTER
SWI

83

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
0B LDAA STATB B6
oC 80
0D 07
OE CLR DATAB 7F
OF 80
10 06
11 LDAB STATB Fé6
12 80
13 07
14 SWI 3F

What are the final contents of accumulators A and B? Why?
So the output control line options are (control register bits):
Bit 5 = 1 makes CB2 an output
Bit 4 = 1 makes CB?2 a latched serial output (level) with the value of bit 3

Bit 4 = 0 makes CB2 an active-low pulse which is either a long strobe
deactivated by CB1 (bit 3 = 0) or a brief strobe (bit 3 = 1).

Note the variety of circuit configurations that you can obtain from a single PIA under pro-
gram control.

If you need to clear the READY bit on an output port or produce a write strobe from
side A of a PIA, you can always use the sequence

STAA PIADR OUTPUT DATA
LDAA PIADR DUMMY READ

The LDAA instruction does not change any registers (why?) or do anything else except
waste time. Similarly, if you want a read strobe from side B of a PIA, the sequence

LDAA PIADR INPUT DATA
STAA PIADR DUMMY WRITE

will do the job with no side effects (why?). But be sure to document these seemingly useless
instructions so that you don’t accidentally eliminate them.

84

LABORATORY C

Interrupts

Interrupts provide direct serial inputs into the CPU. With an interrupt, an external de-
vice can directly inform the CPU that it has data, is ready to receive data, or has some other
requirement. The program does not have to check the status bit (i.e., have the CPU poll it)
or include precautions to avoid missing an event. The computer, instead, goes about its
normal business or simply waits for the external event.

The Micro-68 computer responds as follows to an interrupt:
1. It saves the contents of all the registers in the stack.

2. It places the contents of memory locations 006A and 006B in the program
counter. We will call this 16-bit address the NEWPC pointer.

So you must place the address of the interrupt service routine in NEWPC.
You can enable or disable the interrupt system as follows:
CLI (OE) enables interrupts (i.e., clears the interrupt disable bit).
SEI (OF) disables interrupts (i.e., sets the interrupt disable bit).

Remember that the processor automatically disables interrupts on reset or on accepting an
interrupt (why do you think it does this?)

Each PIA also has its own interrupt enable bit, bit O of the control register. It must be
1 to allow an interrupt from the PIA. Reading the data from the PIA clears the interrupt bit
(control register bit 7).

A SIMPLE INTERRUPT

You can generate a simple interrupt from a switch attached to line CA1 (connector pin
A). The following program will wait for you to close the switch and then return to the
monitor. Note that you must enable both the overall interrupt in the CPU with the CLI in-
struction and the PIA interrupt. Reading the PIA data register (after debouncing) clears the
interrupt.

SEI DISABLE INTERRUPT
LDX #$30 STORE INTERRUPT SERVICE ADDRESS
STX NEWPC
LDAA #%00000101 ENABLE PIA INTERRUPT
STAA STATA
CLI ENABLE INTERRUPT
WAITI BRA WAITI AND WAIT
ORG $30
LDX #$3E DEBOUNCE SWITCH
DLY DEX ‘
BNE DLY
LDAA DATAA CLEAR INTERRUPT
SWI

85

Note that you should disable the interrupt initially since the monitor does not do it

automatically.
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 SEI OF
01 LDX #$30 CE
02 00
03 30
04 STX NEWPC DF
05 6A
06 LDAA #9%00000101 86
07 05
08 STAA STATA B7
09 80
0A 05
0B CLI OE
oC WAITI BRA WAITI 20
0D FE
30 LDX #3$3E CE
31 00
32 3E
33 DLY DEX 09
34 BNE DLY 26
35 FD
36 LDAA DATAA B6
37 80
38 04
39 SWI 3F

Enter and run the program.

What are the final contents of the stack? The external interrupt, just like an SWI in-
struction, causes the CPU to save all the registers in the stack. What is the value of register
A at the end of the interrupt service routine? The original value of A in the main program is
still in the stack (where?).

What is the value of the interrupt flag at the end of the interrupt service routine? The
CPU automatically disables the interrupt when it accepts one. Again, note that the original
value of the interrupt flag is still in the stack.

Change the program so that it uses control line CB1 (connector pin 18) instead of CAI.
Now change it to use CB2 (connector pin V). Note that you must set control register bit 3
to 1 to enable the interrupt on control line 2.

86

COMMUNICATION BETWEEN MAIN PROGRAM
AND INTERRUPT

Since the 6800 saves the contents of all its registers on accepting an interrupt and re-
stores them all (via the RTI instruction) after servicing the interrupt, you must use the
memory to pass information between the main program and the interrupt service routine.
The following program uses a flag in memory location 40 to determine if the interrupt from
CA1 has occurred.

(40) = 0 before interrupt
(40) = 1 after interrupt

Main Program:

SEI DISABLE INTERRUPT
LDX #$30 STORE INTERRUPT SERVICE ADDRESS
STX NEWPC
LDAA #%00000101 ENABLE PIA INTERRUPT
STAA STATA
CLR $40 INTERRUPT FLAG=0
CLI1 ENABLE INTERRUPT
WAITM TST $40 HAS INTERRUPT OCCURRED?
BEQ WAITM NO, WAIT
SWI

Interrupt service routine:

ORG $30
LDX #$3E WAIT 1 MS. TO DEBOUNCE SWITCH
DLY DEX
BNE DLY
LDAA DATAA CLEAR INTERRUPT
INC $40 MARKER=1
RTI
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 SEI OF
01 LDX #5$30 CE
02 00
03 30
04 STX NEWPC DF
05 ‘ 6A
06 LDAA #%00000101 86
07 05
08 STAA STATA B7
09 80

/\/

87

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
0A 05
0B CLR $40 7F
oC 00
oD 40
OE CLI OE
OF WAITM TST $40 7D
10 00
11 40
12 BEQ WAITM 27
13 FB
14 SWI 3F
30 LDX #$3E CE
31 00
32 3E
33 DLY DEX 09
34 BNE DLY 26
35 FD
36 LDAA DATAA B6
37 80
38 04
39 INC $40 7C
3A 00
3B 40
3C RTI 3B

Enter and run the program. Try using accumulator B instead of memory location 40. What
happens? Note that you do not have to reorganize the program — put NOP (01) in the
unused spots, i.e., replace CLR $40 with CLRB, NOP, NOP.

The problem is that you have not changed the value of register B in the stack. Instead
of INCB, try

TSX USE STACK POINTER AS DATA POINTER
INX AND INCREMENT B IN STACK

INC X

39 TSX 30

3A INX 08

3B INC X 6C

3C 00

3D RTI 3R

Explain why this works. How would you set the interrupt flag in the stack so as to have the
interrupts disabled on returning?

88

USING THE INTERRUPTS

Note that using the interrupt means that the program does not have to examine the
status bit. Instead, the status bit informs the processor that it is active. The result is that the
computer can be doing useful work until it is interrupted. The following program simply
counts using three memory locations (40, 41, and 42). See how high it counts before you
can interrupt it.

SEI CLEAR INTERRUPT

LDX #$30 STORE INTERRUPT SERVICE ADDRESS

STX $6A

LDAA #%00000101 ENABLE PIA INTERRUPT

STAA STATA ALL LOCATIONS =0

CLR $40

CLR $41

CLR $42

CLI ENABLE INTERRUPT
CTl1 INC $42 AND COUNT

BNE CT1

INC $41

BNE CT1

INC $40

BRA CT1

The interrupt service routine is the same as in the first example.

Memory Memory
Address Instruction Contents
(Hex) {(Mnemonic) (Hex)
00 SEl OF
01 LDX #3$30 CE
02 00
03 30
04 STX NEWPC DF
05 6A
06 LDAA #%00000101 86
07 05
08 STAA STATA B7
09 80
0A)
OB CLR $40 7F
oC 00
0D 40
OE CLR $41 : 7F
OF 00
10 41
11 CLR $42 7F
12 00

13 /\/ 42

89

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
14 CLI OE
15 CTI INC $42 7C
16 00
17 42
18 BNE CT1 26
19 FB
1A INC $41 7C
1B 00
1C 41
1D BNE CT1 26
1E F6
1F INC $40 7C
20 00
21 40
22 BRA CT1 20
23 F1

You can reset the computer to clear the stack. Try the program several times. With the in-
terrupt, no time is wasted looking for the switch input yet the response is immediate.

Change the program so that the interrupt is initially disabled but is enabled by pressing
key F. Check for key F during each cycle. Close the switch while the interrupt is disabled and
then reopen it. What happens when you press key F? Does it matter if the initialization
disables the PIA interrupt or the entire system? Change the program so that it includes an
LDAA DATAA instruction in each cycle. Now does the PIA remember the interrupt? An
unserviced interrupt remains active unless the program clears it.

POLLING INTERRUPTS

If there is more than one source for an interrupt, the CPU must check the status bits
of the PIAs. The advantage of the interrupt here is that the CPU knows that one bit is
active. Attach switches to both CA1 and CA2. The following program will wait for the
interrupt and then display either 1 or 2 on the LED:s.

Main program:

SEI DISABLE INTERRUPT
LDX #330 STORE INTERRUPT SERVICE ADDRESS
STX $6A

LDAA #%00000101 ENABLE PIA INTERRUPTS

STAA STATA

CLI ENABLE INTERRUPT
WAITI BRA WAITI AND WAIT

90

Interrupt service routine:

ORG $30
LDAB #$9F CODE TO DISPLAY 1
LDAA STATA IS INTERRUPT FROM LINE 17
BMI DSPLY YES, DISPLAY 1
ASLA IS INTERRUPT FROM LINE 2?
BPL LAST NO, JUST WAIT
LDAB #3825 YES, GET CODE TO DISPLAY 2
DSPLY LDAA DATAA CLEAR INTERRUPT
LDAA #3FF TURN ON ALL DISPLAYS
STAA LIGHTS
STAB GLOW AND DISPLAY 1 OR 2
LAST BRA LAST WAIT
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 SEI OF
01 LDX #330 CE
02 00
03 30
04 STX $6A DF
05 6A
06 LDAA #%00000101 86
07 0D
08 STAA STATA B7
09 80
0A 05
OB CLI OE
oC WAITI BRA WAITI 20
oD FE
30 LDAB #9F Cé6
31 9F
32 LDAA STATA B6
33 80
34 05
35 BMI DSPLY 2B
36 05
37 ASLA 48
38 BPL LAST 2A
39 OE
3A LDAB #3$25 C6
3B 25
3C DSPLY LDAA DATAA B6
3D 80
3E 04

N

91

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
3F LDAA #SFF 86
40 FF
4] STAA LIGHTS B7
42 80
43 0A
44 STAB GLOW F7
45 80
46 08
47 LAST BRA LAST 20
48 FE

Enter and run the program. Change the main program so that it waits for key F to be
pressed before enabling the interrupts. What happens if you close one of the switches before
pressing key F? What happens if you close both switches? The interrupt which takes
precedence over the other one is said to have higher priority. Change the priority. Note
that the order in which the interrupt flag bits are examined determines the priority of the
interrupt. A system which uses flag bits to identify the source of an interrupt is called a
polling interrupt system.

92

LABORATORY D

Examining Computer Signals

This laboratory exercise assumes that you have a dual-trace oscilloscope and an AMP
86-pin connector which fits on the front of the Micro-68 computer.

Enter the following simple loop program into the computer. It branches back to itself
endlessly.

LOOP BRA LOOP
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex) (Binary)
00 LOOP BRA LOOP 20 00100000
01 FE 11111110

Attach the probe from one channel of the oscilloscope to clock phase ¢>. You can get
¢ from the resistor just above the 6800 microprocessor and on the right-hand side (toward
the keyboard). ¢, should be a regular series of pulses with a frequency of 1mHz. The
pulse width is about 1/2 microsecond. Be sure that you have ¢, on the oscilloscope before
you proceed.

Since the only memory addresses used by the program are 0000 and 0001, only
address line AO will change. Attach the probe from the other channel of the oscilloscope
to address line AQ (Prior V on the 86-pin connector). You should note that some 100-pin
connectors are upside-down with respect to the AMP connector. We will therefore give both
designations from here on — AMP and its opposite. The pins are in the same position but in
opposite vertical planes. So A0 is pin V, 40 (V on AMP, 40 on the other connector).

Try to figure out how the instruction cycle works by lining up ¢, and AO. The com-
puter executes the BRA LOOP instruction as follows:

CYCLE ADDRESS DATA PURPOSE
1 0000 20 FETCH
2 0001 FE FETCH
3 ? ? RELATIVE ADDRESSING
4 ? ? RELATIVE ADDRESSING

The first two cycles are used to fetch the instruction and the relative offset. The second two
cycles are used to add the offset and the 16-bit program counter. You can determine when
cycle 2 starts by noting when AO goes high.

Cycles 3 and 4 do not use the memory so VMA is low. Attach the second probe to
VMA, connector pin L, 10. VMA should be ‘1’ during cycles 1 and 2, ‘0’ during cycles 3
and 4. Remember that ¢, is low during the first half of each cycle and high during the
second half.

93

Now look at the data lines. Note that 20 (BRA) consists of data bit 5 (0’s) high and all
others low; FE (the offset) has DO low and all others high. So the data lines should be:

CYCLE D7,D6,D4,D3,D2, D1 D5 DO
1 0 1 0
2 1 1 0

Attach the second probe to D5, connector pin 7.30. When does D5 become ‘177 Try DO,
connector pin K, 30 and then D1, connector pin H, 29. Note that the address changes occur
during the first half of the cycle while the data changes occur during the second half of the
cycle. The processor does not use the data bus float during the first half of the cycle when

addresses may be changing. Why? Can you see a delay between the rising edge of ¢y and a
change on the data lines?

Now add another instruction to the loop. The new program is:

Memory Memory
Address Instruction Contents
(Hex) {(Mnemonic) (Hex) (Binary)
00 LOOP NOP 01 00000001
01 BRA LOOP 20 00100000
02 FD 11111101

The execution of NOP takes two cycles, one to fetch the instruction and one to execute
it. Compare address lines AO and A1 (pin 40, V) to ¢4 and draw them on a piece of paper.

Can you determine where the loop begins? What happens if you change memory location
0002 from FD to FE? Why?

Now examine the data lines. Note that they are all the same (0, 0, 1) except lines 0

(1,0,1),1(0,0,0), and 5 (0, 1, 1). Examine the READ/WRITE line. Does its value
change?

Extend the loop by one more instruction as follows:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex) (Binary)
00 LOOP SUBA #0 80 10000000
01 00 00000000
02 BRA LOOP 20 00100000
03 FC 11111100

Examine address lines AO and A1, VMA, R/W, and the data lines. We chose the instruction
SUBA #0 because of its simple bit pattern. It executes in two cycles (can you see it on the
scope?). What happens during those two cycles? What is the value of VMA?

94

Now change memory location 0000 from 80 to 90. What happens to the data and ad-
dress lines and VMA? Examine address line A7 (pin S). The difference is that 80 is SUBA
IMMEDIATE while 90 is SUBA DIRECT. Direct addressing means that the computer needs
an extra cycle to fetch the data from the direct address (0000 in this case). So SUBA 0 re-
quires three cycles instead of two.

Now try the following program:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex) (Binary)

00 LOOP STX $20 FF 11111111
01 00 00000000
02 20 00100000
03 BRA LOOP 20 00100000
04 FB 11111011

Explain how this instruction is executed by examining:

AQ pin V, 40
Al pin 40,V
A2 pin 39, T
A5 pin 38, T
DO pin K, 31

D2 pin 31, K
D5 pin7J, 30

VMA pin L, 10
R/W pin #, 6

What happens if you change STX (FF) to LDX (FE)? Put 00 in memory location 0020 and
FF in 0021,

The contents of the index register are underlined in the program with STX above. What
happens if you enter the following program?

LDX #$00FF
LOOP STX $20
BRA LOOP

95

LABORATORY E

External Clocks

Computers often must determine the timing of a peripheral from an external clock.
The clock is simply a regular series of pulses; once the computer determines when the pulses
start and how long they are, the computer can then transfer data to or from a peripheral
governed by the clock. The clock can also inform the computer of the passage of a certain
amount of time. A real-time clock interrupts the computer at regular intervals. The com-
puter can count interrupts and thus handle inputs and outputs at specified points in time.

This laboratory assumes that you have a variable external clock source. The TTL out-
put from a function generator will do. So will any other source that can produce a clock in
the 1 to 100 Hz range.

Attach the clock to control line CAl (pin A of the 36-pin connector). The following
program will wait for the first high-to-low transition (trailing edge) on the clock line:

WAITON LDAA STATA CLOCK TRANSITION?
BPL WAITON NO, WAIT
LDAA DATAA CLEAR CLOCK STATUS FLAG
SWI
The hexadecimal version of the program is:
Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 WAITON LDAA STATA B6
01 80
02 05
03 BPL WAITON 2A
04 FB
05 LDAA DATAA B6
06 80
07 04
08 SWI 3F

Enter and run the program. Why is the LDAA DATAA instruction necessary? How would
you change the program so that it waited for the first low-to-high transition (leading edge) on
the clock line? How would you change it to use CA2 (pin 1) instead of CA1?

The following program will wait for ten high-to-low transitions:

LDAB #10 COUNT = 10

WAITON LDAA STATA CLOCK TRANSITION?
BPL WAITON ‘
LDAA DATAA CLEAR CLOCK STATUS FLAG
DECB HAVE 10 TRANSITIONS OCCURRED?
BNE WAITON NO, WAIT FOR NEXT TRANSITION
SWI

97

The hexadecimal version is:

Memory Memory
Address Instruction Contents
(Hex) (Mnemonic) (Hex)
00 LDAB #10 C6
01 0A
02 WAITON LDAA STATA B6
03 80
04 05
05 BPL WAITON 2A
06 FB
07 LDAA DATAA B6
08 80
09 04
0A DECB 5A
OB BNE WAITON 26
0C F5
oD SWI 3F

Enter the program and run it with a 5 Hz clock rate. How long a delay do you get? How
can you make the delay 10 seconds? How accurate will the delay be? How accurate could
you make it with a 10 Hz clock?

Note the importance of the LDDA DATAA instruction. What happens if you replace
this instruction with:

(a) 3 NOP’s

(b) STAA DATAA

(c) LDAA STATA

(d) TST DATAA

(e¢) CLR DATAA

The computer can also determine the clock period. The following program will store
the clock period (in milliseconds) in memory location (50).

LDAA DATAA CLEAR STATUS
CLRB PERIOD = 0
WAITST LDAA STATA HAS PULSE STARTED?
BPL WAITST NO, WAIT FOR PULSE TO START
LDAA DATAA CLEAR STATUS FLAG
COUNT INCB PERIOD = PERIOD + 1 MS.
JSR DIMS WAIT 1 MS.
LDAA STATA HAS NEXT PULSE STARTED?
BPL COUNT NO, KEEP COUNTING
STAB $50 SAVE PERIOD
LDAA DATAA CLEAR STATUS FLAG
SWI

98

The delay program (from Laboratory 4) is:

DIMS LDX #$3E WAIT 1 MS.
DLY DEX

BNE DLY

RTS

Try this program with clocks of 10, 20, and 50 Hz. How accurate is it? How could you
make it more accurate? Note that no delay program was necessary in the earlier examples
since the external clock provided the timing.

A real-time clock allows the computer to go about its normal business and still handle
inputs and outputs at particular times. No delay routines are needed.

The following program uses a 1 Hz real-time clock to wait for one second before turn-
ing the displays on. We’ll assume that the program-and the clock start at the same time.

SEI DISABLE CPU INTERRUPT

LDX #$30 STORE INTERRUPT SERVICE ADDRESS
STX NEWPC

LDAA #%00000101 ENABLE PIA INTERRUPT

STAA STATA

CLR $40 CLOCK COUNTER = 0
LDAA #1 DESIRED CLOCK COUNT = 1
CLI ENABLE CPU INTERRUPT
WAITI CMPA §40 HAS DESIRED COUNT ELAPSED?
BNE WAITI NO, WAIT
LDAA #3FF YES, TURN DISPLAYS ON
STAA LIGHTS
CLR GLOW TURN SEGMENTS ON
HERE BRA HERE AND WAIT
ORG $30
LDAA DATAA CLEAR CLOCK STATUS FLAG
INC $40 INCREMENT CLOCK COUNTER
RTI

Note that we leave the interrupt on. Does it have any effect? Enter and run the pro-
gram. Change it so that it delays for 10 seconds before turning the displays on. How would
you get a 10 second delay with a 10 Hz clock.

The real-time clock is particularly useful when the computer must perform actions
regularly. For example, to have the computer turn the displays on for 1 of every 2 seconds,
simply change the end of the program to:

LDAB #2
WAITON CMPB §$40 HAS ANOTHER SECOND ELAPSED?
BNE WAITON NO, WAIT
CLR LIGHTS YES, TURN DISPLAYS OFF
BRA STTIME AND START AGAIN

99

The program could also take a variable set of time intervals from a table. How would
you write a program to handle the following table?

(41) = NO. OF SECONDS OFF = 08
(42) = NO. OF SECONDS ON = 06

(43) = NO. OF SECONDS OFF = 03
(44) = NO. OF SECONDSON = 05
(45) = NO. OF SECONDS OFF = 02
(46) = NO. OF SECONDSON = 10
(47) = NO. OF SECONDS OFF = 04
(48) = NO. OF SECONDSON = 05

Let the program first run through the table once. Then revise the program so that it goes
through the table indefinitely, i.e., it goes back to 0041 after finishing 0048.

STTIME is the instruction (CLR $40) which clears the clock counter. Make the pro-
gram turn the displays on for 1 of every 10 seconds, 4 of every 20, 3 of every 8. Note that

all you have to do to change the duty cycle is vary the constants in memory locations 000F
and 001E.

100

ACCUMULATOR AND MEMORY INSTRUCTIONS

ADDRESSING MODES BOOLEAN/ARITHMETIC OPERATION COND. CODE REG.
IMMED DIRECT INDEX EXTND IMPLIED {All register labels 6(4i3]211]0
OPERATIONS MNEMONIC| OP ~ =lop ~ =|op ~ =|op ~ =|oOP ~ = refer to contents) URMEME
Add ADDA 86 2 2|98 3 2|AB 5 2]BB 4 3 A+M-~A tlefrjtpt]t
ADDB cB 2 2|(0B 3 2|EB 5 2{FB 4 3 B+M +B trelt |ttt
Add Acmltrs ABA 18 2 11 A+B—A Tle|t|t1ite
Add with Carry ADCA 83 2 2[99 3 2|A9 5 2[/B9 4 3 A+M+C—A tefiit| syt
ADCB 9 2 2|09 3 2|E9 5 2fjF9 4 3 B+M+C-B Tlejtyd|t|t
And ANDA 84 2 2|94 3 2|A4 5 2/B4 4 3 A-M-—-A ele l|l|R}e®
ANDB C4 2 2|D4 3 2|E4 5 2[F4 4 3 B-M-B elo(l|lIR]|e
Bit Test BITA 85 2 2|9 3 2|A5 5 2|BS 4 3 A-M olo(l|1iR]®
BITB €5 2 2|05 3 2|E 5 2|F5 4 3 B-M eleil|I|R|®
Clear CLR 6F 7 2[7F 6 3 00 -Mm o|e®IR|S[R|R
CLRA 4F 2 1 | 00~A e e|RIS|R|R
CLRB 5F 2 1| 00~-B e|®R|S[R|R
Compare CMPA 81 2 2|9 3 21Al 5 2(8B1 4 3 A-M oleil |1
CMPB ct 2 2(D1 3 2(E1 5 2|F1 4 3 B-M ejoil|1|1]!
Campare Acmltrs CBA o2 A-B eoje (|1}
Comptement, 1's com 63 7 2113 6 3 MM eo|e(l|!|R]|S
COMA 43 2 1| A-A el e|l|1|RIS
COMB 53 2 1 |B-—8 e|le(1|IIR}S
Complement, 2's NEG 60 7 2|70 6 3 00-M M ole|![1|DIQ
{Negate) NEGA 4 2 1| B0-A~A elel 1O
NEGB 5 2 1 |00-8-8 ole| 1| NDQ
Decimal Adjust, A DAA 19 2 1 Converts Binary Add. of BCD Characters | oo |1 [1]1(®
into BCD fFormat
Decrement DEC 6A 7 277A 6 3 M-1-M oo (t|1i4|e
DECA 4A 2 1 A--1-A elo(i[l14|e
DECB 5 2 1 {8-1-8B elofiftld|e
Exclusive OR EORA 88 2 2|98 3 2|A8 5 2|/8B8 4 3 ADM -~ A eolell(liR|®
EORB cg8 2 2(08 3 2|€8 5 2|F8 4 3 BOM -8B ejeil|l|R|e®
Increment INC sC 7 2]7C 3 M+1—M olel1|1|®)|e
INCA 4 2 1| A+1-A oleft[ti®fe
INCB 5C 2 1 {B+1-B oleil|1|®)e
Load Acmltr LDAA 86 2 29 3 2|A6 5 2|86 4 3 M A ele|l|l|R|e
LDAB C6 2 2|06 3 2|€6 5 2{F6 4 3 M-B ejeil|!l|Rle
Or, Inclusive ORAA BA 2 2i9A 3 2(AA 5 2|BA 4 3 A+ M-+ A eole(l|l|R}e
ORAB CA 2 2f|DA 3 2(EA 5 2|FA 4 3 B+M~—B ele(lil|R|e®
Push Data PSHA 36 4 1 A-*Mgp, SP 1-~SP oo oie|oje
PSHB 3 4 1 | B--Mgp, SP—1--5P ojo|ainio|e
Pull Data PULA 32 4 1 SP+1—~SP, Mgp~A ejejeiooo
PULB 33 4 1| SP+1--SP Mgp--8B sio|njsiee
Rotate Left ROL 69 7 2{719 & 3 M ele|11lE)N!
ROLB 59 2 1|8 [YA efe|1l1|®)1
Rotate Right ROR 66 7 2|76 6 3 M ele|1[1[®!
RORA 46 2 1 A}E—-ﬁ] ofle|1 1@
RORB 5% 2 1|8 C b7 ™ b0 NG E
Shift Left, Arithmetic ASL 68 7 278 6 3 M - eje|1|1|@®)!
ASLA 8 2 1| A 0 - OIIIIro-o ele|1|1|B)!
ASLB 58 2 t |8 c b7 50 ele|1|1|GB)!
Shift Right, Arithmetic ASR 6/ 1 2y77 6 3 M - elo|1|1|®)!
ASRA 47 2 1 A}Q]:m’g O RHGHE
ASRB 57 2 118 b7 b0 c ofle|1|1]|@®)1
Shift Right, Logic LSR 64 7 21714 6§ 3 M - ole|R|1|B)1
LSRA 4 2 1A 0—-IIIOn ~ OJ ele|R|1|@®1
LSRB 4 2 18 b7 LU SO GHE
Store Acmltr, STAA 97 4 2|A7 6 2:!8B7 5 3 A-~M ejie|l1[R]®
STAB 07 4 2|E7T 6 2¢f7 &5 3 B -M sle|1|1|Rj®
Subtract SUBA 8 2 2{90 3 2|AD 5 2{B0O 4 3 A M--A ele|l |t
suss €0 2 2{0D0 3 2|E0 5 2{F0 4 3 B-M--B LILIRR R R
Subtract Acmltrs. SBA W 2 1} A B—A ejeititl 1|1
Subtr. with Carry SBCA 82 2 2(92 3 2(A2 5 2]8B2 4 3 A-M-C—A eleii 11111
S8CB €2 2 2{D2 3 2|E2 5 2{f2 4 3 B-M-C -8B LI IRERE RN
Transfer Acmltss TAB 6 2 1 A B oje|1|!|R|®
TBA 17 2 1 B -A e oi[l{R|®
Test, Zero or Minus TST 60 7 2{70 6 3 M- 00 el®l|1/R|R
TSTA 40 2 1 A-00 ele[T|R|R
TSTB 50 2 t | B8-00 eie|!|i|RIR
H|V|N|ZiV|C
LEGEND: CONDITION CODE SYMBOLS:
0P Operation Code {Hexadecimal}; + Boolean taclusive OR;
~ Number of MPU Cycles; ® Boolean Exclusive OR; H Half-carry from st 3;
= Number of Program Bytes; M Complement of M; | Interrupt mask
+ Anthimetic Plus; - Transter into; N Negative (sign bit}
Arithmetic Minus; 0 Bit = Zero; z Zero (byte)
Boolean AND; 00 Byte = Zero; \ Overtlow, 2's complement
Mgp Contents of memory location pointed o be Stack Pointer; C Carry from bit 7
R Reset Always
Note - Accumulator addressing mode instructions are included in the column far IMPLIED addressing S Set Always
. Testand setf true, cleared otherwise
. Not Affected

101

INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

COND. CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED 5(413(2(1(0
POINTER OPERATIONS MNEMONIC | OP | ~| #|OP) ~| # |OP |~ | #|OP|~ | =lOP) ~ ! = BOOLEAN/ARITHMETIC OPERATION |H|I| N |Z |V |C
Compare Index Reg CPX 8C 3|8C} 4| 23AC|[6 |2 BC!5 |3 XH-M XL -{M+1) ele@D|1 @) e
Decrement Index Reg DEX 0914 |1 X —1--+X oo e|ljee
Decrement Stack Pntr DES 3|4 1 SP-1->8P IR I
increment Index Reg INX 084 |1 X+1-X oo ol e|e
Increment Stack Pntr INS 3|41 SP+1->8§P I LI
Load Index Reg LDX CE 3i/DE| 4| 2|EEj{6 | 2|FE|5 |3 M = Xy, (M+ 1)~ X L4 O@ 1|R|®
Load Stack Pntr LDS 8E 3|9E| 4| 2|AE|{6 | 2 |BE]S |3 M-~ SPY, (M + 1) ~SP(oio(D|i|R|e
Store Index Reg STX DFY 5 2|EF |7 |2 FF[6 |3 XH M XL =M+ 1) L 0@ {|R|®
Store Stack Pntr STS 9F | 5| 2 |AF |7 |2 BF} 6 |3 SPH > M, SPL ~(M+ 1) OISR
Indx Reg > Stack Pntr TXS 35441 X 1-SP ojle 0 0 00
Stack Pntr > indx Reg TSX 30 4 1 SP+1->X oo o0 o0
JUMP AND BRANCH INSTRUCTIONS
COND. CODE REG.
RELATIVE INDEX EXTND IMPLIED 5 4 (32110
OPERATIONS MNEMONIC OP|~ | #|0OP|{~ | #|OP| ~|#|0OP|~ | # BRANCH TEST Hi I |N]jZ]|V]C
Branch Always BRA 20142 None el o o 0|00
Branch if Carry Clear BCC 2614 |2 c=0 R IEIERK]
Branch If Carry Set BCS 2514 |2 c=1 o/ o 0| 0o @
Branch If = Zero BEG 27 | 4 2 2=1 e o0 o o o
Branch If 2> Zero BGE 2|1 4 |2 N®V=0 e o o| o 0|0
Branch If > Zero BGT 26 4 |2 Z+(N®V)=0 R EEIRE IR I
Branch If Higher BHI 2214 |2 C+Z2=0 e oo 0| 0le
Branch If < Zero BLE 2F | 4 | 2 Z+{IN@ V)= e/ oo o] 0|0
Branch If Lower Or Same BLS 2314 |2 c+2=1 el 0o 0| 0|0 o
Branch If <Zero BLT 2004 |2 N®V=1 o oo 0|00
Branch it Minus BMI 2B 4 |2 N=1 el oo 0| 0|e
Branch ¥f Not Equat Zero BNE 264 |2 2=0 e o0 0o 00
Branch It Overflow Clear BvVC 28|14 |2 V=0 o oo o060
Branch If Overflow Set 8Vs 29 (4|2 V=1 ol oo 0|00
Branch If Ptus BPL 2A 412 N=0 ol ool 0|00
Branch To Subroutine BSR 801 8 | 2 o oo o 0|e
Jump JMP 6E| 4| 2| 7E 3 See Special Operations o o eo| 0| 0 0
Jump To Subroutine JSR AD| 8| 218D 3 o o o| 0| 0|0
No Operation NOP 01 1 Advances Prog. Cntr. Only e | o 0| 00 o
Return From interrupt RTI 3B {101t
Return From Subroutine RTS 395 {1 ol 06| 0o 0| 0 0
Software Interrupt Swi JF 112 |1 See Special Operations e| oo 0o 0 o
Wait for Interrupt* WAI 3619 |1 ° @ ol e| 0| @

*WALI puts Address Bus, R/W, and Data Bus in the three-state mode while VMA is held low.

102

SPECIAL OPERATIONS
JSR, JUMP TO SUBROUTINE:

PC Main Program
n | AD=JSR
INDXD n+1 | K= 0ffset”
n+2 Next Main Instr.
*K = 8-Bit Unsigned Vatue
PC Main Program
n | BD=JSR
n+1 | SH=Subr. Addr.
EXTND n+2 | SL=Subr. Addr.
n+3 | Next Main Instr.

—>

—>

BSR, BRANCH TO SUBROUTINE:

—>

PC Main Program
n | 8D =8SR
n+1 | % K= Offset”
n+2 | Next Main Instr.

*K = 7-Bit Signed Value;

JMP, JUMP:
PC Main Program
n | 6E=JMP
n+1 | K=0ffset
INDXD T

X + K | Next Instruction

RTS, RETURN FROM SUBROUTINE:

PC Subroutine

S | 39=RTS

—>

RTi, RETURN FROM INTERRUPT:

PC

Interrupt Program

S 38 = RTI

J

sp
> P2
SP-1
SP
[n+2]

$P

— SP-2
SP-1

SP

P

- §P-2
SP-1

sP

Stack

[n+2l H
[n+2] L
Hand [n+2] | Formn+2

Stack

[n+3] H
In+3] L

— = Stack Pointer After Execution.

Stack

[n+2] H
In+2] L

PC Subroutine

INX + K | 1st Subr. Instr.
PC Subroutine

S 15t Subr. instr,

(S Formed From Syy and Sy)

n+2 Formed From [n+2] yand [n+2]

SP Stack
sp
SP+1 | Ny
— SP+2 NL
sp Stack
sp
SP+1 Condition Code
SP+2 Acmitr B
SP+3 Acmltr A
SP+4 Index Register {XH)
SP+5 Index Register (X)
SP+6 Ny
> SP+7 N

PC Subroutine
n+22 K [1st Subr. Instr.
PC Main Program
n 7E = JMP
n+1 |Ky = Next Address
EXTENDED n+2 |K = Next Address

K Next Instruction

PC Main Program
n Next Main Instr.
PC Main Program

n Next Main Instr.

CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

COND. CODE REG.

IMPLIED 541312170
OPERATIONS MNEMONIC |OP| ~ | # | BOOLEANOPERATION | H | | [N |Z | V]| C
Clear Carry cLC oc{2 |1 0~C e o/ e o|e@! R
Clear Interrupt Mask cLi 0E | 2 |1 0t ® Rjie | o|e e
Clear Overflow cLv 0A[2 |1 0>V @ e e o | R|o
Set Carry SEC 0pf2 1 1->C e| o e 0|85
Set Interrupt Mask SEI 0F | 2 [1 1] e (S |e |e|e| e
Set Overflow SEV |21 1-V ®|[eo|e e |Sle
Acmitr A= CCR TAP 062 |1 A—CCR —_—
CCR —~ Acmitr A TPA 0721 CCR-A elejeje|e|e

CONDITION CODE REGISTER NOTES:

(Bit VI Test: Result = 10000009? 7 (Bit N)

(Bit C) Test: Result = 000000007 8 (Bit V)

(8it C) Test: Decimal value of most significant BCD Character greater than nine? 9 {Bit N}
(Not cleared if previously set.) 10 {AI)

(Bit V) Test: Operand = 10800000 prior to execution? 11 (Bitl)

{Bit V) Test: Operand = 01111111 prior to execution?

(Bit V) Test: Set equal to result of NG®C after shift has occurred. 12 (Al

10

3

(Bit set if test is true and cleared otherwise)

Test: Sign bit of most significant (MS) byte = 17

Test: 2's complement overflow from subtraction of MS bytes?
Test: Result less than zero? (Bit 15 = 1)

Load Condition Code Register from Stack. {See Special Operations)

Set when interrupt occurs. H previously set, a Non-Maskable
Interrupt is required to exit the wait state.

Set according to the contents of Accumulator A.

	Front Cover

	Preface

	Introduction

	Brief Index

	Labs (Beginner, 0-9
)
	Lab 0 - Introduction to the 6800

	Lab 1 - Simple Programming

	Lab 2 - Introduction to Motorola 6800 Input/Output

	Lab 3 - Using the Micro-68 Displays

	Lab 4 - Using the Micro-68 Keyboard

	Lab 5 - Handling Data Arrays on the Micro-68

	Lab 6 - Forming Arrays on the Micro-68

	Lab 7 - Designing and Debugging Programs on the Micro-68

	Lab 8 - Micro-68 Displays II

	Lab 9 - Arithmetic on the Micro-68

	Labs (Intermediate/Advanced)
	Lab A - Subroutines and the Micro-68 Monitor

	Lab B - Using the Peripheral Interface Adapter (PIA)

	Lab C - Interrupts

	Lab D - Examaning Computer Signals

	Lab E - External Clocks

	Opcodes

	Accumulator and Memory Instructions

	Index Register and Stack Manipulation Instructions

	Jump and Branch Instructions

	Special Operations: JSR, Jump to Subroutine

	Condition Code Register Manipulation Instructions

