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Chapter 1
INTRODUCTION

This book explains how an assembly language program COMBINATORIAL
within a microcomputer system can replace combinatorial LOGIC

logic — that is, the combined use of *‘off-the-shelf’’, non-
programmable logic devices, such as standard 7400 series digital logic.

If you are a logic designer, this book will teach you how to do your old job in a new
way — by creating assembly language programs within a microcomputer system.

If you are a programmer, this book will show you how programming has found a
new purpose — in logic design.

This is a “*how to do it"’ book; as such, it has to become very specific, so a particu-
lar type of microcomputer, the MC6800, is referenced directly.

Companies manufacturing these microcomputers are:

MOTOROLA., INCORPORATED
Semiconductor Products Division
3501 Ed Bluestein Boulevard
Austin, Texas 78721

AMERICAN MICROSYSTEMS
3800 Homestead Road
Santa Clara, California 95051
WHAT THIS BOOK ASSUMES YOU KNOW

This book is a sequel to ‘‘An Introduction To Microcomputers’’, which was a
single volume in its first edition, but is two v | in its d edition.

*An Introduction To Microcomputers’* describes microprocessors and microcom-
puters conceptually; it does not address itself to the practical matter of imple-
menting a concept. This book addresses the practical matter of implementation.

In that this book is a sequel, it makes a single assumption — that you have read,

- or you otherwise understand the material covered in ‘““An Introduction To
Microcomputers’’. However, before launching into a real design project, you will
need vendor literature that specifically describes the devices you have elected to
use.

Note in particular that hardware and timing are not described in this book, either
for the MC6800 CPU, or any other microcomputer devices; sufficient information
may be found in *‘An Introduction To Microcomputers’’, Volume 1l — Some Real
Products.

The MC6800 instruction set is described in Chapter 6 of this book, since program-
ming is what this book is all about.

UNDERSTANDING ASSEMBLY LANGUAGE

Assembly language instructions are the transfer functions of a microcomputer
system; taken together, they constitute an ‘‘instruction set’’, which describes
the individual operations which the microcomputer can perform.



You define the events which must occur within the microcomputer system
serially — as a sequence of instructions, which, taken together, constitute an as-
sembly language program.

In reality, understanding what individual instructions do within a microcomputer
system is very straightforward; it is one of the simplest aspects of working with
microcomputers. Yet it unduly terrifies users who are new to programming. If that
includes you, a word of advice — forget about mnemonics and instruction sets:
take instructions one at a time as you encounter them in this book. When you do
not understand what an instruction is doing, look it up in Chapter 6.

The specter of “‘programming’’ will haunt you only if you let it.
HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type.
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex-
pands on information presented in the previous boldface type. Therefore, only read
boidface type until you reach a subject about which you want to know more, at which point start
reading the lightface type.
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Chapter 2
ASSEMBLY LANGUAGE AND
DIGITAL LOGIC

THE DESIGN CYCLE

Any product that is'to be built out of discrete digital logic components will

go through a well defined design cycle.

Let us assume that the product has been defined — from
marketing management’s point of view.

DIGITAL
JLOGIC
‘DESIGN
CYCLE

You are presented with a product specification which identifies necessary
product performance and characteristics; your job is o deliver a viable design to manufacturing.
The design cycle will proceed as follows:

Begin

Prepare an overall system
block diagram

i

Draw a detailed logic
diagram for .each logic

Build pre-production
prototypes

Rigorously test prototype

T

‘Sell limited quantities
of prototypes

2-1




There is an expensive and slow iterative loop in any digital logic design cycle; as il-
lustrated above, it consists of these steps:

@ Redraw logic

@ Build a new breadboard

® Test the breadboard for logic errors, technician errors or faulty components

This iterative loop makes combinatorial logic design slow and expensive — not only during the

initial design phase, but even more so when you subsequently decide to modify or enhance the
product.

What happens when you start using microcomputers? First | MICROCOMPUTER
of all, a portion of your logic vanishes into a ‘’black box’* — ]LOGIC DESIGN
which is the microcomputer system: CYCLE

Your first step:

Prepare an overall
system block diagram -
must now be broken out as follows:
For microcomputer D'V'dﬂm' logic mt:’ For oxlmnlmloﬂlc
system, select et systom " nd — ¥ 4 logic et
device configuration external logic ) ”

] / '

Partitioning your application into a microcomputer system and external digital logic may look like a
difficult proposition — if you do not understand what the microcomputer system can do.

In fact, once you have a microcomputer in your product, economics overwhelmingly
favor making the ‘‘black box’* assume as many tasks as possible; you must justify
the existence of every single external logic gate.

Remember, memory comes in finite increments. In order to expand the logic implemented within
the microcomputer system, you may simply have to write additional instruction sequences that
will reside in memory which would otherwise be wasted; adding program memory, for that mat-
ter, costs very little.

2-2



Also, compared to the cost of digital logic development, microcomputer logic development is
quick and inexpensive. A typical microcomputer system development cycle may be

itlustrated as follows:

—

For microcomputer | Divide logic into
system, select device - i system
configuration and external jogic
Prepare a flow chart for
iCrOCOMpuUter Program

Wiite source program
using Editor

Are problems severe?
For pre-production
prototypes, create
programe in PROM NO

Mark corrections onto

Integrate into external logic program flow chart
development cycle. If pro- .
duct volume permits, PROM '
programs will finally become

ROM chips
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There are still iterative loops in the microcomputer development cycle illustrated above, but com-
pared to digital logic development, less time and expense are-associated with microcomputer
development cycle iterative loops.

Every microcomputer is supported by a development system. Characteristics and
operation of these development systems vary markedly from one company to the next: however
they all have these capabilities:

1) You can simulate the microcomputer system you have configured without necessarily
creating a breadboard.

2} You can execute a resident editor program to create your source | SOURCE
program. Remember, a sequence of assembly language instructions | PROGRAM |
is referred to as a “Source Program”.

3) You can assemble the source program right at the development | OBJECT
System to create an object program. Remember, the. source program { PROGRAM
becomes a sequence of binary digits, referred to as an object pro-
gram, before it can be executed.

4) You can conditionally execute the object program to make sure that it works.

Using a typical microcomputer development system, you can go through several
major development cycles in a single day, where each development cycle might
have taken one or two weeks in a total digital logic implementation. Within a single
development cycle you can make many program corrections; in less than a minute you can make
a simple correction, equivalent to adding or removing a gate {or MS! function) from a digital logic
breadboard.

SIMULATING DIGITAL LOGIC

0K, so logic must eventually be separated into a microcomputer system, and logic
beyond ‘the microcomputer system. ‘

We are going to have to address two aspects of this logic separation:

-1} Based on the ability of assembly language to simulate digital logic. we must develop
some simple criterion for estimating what a microcomputer system can do and
what it cannot do.

2) We must create a program to implement the logic functions which have been
assigned to the microcomputer system. Unfortunately. there are innumerable ways of
writing a-microcomputer program. Once you have mastered the concept of using instructions
to drive a microcomputer system, the next step is to learn how to write efficient
programs.

We will begin by describing simple digital logic simulation. This is a. necessary begin-
ning because there are some fundamental conceptual differences between digital logic and
microcomputer programming logic.
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MICROCOMPUTER SIMULATION OF
A SIGNAL INVERTER

Suppose you want to invert a single signal:

in the interests of developing good habits from the start, we will illustrate | FLOW
the signal inverter with the following logic flowchart: CHART

Input signai
10 be inverted

invert signal

Output inverted
signal

Although you would never use a microcomputer simply to replace a signal inverter, it is still
worthwhile examining how it could be done.
A MICROCOMPUTER EVENT SEQUENCE

Recall that MC6800 type microcomputers have the following |CPU
CPU registers: REGISTERS

Status Register (S)

A (A)
Accumulator (B)
index Register (X}
Program Counter (PC)
Stack Pointer (SP)

This éingle instruction:

COM A COMPLEMENT ACCUMULATOR A
when converted into object code and executed, inverts all BIT
eight bits of Accumulator A. But that does not duplicate the inverter. | DATA

First, one binary digit of Accumulator A must be selected to represent the
signal being inverted. But which one?




Having decided which binary digit, how does it reach the Accumulator in
the first place? And once inverted, how does the inverted bit become a
signal again?

If the COM A instruction object code must be executed in order to per-
form the actual inversion, how and when does the object code reach the
CPU? Clearly execution of this instruction must be timed to occur after the
binary digit to be inverted has reached the Accumulator.

DATA SOURCE
AND
DESTINATION

PROGRAM
TIMING

Steps needed to implement an inverter using a microcomputer may be illustrated

by expanding our flowchart as follows:

Input
Signal

!

Convert to
binary digit

Data/Signal
' Source
Determi

Load into
Accumulator A

___—__f______

Load and execute Transfer
COM instruction Function

Output from
Accumulator A
Data/Signal
' Destination
Determination

Convert to

logic signal

'

Output
Signal

In the illustration above, pay most attention to the division of the problem into

these three phases:

1) Data/signal source determination. We identify the data which is to be operated on.
This data is transferred to a location out of which it can be accessed by the microcomputer

Central Processing Unit (CPU).

2) Transfer function execution. The actual operation which must be performed on the

source data will be referred to as a “"Transfer Function”.

3) Data/signal destination determination. The data or signals having been subject to the

transfer function, must now be transferred to some destination.

We will now generate an instruction sequence to implement the three phases of

the inverter simulation illustrated above.
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Now one important point must be made regarding the microcomputer event sequence we have
described in the paragraphs above. The contents of Accumulator A have been inverted in order
to complement a single bit. It would be just as reasonable to complement the contents
of Accumulator B. This could be accomplished by the following single instruction:

COMB - COMPLEMENT ACCUMULATOR B

The above instruction, when converted into object code and executed, inverts all eight bits of Ac-
cumulator 8.

Even though the contents of Accumuiator A or Accumulator B could be complemented with
equal ease, for the rest of this chapter we are going to confine ourselves to complementing the
contents of Accumulator A, since the choice of which Accumulator is to be complemented is not
relevant to the discussion at hand.

IMPLEMENTING THE TRANSFER FUNCTION
The COM A instruction inverts every bit of Accumulator A. BIT

The COM A instruction does not specify which bit of Ac- DATA
cumulator A represents the signal to be inverted. This
specification is implied by the way in which data is input to, and output from the
microcomputer system.

DETERMINING DATA SOURCES AND DESTINATIONS

How will Accumulator data be input to, and output from the microcomputer
system? In answering this question, we touch on one of the fundamental
strengths (and complexities) of microcomputers — their flexibility.

The input signal and the inverted output signal are just what their EXTERNAL LOGIC
names imply — they are signals. But to the microcomputer system, | AS THE SOURCE
they are “external logic”". Information transfers between external logic OR DESTINATION
and the microcomputer system are referred to generically as In-
put/Output {or 1/0).

During any programmed 1/O operation, recall that the microcomputer INPUT/OUTPUT

is master and external logic is slave. This means that the microcom-
puter must indicate the direction of the 1/O operation {input or output), and must identify the ex-
ternal logic being accessed.

External logic will decode a specific memory address as an enable strobe, 1/0 IN
so that 1/0 is handled as though it were a memory read or write. Sup- MEMORY
pose the label INVD is being used in the assembly language ADDRESS
source program to identify the signal being inverted. This is SPACE
the instruction sequence which will reproduce the signal in-

verter:
LDA A INVD LOAD ACCUMULATOR A FROM INVD
COM A COMPLEMENT ACCUMULATOR A
STA A INVD STORE ACCUMULATOR A CONTENTS AT INVD



In terms of microcomputer devices, this is the microcomputer configuration im-
plied:

MC6870
CLOCK
ROM
or
MC6800
MEMORY
D0 -D7 e
Significant
- DATA BUS (8) et~ Data Bus
CONTROL BUS (9)
' ADDRESS BUS (16)
J— B ADDRESS
LOGIC DECODE
LoGic

v

Inverted Deta
Data In



When the LDA A instruction is executed, “Address Decode Logic” causes “Select Logic” to
transmit the "Data In” signal to the Data Bus.

There are eight Data Bus lines; the number of the line to which the ‘‘Data In’’ sig-
nal is connected becomes the significant bit number within Accumulator A. When
the LDA A instruction has completed execution, the contents of the Data Bus will be in Ac-
cumulator A.

Next the COM A instruction is executed. This instruction causes every bit of Ac-
cumulator A to be complemented.

When the STA A instruction is executed, the contents of Accumulator A are out-
put to the Data Bus. “Address Decode Logic” then causes “Select Logic™” to output the con-
tents of a single Data Bus line — which becomes the inverted “"Data Out” signal.

Because the ‘Select Logic’’ has ‘‘Data In’’ and "‘Data Out’’ signals connected to
the same line of the Data Bus, ‘‘Data Out’’ is the complement of ‘’Data In’’; and
the signal inverter has been simulated.

ROM or RAM memory must be present in the microcomputer system, because the
object codes for the three instructions must be stored in, and fetched out of
memory.

Consider the object code in detail. The three source program in- | OBJECT CODE
structions become object code as follows: INTERPRETATION

Control signals are. output on Control Bus.
Ak decode logic jves this signal

PROGRAM
MEMORY and triggers Data in to select logic.
DA A — B6 N
M [N
COM A eommmmipeed 43 _‘-ComphvmtAooum\htorA
STA A.__—__L——‘»cumu-gnmamoutpmonmnolm.
iNVD o f XX } Address decode logic receives this signal
] Yy and triggers Inverted Data out from select
logic:

16-bit address, represented by XXYY, output on Address Bus. Ad-
dress Decode logic decodes just one 16-bit combination as a “select
true”.

The program memory addresses of the bytes within which. the object codes are stored are not
important. However, no memory byte; ROM or RAM, can have the address represented by
XXYY, since external logic is selected by this address.

In most MCB800 microcomputer configurations address decode logic and select logic will be pro-
vided. by an MC6820 Peripheral Interface Adapter (PIA). The MC6820 PIA is the MCE800
microcomputer system’s standard paralle! interface logic device. When incorporated into the sig-
nal inverter, a single PIA 1/0 port pin will receive the “Data In” signal and a single |/0 port pin will
output the inverted signal. Suppose -an MC6820 PIA 1/0 port given the label INVDI has pin 4
assigned to receive the "Data In” signal, and another MC6820 PIA 1/0 port. labeled INVDO, has
pin 4 assigned to output the inverted-signal:

765432 1 0 -=—BitNo. 7654321 0 -a—BitNo.

m vororwvol - FTTII11111 1/0 Port INVDO

L—Mlntomiwmed L’ Data Out

2-9




We can use a technique known as “‘masking” in order to invert a single | BIT
1/O port pin, leaving all other pins alone. In this instance, masking may be | MASKING
illustrated as follows:

exIxixIxixxIx] +»{xIx]x]X]x]x|x]x]

Use mask to
isolate bits
7.6,53210

In the illustration above, X represents any binary digit; X represents its complement.

The following instruction sequence will invert pin 4, leaving all other pins as they
were:

LDA A INVDI INPUT TO ACCUMULATOR A FROM 1/O PORT INVD
COM A COMPLEMENT ACCUMULATOR A
AND A #$10 ISOLATE BIT 4
LDA B INVDO INPUT TO ACCUMULATOR B FROM 1/0 PORT INVD
AND B #IEF CLEAR BIT 4
ABA ADD ACCUMULATORBTO A .
STA A INVDO OUTPUT ACCUMULATOR A TO I/0 PORT INVD
A # sign beginning an operand field identifies immediate data; conse- | OPERAND
quently the immediate form of the instruction is being used. A $ sign pre- | SYNTAX
ceding a number identifies the number as being hexadecimal.
Thus, $EF represents the binary value: #3$ IN
OPERAND
FIELD

11101111
N i’ et
E F

In terms of registers’ contents, this is what happens when the above instruction sequence is ex-
ecuted (again X represents any binary digit):

o PORT ACCUM:JLATOR ACCUM;JLATOR
XXX XXX XX ? ?
LDA A INVDI XXXXXXXX 5)_(XXX)<XX ?
COM A XXXXXXXX XXXXXXXX ?
A00010000
AND A  #$10 XXX XX XXX 000X0000 ?
LDA B INVDO XXXXXXXX 000X0000 XXXXX XXX
A11101111
AND B #S$EF XXXXXXXX . 000X0000 XXXO0XXXX
_ + XXXOXXXX
ABA XXXXXXXX XXX XX XXX XXXOXXXX
STA A XX XXX XXX XX XXX XXX XXXOXXXX

INVDO
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EVENT TIMING
Within any digital logic implementation, events may be | SYNCHRONOUS

timed synchronously, based on a clock signal: LOGIC
cLOCK f : ﬂ i \ ]—\__
SIGNAL A
SIGNAL B '

or asynchronously, based upon an output signal from one device | ASYNCHRONOUS

changing state and thus triggering another device's state change: LOGIC
SIGNAL A i ' ,Q
SIGNAL B
SIGNAL C ‘.fl

Simple gates, however, are continuous devices. Consider the following simple logic se-
quence:’

R
l/

A NAND B8

The signal inverter continuously inverts its input; a gate set- | GATE
tling time of perhaps 10 nanoseconds is the only lag between | SETTLING
input and output signal state changes. TIME

Within a microcomputer system, however, three instructions
must be executed before an output signal can reflect an input signal's state
change.

in the unlikely event that the microcomputer system is emulating an inverter and
doing nothing else, the inverter instruction sequence could be continuously re-ex-
ecuted as follows:

LOOP DA A INVD LOAD ACCUMULATOR A FROM INVD
COM A COMPLEMENT ACCUMULATOR A
STA A INVD STORE ACCUMULATOR A CONTENTS AT INVD

JMP LOOP RE-EXECUTE THE SIGNAL INVERTER SEQUENCE
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Depending on the microcomputer clock frequency, it will take approximately 12 microseconds to
execute the signal inverter instruction loop once; providing the period between input.signal state
changes is never less than 12 microseconds, the microcomputer implemented signal inverter will
always work. But there may be a delay of up to 12 microseconds between an input
signal changing state and the output signal following suit. This may be illustrated as
foliows:

® =LDA instruction execution
@ =COM instruction-execution
@ - 5TA instruction execution
@ = JMP instruction execution

In the above iliustration, the four instructions have been shown dividing 12 microseconds equally,
so that each instruction is executed in 3 microseconds. In reality, this is not the case. Chapter 6
gives instruction execution times; you will see that the COM instruction, for example, requires
considerably less time to execute than any of the other three instructions. We will overlook this
detail fcr the moment in order to concentrate on the concept at hand — which is that we must
pay careful attention to event sequences within the microcomputer system.

Imespective of when and how “Signal In” changes state, it is the state of “Signal In” at
time (D (when the LDA instruction is executed) which is transported, as a binary digit, into the
microcomputer system.

The actual binary digit inversion occurs at time @).

The inverted binary digit is converted into “'Signal Out” at time @) . when the STA instruction is
executed. -

Thus, “Signal Out” timing may differ considerably from “Signal In” timing.
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More serious problems arise when the signal inverter instruction sequence is just
one small part of a larger microcomputer program. Under these circumstances, many
milliseconds may elapse between repeated executions of the inverter instruction sequence. if you
leave it to chance, signal inversions may be completely missed. At very best there may be con-
siderable delays between the input signal changing state and the output signal following. suit.
This situation is illustrated as follows:

Time interval between
execution of inverter instruction sequence

e ea——
Time (usec) TT 1T |'l]
b missed |:|
Ll | I=
Signal In [] 1 1
7 | ' 1l
. Delayed response 3
Signal Out 'r' ’T—
1]
[ ] [N

o200 0 v O

Again @, @ . © and @ identify LDA, COM, STA and JMP instructions’ execution, respectively.

Having stressed the importance of timing in a microcomputer system, plus the consequences of
poor timing, we will drop the subject for the moment. This is because timing problems
largely evaporate when you simulate entire logic sequences as opposed to in-
dividual devices. Therefore solutions to timing problems should be fooked at in the context of
an entire logic simulation; and we have not yet progressed that far.

BUFFERS, AMPLIFIERS AND SIGNAL LOADS

Having looked at timing, we will now turn to some other fundamental digital logic concepts.

A signal buffer increases the signal current level:

I~
L

Buffer

An amplifier driver increases the signal voltage level:

N
l/

Ampiifier, driver
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Every device has a well defined fan out. Fan out defines the num- . § FAN OUT

ber of parallel loads that may be connected to an output signal:

Do —,

Logic devices will also have specified fan in, which indicates the number

of parallel loads which may be connected to a device input:

=

What happens to these concepts once your logic disappears into a microcomputer
program? The answer is simple: these concepts disappear — along with digital
logic. :

Now at the actual pins of a physical microcomputer device, | FAN IN
fan in and fan out remain legitimate concepts; signals travelling EAN OUT
between pins of individual microcomputer devices may need to be
amplified and buffered. For example. an MC6800 CPU device's fan out | TTL LOADS
may be as little as one or two Transistor-Transistor Logic (TTL) loads; that  'giGNAL
means if more than one or two similar devices connect to an output sig- BUFFERING
nal, the output signal wil have insufficient power to transmit usable sig-
nals to all connected devices. Therefore for all but the simplest microcom-
puter configurations, bus lines will have to be buffered.

When determining whether your bus lines need to be ]| LEAKAGE
buffered, do not ignore leakage current. For example, if you have | CURRENT
sixteen ROM devices connected to the System Bus, and only one device
can be selected (and therefore connected) at any time, do not assume that the total signal load is
due to the selected ROM. The fifteen unselected ROM devices will each tap off some leakage
current; that alone may require System Bus buffering.

Within a microcomputer program, however, when logic is totally represented by a
microcomputer instruction sequence, you are dealing exclusively with binary
digits — never with voltage or current levels. Fan in is infinite, since the status of
a binary digit may be the result of any number of logical computations. Fan out is
infinite, since you can read the status of a binary digit as often as you want.
Buffers and amplifiers are meaningless, since a binary digit has no qualities
equivalent to voltage or current. A binary digit offers pure, finite resolution.

Take another look at the signal inverter, as simulated by a microcomputer.

We will take a giant conceptual step and assume that the signal inverter is buried
within a logic sequence, such that no input or output signal is generated at any
microcomputer device pin. in other words, the signal inverter becomes a smalt
part of a larger transfer function.

. The input to the signal inverter is a binary digit created by some previous logic.

The output from the signal inverter is another binary digit which becomes input to subsequent
logic.



Logic external to the microcomputer system does not supply the in- COMPLEMENTING
verter input as a signal arriving at a microcomputer device pin, nor | A BYTE OF
does the inverted signal get transmitted to external logic via a | MEMORY

microcomputer device pin. Rather, the interface between external
logic and the microcomputer system occurs at some point significantly before and beyond the

signal inverter. Our signal inverter may now be represented by these same three in-
structions:

LDA A INVD LOAD ACCUMULATOR A FROM INVD
COM A COMPLEMENT ACCUMULATOR A
STA A INVD STORE ACCUMULATOR A CONTENTS AT INVD

The source and destination become data memory bits; this may be illustrated as
follows:

ROM
MC6800 or
CcPU RAM
MEMORY
DO -D7
I significant
- Data Bus (8} - Data Bus
- line
U ]
Control Bus {6)

Address Bus (16}
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In terms of memory and CPU register contents, the signal inverter sequence proceeds as follows:

B6 021A
AL XXXXIXXX { 14 0218
B 3D 021C
X 43 021D
021A B7 021E
SP 14 021F Arbs
] 3D 0220 Memory
Addresses
[] [}
H 1 r\_/

143C
XXXX I XXX J 1430
1438
B6 021A
A G000 14 Joxe
B 3D o0z1C
X / 43 021D
PC 021D B7 ] 021E

SP 14 021F Arbitrary

11 43 3D 0220 Memory

l"

143C
XXXXIXXX ] 1430
143€

021A

0218

021C

021D

021E

021F

0220 Memory
’ Addresses

143C
143D
143€




With regard to the above illustration, the letters A and B identify the two CPU Accumulators. PC
represents the Program Counter. SP represents the Stack Pointer. | represents the Instruction
register.

The contents of data memory byte 143D, and Accumulator A are represented in binafy format.
X represents any binary digit. Note that we have arbitrarily selected bit 3 to be the significant bit.

In step @ , the LDA instruction is executed. This instruction causes the contents of data memory
byte 143D,¢ to be loaded into Accumulator A,

During step @ . the COM instruction is executed. This causes the contents of Accumulator A to
be complemented.

During step (@, the contents of Accumulator A are loaded back into memory byte 143D,

Signal inversion has been simulated by inverting the contents of bit 3 (along with
every other bit) of data memory byte 143D,,.

Where does the inverter's input come from? A data memory bit. Let | FAN IN IN
us suppose, to illustrate a point, that the inverter input is MICROCOMPUTER
the OR of eight signals. We could not wire-OR these eight signals | PROGRAMS

to create an inverter input as follows:

e ——

——— >
nn——

t———

———

because that would exceed the fan in capacity of the signal inverter.

But presuming the eight signals are represented by the eight binary digit contents
of the Accumulator, we would have no trouble generating the inverter input via
the following logic sequence:

Determine
contents of
Accumulator

Load binary
. 00001000 into
-Accumuiator
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The fan in logic is implemented by this instruction sequence:

ASSUME THAT EIGHT SIGNALS ARE TO BE REPRESENTED BY THE EIGHT BITS
OF ACCUMULATOR A

LDA A INVD LOAD EIGHT SIGNALS INTO ACCUMULATOR A

BEQ NEXT ACCUMULATOR A HOLDS 0. SIGNAL IN MUST BE O

LDA A #8 ACCUMULATOR A HOLDS NONZERO. SIGNAL IN MUST BE 1
NEXT STA A INVD CREATE APPROPRIATE OUTPUT

Note that the second LDA instruction is identified as an immediate load since there is a # sign in
the operand field. We need not bother specifying the 8 as hexadecimal since decimal 8, the
default option. has the same value as hexadecimal 8.

The above instruction sequence is a direct microcomputer program implementa-
tion of the eight signal wire-OR. Let us examine how the instruction logic works.

We are going to assume that the eight input signals are initially represented by the status of the
eight Accumulator binary digits:

7 —
3 —
< 5 ———
8
§ 4
g 3 r——
Q
2?2 —¢
3 e————
o [

We are further going to assume that, in keeping with the prior illustration, bit 3 of the data byte
will ultimately be the significant inverter signat bit.

Since the inverter input is the wire-OR of eight signals, program logic must set bit 3 of Accumula-
tor A to 1 if any Accumulator bit is nonzero; bit 3 of Accumnulator A must be set to O if alt Ac-
cumulator bits are zero. The contents of Accumulator A are then stored in the data memory byte
represented by label INVD. With regard to the previous illustration, INVD wouid be a label repre-
senting memory byte 143D,,.

This is how the four-instruction sequence illustrated above works:

We assume that the initial eight signals have their status at some memory location represented
by the label INVD. The first LDA instruction loads these eight signal statuses into Accumulator A.
The Zero and Sign bits of the Status register are set or reset during the course of the LDA instruc-
tion’s execution to represent the contents of Accumulator A and the contents of the high order
bit of Accumulator A, respectively.

After execution of the LDA instruction, if the Zero status is 1, then bit 3 of Accumulator A must

aiready be 0, which is what we want it to be. No operation is required and we jump to the STA
instruction.

if the Zero bit was 0, then one or more bits of Accumulator A are nonzero. The LDA A #8 in-
struction loads a 1 into bit 3 of the Accumulator:

LDA A #8

7 6 54 3 2 1 0 -=agm=——npitNo.
o

|:|o|o|o|1|o|o|o‘,a 00001000

Finally the STA instruction is executed to load the inverter input signal into the appropriate data
memory byte.
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Now suppose the inverter output is distributed to numerous subsequent devices.
The following logic represents fan out that is not feasible:

e

Within a microcomputer program, the whole concept of fan |FAN OUT IN
out disappears. The inverter output may be accessed an in- |MICROCOMPUTER
definite number of times by the simple re-execution of an |PROGRAMS
LDA instruction:

LDA A INVD LOAD INVERTER OUTPUT INTO ACCUMULATOR A

Bt

LDA A INVD LOAD INVERTER OUTPUT INTO ACCUMULATOR A
LDA A INVD LOAD INVERTER OUTPUT INTO ACCUMULATOR A
LDA A INVD LOAD INVERTER OUTPUT INTO ACCUMULATOR A

LDA A INVD LOAD INVERTER OUTPUT INTO ACCUMULATOR A

What about amplifiers and buffers? Clearly within the context of binary data
stored in memory, they have no meaning. if amplifiers and buffers are present because of
the electrical characteristics of the memory and processor chips, that has nothing to do with the
logic function being implemented by a microcomputer program.

MICROCOMPUTER SIMULATION OF
7404/05/06 HEX INVERTERS

These three hex inverters differ only in their electrical characteristics:
The 7404 is a simple hex inverter.
The 7405 is a hex inverter with open coliector outputs.

The 7406 is a hex inverter buffer/driver with open collector, high voltage
outputs.
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Since these three devices differ only in their electrical characteristics, within a
microcomputer assembly language simulation they are identical. Let us look at the
7404. It consists of six independent signal inverters, which may be illustrated as follows:

VCC 6A 8Y 5A 5‘Y 4A a4y
14 13 12 |- n 10 9 8
1 2 3 4 5 [ 7
1A 1Y 2A 2¥ 3A 3y GND
Y=A

The instruction sequence to represent a hex inverter is identical to the three-in-
struction., single signal inverter instruction .sequence, because MC6800
microcomputers are eight-bit paraliel devices. Whether you like it or not, this inverter in-
struction sequence inverts eight independent binary digits. Hex inverters may therefore be repre-
sented within a microcomputer instruction sequence as follows:

LDA A INVD LOAD ACCUMULATOR A FROM INVD
COM A COMPLEMENT ACCUMULATOR A
STA A INVD STORE ACCUMULATOR A CONTENTS TO INVD

We will arbitrarily identify significant bits, as implied by the hex inverter, as follows:

76 543 2 1 O - ptNo

Ag Ag Ag Az Ay A4

Note that the above selection of significant bits is compietely arbitrary. There is absolutely no
- practical or philosophical argument favoring any one bit assignment as compared to any other.
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MICROCOMPUTER SIMULATION OF
7408/09 QUADRUPLE TWO-INPUT POSITIVE
AND GATES

These two devices provide four independent, two-input, one output AND gates,
which may be illustrated as follows:

vee 48 4A ay 38 3A 3y

14 13 12 n 10 9 8

1 2 3 4 5 é 7

1A B Y 2A 28 2y GND
Y=A.B

The 7409 has open collector outputs, which differentiates it from the 7408. This difference has
no meaning in a microcomputer program simulation, therefore the two devices can be looked on
as being identical.

TWO INPUT FUNCTIONS

From the microcomputer programmer's point of view, the most significant
difference between a 7408 AND gate and a 7404 inverter is not the logic func-
tion; rather it is the fact that a 7408 is a two-input device. Conceptually, we might im-
agine a 7404 being simulated in one of the two following ways:

1) The eight input signals are loaded into the CPU Accumulator register. Each even-numbered
bit is ANDed with the bit to its right. The result is deposited in the even-numbered bit for
each bit pair:

7 6 54 3 2 1 0 -mw=BitNo.
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2) The two sets of four inputs are loaded into the CPU Accumulator and one other register. The
result is returned in the Accumulator:

7 6 5 4 3 2 1 0 -=—BitNo.

Accumulator

Another register or memory location
7 6 5 4 3 2 1 0 <=—BitNo

Upon examining the MC6800 microcomputer instruction set, you will find that the
second method of simulating a 7408 is the natural one. This is the required in-
struction sequence:

LDA A SRCA LOAD FIRST SET OF INPUTS, FROM SRCA
AND A SRCB AND WITH SRCB. THE RESULT IS IN A
STA A DST SAVE RESULT IN DST

If the use of labels SRCA, SRCB and DST still confuses | SOURCE

you, let us take a minute to clarify them. Eventually you will | PROGRAM

have some amount of memory which may vary from as littie as 256 | LABEL

bytes to as much as 65,536 bytes. Each of the labels SRCA, SRCBand | ASSIGNMENTS
DST identifies one memory byte. At the time you are writing the
source program, the exact memory byte identified by each label is unimportant. When you even-
tually assemble your source program, the assembiler listing will print a memory map. The memory
map will identify the exact memory byte associated with each label you have used. By examining
the memory map, you will be able to determine whether or not all label assignmenits are valid. If
any label assignments are invalid, you will have to take appropriate action. Appropriate action may
involve adding more memory to your microcomputer configuration, or you may have to rewrite
your source program, so that it makes more effective use of the memory you have.

The problem of labels and memory allocations is irrelevant at the present level of discussion.
Simply imagine every label as addressing one specific memory byte. Do not worry about which
memory byte will eventually be addressed, and your problem will disappear.

The 7408 simulation instruction sequence illustrated above by no means repre-
sents the only way in which a 7408 may be simulated.

Accumulator B could replace Accumulator A:

LDA B SRCA LOAD FIRST SET OF INPUTS FROM SRCA
AND B SRCB AND WITH SRCB. THE RESULT IS IN B
STA B DST . SAVE RESULT IN DST
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THE MICROCOMPUTER SIMULATION OF A
7411 TRIPLE, THREE-INPUT, POSITIVE AND GATE

The principal difference between the 7411 AND gate and the 7408 AND gate is
the number of input signals. The 7411 generates three output signals, each of
which is the AND for three inputs:

Vee 1c v 3c 38 A ay

14 13 12 1" 10 9 8

[-

)

1 2 3 4 5 6 7 |
1A 1B 2A 28 2C 2Y GND
Y=A:B:C

THREE INPUT FUNCTIONS

The fact that the MC6800 instruction set has many memory reference instruc-
tions makes muitiple input functions easy to handle. Here is the three input AND in-
struction seguence:

ONE LDA A SRCA LOAD FIRST SET OF INPUTS FROM SRCA

TWO AND A SRCB AND WITH SECOND SET OF INPUTS IN SRCB. THE RESULT IS
IN A

THRE AND A SRCC AND RESULT IN A WITH SRCC. THE FINAL RESULT IS IN A

FOUR STA A DST SAVE THE RESULT IN DST

When instruction ONE executes, an 8-bit value is loaded into Accumulator A from the memory
byte addressed by label SRCA. We will assume that AND gate inputs are represented as follows:

7 6 543 2 1 ( —==BitNo.

? LMD Gate 1
AND Gate 2
AND Gate 3
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Understand that the assignment of data bits illustrated above is completely arbitrary. It is only
necessary that all subsequent inputs be consistent.

Instruction TWO ANDs the contents of the memory byte addressed by SRCB with the contems of
Accumulator A, teaving the result in Accumulator A, as follows:

Y7 65 43%2 1 0la—aro
Accumulator A

LI ] L[ ] § ] Memorovesace

7 6 5 4 332 1 0 gew—BitNo.

These bits § These bits |
ignored significant |

Instruction THRE performs the second AND operation. This time the AND occurs between Ac-
cumulator A and the memory byte addressed by SRCC. The Accumulator initially holds the result
of the AND with SRCB, as illustrated above. After instruction THRE has executed, the AND of
three inputs is in Accumulator A,

Instruction FOUR retuins the final result to a memory byte addressed by the label DST. The 7411
AND gate simulation is complete.

THE MICROCOMPUTER SIMULATION OF A
7474 DUAL, D-TYPE, POSITIVE EDGE TRIGGERED
FLIP-FLOP WITH PRESET AND CLEAR

Before looking at the 7474 flip-flop in particular, let us consider flip-flops in
general. First a few definitions.

A DIGITAL LOGIC DESCRIPTION OF FLIP-FLOPS

A flip-flop is a bistable logic device, that is, a device which may exist in one of two stable
conditions. 7474 type flip-flops have two outputs, Q and Q: thus the two bistable conditions may
be represented as follows:

Q pmemes 1 0r 0

hemassne O OF 1

ol

2-24



A clock signal causes the flip-flop to change from one bistable condition: | POSITIVE
to the other. A positive edge triggered flip-flop changes upon sensing a | EDGE
zero-to-one transition of the clock signal: TRIGGER

:

5 e—

A negative edge triggered flip-flop changes state upon sensing a one:-to- | NEGATIVE
zero clock signal transition: EDGE
. TRIGGER -

* | W
a J
A JK flip-flop preconditions the Q and Q outputs which will be generated [ JK
by the next clock edge trigger as follows: FLIP-FLOP
STATUS OF J AND OUTPUTS GENERATED
K AT CLOCK SIGNAL AT CLOCK SIGNAL
J K Q |G .
— Q p———
1 0 1 0 ‘
0 1 0 1 Q) cLock
8] 0 Stay as you were. — apb—
1 1 Change state
regardless of
previous state.
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In the above table, “clock signal” wili be a zero-to-one transition for a § CLOCK
positive edge-triggered device; it will be a one-to-zero transition for a § SIGNAL
negative edge triggered device. This definition of “clock signal” also ap-
plies to the D type flip-flop described next.
By inverting a J input in order to generate the K input, a D type flip-flopis | D TYPE
created. These are the D type flip-flop characteristics that. result: FLIP-FLOP
STATUS OF J AND OUTPUTS GENERATED
K AT CLOCK SIGNAL AT CLOCK SIGNAL 2} J a
J=D | k=J a | @ —0l clock
1 0 ] 0 K T
0 1 0 1 .

Here is a positive edge triggered, D typé flip-flop timing diagram:

CLOCK é \

i

A D type flip-flop therefore will always output the input conditions that existed at the previous

clock pulse.

The presence of a Ereset input means that the flip-flop may be forced to
output Q = 1 and Q = 0. Preset true forces this condition.

A Clear input is the opposite of a Preset input. When true, the Clear input
forces Q =0and Q = 1.
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Combining the definitions given above, this is what we get for a 7474

type flip-flop:

FUNCTION TABLE

INPUTS OUTPUTS
1PR or 1CLR or 1CK or 1Dor 1Qor 1Qor
2PR 2CLR 2cK i) 20 26
L H X X H L
H L X X L H
L L X X He He
H H 1 H H L
H H 1 L L H
H H L X Q, g,
2
Vee CLR bLo} 2cK 2PR 20 2a

In the function table above, | represents a clock zero-to-one transition. H* signifies an unstable

state. Qq is the previous state for Q. X signifies "Don’t care”.

AN ASSEMBLY LANGUAGE SIMULATION OF FLIP-FLOPS

Now our first problem, when trying to simulate a 7474 flip-flop, is the fact that
there-is-no-clock- sigmkwithin@nﬁemm-imtrucﬁm set. Instead we must-
assume that events are triggered by execution of an appropriate instruction,

rather than a clock signal transition.
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How: will we represent outputs Q and Q? Two bits of memory could be used to
represent these two outputs:

7 6 54 3 2 1 0wt BitNo.

Represent Q

Since. we are dealing with data, not signals, Q is redundant. The single flip-flop
therefore devolves to one memory bit. A 7474 device, since it contains two flip-flops,
devolves to two memory bits, one for each flip-flop implemented on the chip.

There is nothing surprising about this conclusion. Each bit of a microcomputer's read/write
memory is a simple, bistable element: it could, indeed, be a flip-fiop.

The logic of a 7474 flip-flop may be represented by instructions that clear a
memory bit, set the memory bit to ‘1, or store an-unknown binary digit in the
memory bit.

Suppose memory bits.are assigned as follows:

7 6 5 4 32 ) 0 <al=pitNo.

The 7474 function table now becomes these instructions:

Preset | Clear D First flip-flop Second flip-
i flop
L H | X LDA A FLP LDA A FLP
H H H }ORA.A #1 } ORA A #2
STA A FLP STA A FLP
H L X LDA A. FLP LDA A FLP
H H L AND A #2 } AND A #1
STA A FLP|J) STA A FLP
L L X Does not apply

With regard to the table above, the LDA instruction acts on Accumulator A contents as follows:

e
P ——
LDA A #DATA Accumulator A’

data value

The STA A instruction stores the resulting Accumulator A contents in a memory word identified
by the label FLP. Bits O and 1 of the memory word identified by FLP are presumed equivalent to
the 2 fiip-flops of the 7474 device.
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MICROCOMPUTER SIMULATION OF FLIP-FLOPS

IN GENERAL

In conclusion, a flip-flop becomes a single bit of read/write memory within a
microcomputer system.

Within a microcomputer syetem, all flip-flops are the same. Flip-flop logic reduces to these four
questions:

1) When do | execute an instruction to set a memory bit to 1?7

2) When do | execute an instruction to reset a memory bit to 0?

3) When do | execute an instruction to store a binary digit in a memory bit?

4) When do | execute an instruction to read the contents of a memory bit?

THE MICROCOMPUTER SIMULATION OF
REAL TIME DEVICES

There are two types of real time devices that we will look at: the one-shot {in-
cluding monostable multivibrators) and the master-slave flip-flop. Specifically,
these devices will be described:

@ The Signetics 555 monostable multivibrator

o The 74121 monostable multivibrator

o The 74107 dual J-K master-siave flip-flop with Clear

A one-shot is a device which generates a signal pulse with a ] ONE-SHOT

specific time period:

S— | S

|<—Poriodofaigm|pmu——|

A monostable multivibrator is a device with one stable, or passive | MONOSTABLE
state. It produces one-shot output signals, as illustrated above, where MULTIVIBRATOR
the pulse is in the unstable, or active state:

Active State _—

Passive State J iod of L—
signal
pulse

The device is a “multivibrator” because it can output a continuous stream of signals — much like
a clock signal. In other words, a multivibrator output consists of a continuous stream of one-shot
signals.

The time period of the signal pulse is a real time value — it is a finite number of
microseconds, or milliseconds, or even seconds.

A master-slave flip-fiop is a flip-flop which generates out- | MASTER-SLAVE
put signals based on the condition of input signals at some FLIP-FLOP
eatlier time. Again we encounter a real time value — the delay bet-
ween inputs and outputs.
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' THE 5556 MONOSTABLE MULTIVIBRATOR

The Signetics 5566 monostable multivibrator may be illustrated as follows:

Ground E 3 Vee
Trigger (2] 7] Discharge

a ouput 3] 3] Threshotd

Reset E 3 Control

The negative edge of a clock signal at the Trigger input {pin 2) causes a negative-to-positive tran-
sition at the Output Q. The duration of the high' level output at Q is controlled by a resis-
tor/capacitor circuit connected to the Discharge and Threshold pins (7 and 6, respectively).

Reset is a standard reset input; a low input will hold the Q output low.

The Control pin is used to control voltage within the multivibrator; it is not significant to an overall
understanding of how the 555 device works.

The ground and power pins {1 and 8, respectively) are self-explanatory.
Here is one way in which the 555 monostable multivibrator may be configured:

L i
— R
= Trigger
-Lr m——— 2 7 Discharge
Q Output 3 6 Threshold
C
Reset
+ 5V mmememaed 4 5 '—'
-—
-

As soon as a high-to-low signal level is sensed at the Trigger input, the capacitor between pin 6
and ground charges. Signal levels at the threshold and discharge pins, as controlled by the resis-
tor R and the capacitor C. control the period for which Q will output high. This time period is given
by the following equation:

T=11RC

Where T is time in seconds
R is resistance in Megohms
C is capacitance in microfarads



An output signal pulse is generated as follows:

Trigger

Outpur | W
Period controlled by
|—-— values of resistor ——>-|
R and capacitor C

THE 74121 MONOSTABLE MULTIVIBRATOR

The 74121 monostable multivibrator may be illustrated as follows:

FUNCTION TABLE

INPUTS OUTPUTS
Al A2 B Q a
L X H L H
X L H L H Monostable
X X L L H outeuts
H H X L H
-1 =" IF
i _H H I v
! | H n u One-shot
L X i n u outputs
X L 1 I v
Rext/
Vee NC NC Cexr CexT RinT NC
1 14 13 12 n 10 9 8
o
[+] o
1 2 3 4 5 6 7
Q NC Al A2 B Q GND
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A constant low input at A1, A2 or B will hold-the 74121 monostable muitivibrator in its stable
condition — with a low Q output and a high Q output. High inputs at A1 and A2 have the same
effect.

There are five input signal combinations that will generate one-shot outputs. These input sngnal
combinations are identified in the function table above.

With regard to the function table, symbols are used as follows:
represents a “"don’t care”
i represents a one-to-zero logic transition
1 represents a zero-to-one transition
JLu represents a one-shot with a zero monostable logic level and a one pulse level
LI isthe NOT of JL

The duration of the one-shot output is determined by a resistor-capacitor network, just as de-
scribed for the Signetics 5565 monostable multivibrator; but there are some differences. The
74121 provides an internal resistor which may be accessed by connecting RNT (pin 9) to Voo
(pin 14). A variable external resistor may be connected between Ry {pin 9) or RgxT {pin 11)and
Ve (pin 14).

An external timing capacitor, if present, will be connected between CgxT (pin 10) and RgxT {pin
1.

Here is one way in which a 74121 monostable multivibrator may be connected:

il
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This use of the 74121 monostable muitivibrator corresponds to the bottom two lines of the func-
tion table.

An external resistor/ capacitor network controls one-shot pulse duration. Each one-shot pulse will
be triggered by a low-to-high transition at pin 5 (B).

From the programming point of view, there are only two significant features of the
74121 monostable multivibrator:

1

2)

The monostable outputs are equivalent to binary digits of fixed value. Any im-
mediate instruction which loads a zero or a one into any register bit simulates the monostable
output. Here is an example:

LDA B #4 SET BIT 3 OF ACCUMULATOR B TO 1. RESET ALL
OTHER BITS

Bit 3 of Accumulator B is equivalent to a flip-flop; so is every other bit of-Accumulator B, and
every other Accumulator.

A one-shot output becomes a time delay of fixed value. We will show how this
time delay may be computed within a microcomputer system but first let us examine the
74107 master-slave flip-flop.
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THE 74107 DUAL J-K MASTER-SLAVE FLIP-FLOP WITH CLEAR
Consider the 74107 master-slave flip-flop. This flip-flop is illustrated as follows:

INPUTS ~ OUTPUTS
1 CLR or 1CK or Yor Kor 1Qor 1Qor
2CLR 20K 24 K 20 26
L X X X L
H | | L L Stay as you were
H JL H L H L
H JL L H L H
H l | H H Change state regardiess
of previous state
1 2
Vee CLR 1K 2K CLR 20K 2.
14 13 12 11 10 9 8
J oK K K cK J
CLR LO CLR
a a a Q
1 2 3 4 5 6 7
1 1a 12 K 20 28 GND
JL  identifies a clock pulse; the way in which it is used is described below.

X means “don't care”




Let us examine the function table illustrated above. Uniess you are familiar with this type of logic
device, its features are not self-evident.

The connotation “master-slave” identifies a circuit which is, in fact, | MASTER-SLAVE
two flip-flops. Therefore, there are four flip-flops in the 74107 device | FLIP-FLOPS
illustrated above.

The flip-flops in each master-siave pair respond to a clock signal as follows:

CLOCK

Isolate the slave fiip-flop
from the master

Connect master and slave
flip-flops, thus creating
output signals

Master flip-flop accepts isolate the master flip-flop
input signals from the input signals

The significance of this clock signal response is that the fiip-flop inputs must be present at the
positive edge of the clock signal; these inputs must remain steady while the clock signal is high.
The flip-flop outputs, however, do not change state until the negative edge of the clock signal.

The Clock signal may be used to create time delays. The 74107 flip-flop output is determined by
input signal levels as they existed some time period earlier. This may be illustrated as follows:

CLOCK ———5 C———
Condition of Determine condition

J and K here of Q and Q here

Here is a specific example:

® ®© &6 6 06 o

CLOCK

Q

The following description of the timing diagram illustrated above is keyed to the circled numbers
above the clock signal.

At@, the Q output goes low, because at@J was low and K was high.
At@, Q changes state because at@J and K were both high.
At@ Q remains unaltered because at@J and K were both low. ‘
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MICROCOMPUTER SIMULATION OF REAL TIME

What is the significance of the 565 monostable multivibrator and the master-
slave flip-flops? When it comes to microcomputer simulation of these devices,
there is only one feature that is important to our pfesent discussion — and that is
the concept of real time.

The 555 monostable multivibrator creates high logic level pulses at its output, where the duration
of the high logic level is a controllable real time function.

The 74107 master-slave.flip-flop allows an output signal to be generated based on input condi-
tions as they existed some real time earlier.

MICROCOMPUTER TIMING INSTRUCTION LOOPS

It is simple enough to create a time delay using a microcom- | TIMING
puter system — providing the microcomputer system is not | SHORT TIME
being called upon to perform any other simultaneous opera- | INTERVALS
tions. Consider the following instruction sequence:

Cycles LDA A #TIME  LOAD TIME CONSTANT INTO ACCUMULATOR A
2 LOOP DEC A DECREMENT ACCUMULATOR A
4 BNE LOOP REDECREMENT IF NOT ZERO

The above instruction sequence loads a data value, represented by the label #TIME. into Ac-
cumulator A. The Accumulator is decremented unitil it reaches zero, at which time program ex-
ecution continues. Let us assume that a one microsecond clock is being used by the microcom-
puter system. The DEC and BNE instructions, taken together, execute in 6 cycles — which is
equivalent to 6 microseconds. This means that the program sequence illustrated above can cause
a delay with a minimum_value of 6 microseconds {when #TIME equals 1), increasing in 6
microsecond steps to a maximum delay of 1536 microseconds, which is equivalent to 6 x 256.
This maximum time delay will result when #TIME has an initial value of zero, since #TIME is
decremented BEFORE being tested to see if it is zero; therefore the time out occurs when 1
decrements to 0, not when O decrements to FF g

The MCB800 instruction set is heavily oriented toward memory reference - | MEMORY
instructions; this being the case, you should always examine the | REFERENCE
use of read/write memory, instead of an Accumulator, when |INSTRUCTIONS

using the MC6800. Thus the time delay instruction sequence could be
rewritten as follows:

Cycles
LDA A -#HTIME  LOAD TIME CONSTANT INTO ACCUMULATOR A
STA A TLOC STORE IN TIME CONSTANT LOCATION
6 LOOP  DEC TLOC DECREMENT CONSTANT LOCATION CONTENTS
4 BNE LOOP REDECREMENT IF NOT ZERO

The first point to note regarding the memory reference time delay loop illustrated above is that it
requires ten machine cycles in order to execute the loop once:; again assuming a one microse-
cond clock time, delays ranging between 10 and.2,660 microseconds may be created in incre-
ments of 10 microseconds.
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On first inspection the memory reference time delay loop illustrated above may seem to have
only disadvantages as compared to the use of an Accumulator to hoid the time delay constant.
But the memory reference instruction loop may have advantages. We show two instructions im-
mediately preceding the time delay loop loading a time constant represented by the label #TIME
into a memory location represented by the label TLOC. In a real program, the data value repre-
sented by the label #TIME might be loaded into the location represented by TLOC during an
early initialization phase of program logic. Subsequently the time delay loop could be executed
without disturbing the contents of the Accumulator. For example, an interrupt may trigger the ex-
ecution of the time delay loop. Using the memory reference version of the time delay program, it
would not be necessary to save and restore the Accumulator contents since the time delay loop
instruction sequence does not modify the contents of any CPU register.

Longer time delays can be generated by having a 16-bit counter. The index register is
a very convenient means of implementing a timing loop that uses a 16-bit counter: this may be il-
lustrated as follows:

Cycles
LDX #TIM16  LOAD TIME CONSTANT INTO INDEX REGISTER
4 LOOP  DEX DECREMENT INDEX REGISTER
4 BNE LOOP REDECREMENT IF NOT ZERO

Eight machine cycles are required in order to execute the decrement loop once. Thus, time
delays ranging between 8 microseconds and 0.524288 seconds may be generated in increments
of 8 microseconds. Again we assume a 1 microsecond clock. The maximum time delay is com-
puted when O is initially loaded into the Index register. The maximum time delay is then com-
puted as follows:

65,536 x 8 = 524,288 microseconds
It is a little more complicated creating a long time delay instruction sequence where the 16-bit

timer constant must be stored in two memory locations. Here is the appropriate instruction se-
quence:

Cycles

LDA A  #TIMH  LOAD INITIAL 16-BIT TIME CONSTANT

STA A TLOC INTO TWO CONTIGUOUS MEMORY

LDA A #TIMLO LOCATIONS ADDRESSED BY TLOC AND

STA A  TLOC+1 TLOC+1
6 LOOP DEC TLOC + 1 DECREMENT LOW ORDER BYTE OF COUNTER
4 BNE LOOP REDECREMENT IF NOT ZERO .
6 DEC TLOC DECREMENT HIGH ORDER BYTE OF COUNTER
4 BNE LOOP REDECREMENT IF NOT ZERO

Logic within the instruction loop illustrated above decrements the low order eight bits of the 16-
bit counter: each time the low order eight-bit decrement creates a O value, the high order eight
bits are decremented. When the high order eight bits decrement to 0. logic exits from the time
delay loop. When the high order eight bits of the counter decrement to a nonzero value, then the
low order eight bits must be decremented again through a full decrement cycle before redecre-
menting the high order eight bits. :

Now the actual simulation of a one-shot is complicated by the | TIME DELAY
fact that we may compute time delays, but when does the INITIATION
time delay begin? For digital logic devices the answer is simple: the

time delay begins when an input signal changes state:

CLOCK or

ONE-SHOT \——-

2-37



To parallel this concept within a microcomputer program, we must initiate a time delay upon
completing some other program sequence’s execution. This concept may be illustrated as
follows:

©JMP DELY LAST INSTRUCTION OF SOME PRIOR SEQUENCE

DELY LDA A #TIME  SHORT TIME INTERVAL INSTRUCTION
LOOP DEC A SEQUENCE
BNE LOOP

There is another problem associated with creating time delays | EXECUTING
within a microcomputer system by executing instruction | PROGRAMS
loops, as we have described: the microcomputer is, in es- | WITHIN
sence, doing no useful work during the time delay. There may be | TIME DELAYS
a simple remedy to this problem, providing we can define a program for
the microcomputer to execute during the period of the time delay. This may be illustrated as
follows:

Start of desired time An instruction sequence The remaining time is t

delay whose execution time is timed out using a time
known exactly executes delay instruction loop.
during this time period. This is a fine tuning time
This is a coarse time interval. interval.

We must assume that we can calculate the exact time it will take for our program to execute
within the one-shot time delay; also, the computed time must be less than, or equal to the time
delay. Not many programs are going to fit this description. if, for example, more than one instruc-
tion sequence may get executed, depending on current conditions, then there may be many
different times required for a program to execute. Still, so long as there are a fixed number of
identifiable branches, the problem is tractable and may be illustrated as follows:

_— -

' |

) AT
Y—'—i““‘“’

- e - o —— o]

] - - e v

Start of desired time
delay

o represents decision and branch logic

P prog ion time

= e=e represents time delay instruction loop execution time
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Now each “limb” of the prog'ram branches will end as follows:

LDA A DLY1 LOAD FIRST TIME DELAY
JMP LOOP START TIME DELAY LOOP

LDA A DLY2 LOAD SECOND TIME DELAY
JMP LOOP START TIME DELAY LOOP

LDA A DLY3 LOAD THIRD TIME DELAY
JMP LOOP START TIME DELAY LOOP

LDA A 'DLY4 LOAD FOURTH TIME DELAY
JMP LOOP START TIME DELAY LOOP

LDA A DLY5 LOAD FIFTH TIME DELAY

JMP LOOP START TIME DELAY LOOP
LOOP DEC A SHORT TIME INTERVAL INSTRUCTION
BNE LOOP SEQUENCE

It is more common than not for a microcomputer program to contain numerous conditional
branches: there may be hundreds of different possible execution times depending on various
combinations of current conditions. Executing a program within the time intervat of the required
delay now becomes impractical, because the logic needed to compute remaining time for the in-
numerable program branches is just too complicated.

THE LIMITS OF DIGITAL LOGIC SIMULATION

An MC6800 microcomputer can compute time delays so long as no other program
needs to be executed during the time delay, or providing a very simple instruction
sequence with very limited branching is executed during the time delay.

You cannot simulate simultaneous time delays, nor can you |SIMULTANEOUS
simulate a time delay which must occur in parallel to un- | TIME DELAYS
definable parallel program executions. External logic must
handle all such time delays.

"INTERFACING WITH EXTERNAL ONE-SHOTS

Note that even though external logic may have to create time delays, it is very
easy for the microcomputer system to trigger the start of the time delay and for
the external logic to report the completion of the time delay.
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We can identify the start of a time delay by simply outputting | ONE-SHOT
an appropriate binary digit. Look again at the way “'Signal Out” was | INITIATION
output to external logic by the signal inverter simulation. Outputting a sig-
nal to external logic is indeed very easy. Consider the following four instructions:

LDA A #0 LOAD A 0 INTO ACCUMULATOR A
STA A PORTB  OUTPUT VIA I/O PORT B
LDA A #2 LOAD A 1 INTO ACCUMULATOR A BIT 1

STA A PORTB  OUTPUT VIA I/O PORT B

A 1is output at pin 1 of 1/0 Port B. Assuming that the pin associated with this /0 port is con-
nected to the trigger of a multivibrator, and that this connection was previously high, then the
simple execution of the above instructions will trigger a one—shc_)t.

This may be illustrated as follows:

7
1 8 +5v
[ I
r._ -
5 = 3
T
MC6820 1/O 4 2 7
PortB 3
2 555
1 Q 3 6
0 -_J- C
-
. -
LDA A #0 DA A #2
STA A PortB EXECUTEDMSI'A A ‘Port B EXECUTED



It is equally easy for external logic to signal the end of a time delay.

If we are dealing with “'greater than-or equal to” logic. all that is necessary - | ONE-SHOT
is for the one-shot output to be connected to another pin of a microcom- | TIME OUT

puter 1/O port: USING
STATUS
7 m
1 8
6 - I
5 _ — :» R
N o Trigger - ) <
Mces201/0 3] 7
PortB. o e 555
- a
0 = it C
-V p— 5 _l'{

Signals arriving at pins of 1/0O ports are buffered. The program being executed by the microcom-
puter may, at any time, input the contents of the |/O port and test the condition of bit 0.-which
has been wired to the Q output. When this bit is found to equal O, microcomputer program logic
knows that the time interval has been surpassed.

The following instruction sequence will test the 1/0 port and clear the ‘“time inter-
val complete’’ status being reported by 1/0 Port B, pin O:

tDA A PORTB INPUT CONTENTS OF 1/0 PORT B TO ACCUMULATOR A
AND A #1 MASK OUT ALL BITS BAR BIT 0
BNE NEXT CONTINUE IF BIT IS 1

TIME OUT PROGRAM BEGINS HERE

NEXT TIME NOT OUT PROGRAM BEGINS HERE
The LDA instruction moves the current contents of 1/0 Port B to Accumulator A.

The following AND instruction sets all Accumulator bits to O bar the bit corresponding to 1/0 Port
B. pin O:

765432 10-=Bit No.

XXXXXXXY  Accumulator Contents

00000001 Hexadecimal 01

0000000Y Result of AND

if the binary digit input from pin O of /0 Port Bis 1, then the Q output is still high. The BNE NEXT
instruction simply continues program execution.

If bit O of 1/0 Port B is 0, then the time delay is over; we branch to a program sequence which
only gets executed immediately following a time out.
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Chapter 3
A DIRECT DIGITAL LOGIC
SIMULATION

The discrete logic devices which we simulated in Chapter 2 were not selected at
random; correctly sequenced, they will simulate the logic illustrated in Figure 3-1.
This logic is a portion of the printer interface for the Qume Q-Series and Sprint
Series printers, Figure 3-2 is the timing diagram that goes with Figure 3-1. We are
going to describe both figures at a very elementary level.

Now the purpose of this chapter is to provide a one-for-one cormrelation between
microcomputer assembly language programming and digital logic design. What
you must understand is that while such a one-for-one correlation can be forced, it
is not natural; and that is where the problem in understanding lies. Microcomputer
programs should be written to stress the nature of microcomputers, not the
characteristics of digital logic.

The correct way to program a microcomputer is described beginning at Chapter 4.

Nevertheless, the juxtaposition of digital logic design and microcomputer pro-
gramming is underacored in this chapter. This is the chapter that bridges two con-
cepts; and for that reason it is the most important chapter in this book. If you are a
logic designer, this chapter is important because it will eliminate digital logic con-
cepts which are inapplicable to microcomputers. If you are a programmer, this
chapter is important because it will acquaint you with a new programming goal —
efficient logic implementation.

To achieve the goal of this chapter, we will describe the logic illustrated in Figures
3-1 and 3-2; the description will be careful and detailed, so that you can follow
this chapter, even if you are not a logic designer. As the logic description pro-
ceeds, we will biend in assembly language — in easy stages.

If you understand digital logic, it is particularly important that you confine your
reading to the bold face type in this chapter. The logic of Figure 3-1 has been de-
scribed in sufficient detail to meet the needs of a programmer, or a reader, with no
logic background. :
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HOW THE QUME PRINTER WORKS

The active Qume printing element is a 96-petal printwheel, with one character on
each petal:

COURTESY OF QUME CORPORATION
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A character is printed by moving the printwheel until the appropriate petal is in
front of a solenoid driven printhammer. The printhammer is then fired; it strikes
the printwheel petal, which marks the paper:




Whenever a character is not in the process of being printed, the printwheel is positioned with a
short petal immediately vertical, so that the character just printed is visible:
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As part of the print cycle, the printer ribbon and paper carriage must be moved.

Every character is printed according to a definite sequence of events, collectively referred to as a
“print cycle”. The logic illustrated in Figure 3-1 controls the character print cycle. These are the'
events which must occur within a print cycle:

1) First, the print cycle must be initiated. A signal (PW STROBE) is | PW STROBE

pulsed high to initiate the print cycle:

PW STROBE

Start of
print
cycle

2) The print cycle will endure for a fixed time interval. Obviously during PRINTWHEEL
this time interval another print cycle must not be initiated. Therefore READY
the external logic responsible for generating PW STROBE true CH RDY
must be given a signal identifying the duration of the print
cycle. This signal is PRINTWHEEL READY, aiso called CH
RDY:

PW STROBE

CH ROY I
' |
|

[ |
Start of | JEnd of
print ; — Print cycle time interval e print
cycle cycle

The sequence of events which actﬁally cause a character to be printed can now proceed with the
assurance that external logic will not attempt to start printing the next character before the current
print cycle has gone to completion.

3} The printwheel is moved from its position of visibility until the appropriate
character petal is in front of the printhammer:

PW STROBE

CH ROY

j

1
| Verisble |
| Move to place |
petal in front 1
Start of | of hammer |
print g Print cycle time interval -
cycle

- - e -
-9

31d
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A variable time delay is needed by the printwheel positioning logic. Obviously it will take
longer to position a petal that is far from the position of visibiity than to position to an adja-
cent petal. /

4) Before the printhammer is fired, the printwheel must be given time to settle. A fixed,
2 millisecond time delay is sufficient:

PW STROBE

CH RDY '
I ] L
| variabie | Fired i
| Move to place | Printwhesl ! I
{ petal in front ' settling : ]

Start of | ©f hammer time { End of

print e Print cycle time interval -4  print

cycle cycie

Settling time delays are a very important aspect of the logic | SETTLING
supporting any type of mechanical movement.Itis easy to draw a | DELAYS
clean line showing movement velocity as follows:

A Move Decelerate

Stop Stop

But in reality, movement occurs like this:

Accelerate Move Decelerate
Stop Stop
Bounce

The bounce that follows deceleration must be passed over by a settling time delay.

A blurred character will be printed if the printwheel is still vibrating when the printhammer hits a

petal against the paper.

5) At the end of the printwheel settling time delay, the printhammer can be fired. This is
done by outputting an impulse to a solenoid. Six firing impulse intensities are pro-
vided, since some characters have a more substantial surface area than others. To strike a
comparatively large surface area like a “W" with the same intensity that you strike a small
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character, like a “.”", would produce uneveness in the density of the printed text. The dura-
tion of the printhammer solenoid puise is controlled by the next time delay:

PW STROBE

CH RDY J-

' [

1

" a l l u ' l

PULSE |de3h 1 Fixed ' 1 | '

lMovetophea 1 Printwheel 'Vuid:le | i )

' petal in front | settling 0 Hammer pulse i 1

of hammer time width |
Start of | 1 J | ! end of
print  jast Print cycle time interval af priat
cycle cycle

The bar over HAMMER PULSE identifies the signal as one which is low when active.

8) At the completion of the printhammer pulse time delay, the hammer has struck a petal and
forced it onto-the paper. Now the hammer must be given time to return to its
prefiring position. A 3 millisecond delay is generated for this purpose:

PW STROBE

7)

2
3
<

___ H
HAMMER [3 I |
PULSE | Variable | Fixed H
| Move 1o plece | Printwhes | Varisbie 0 Fixed }
' petat in front 1 settiing 1 Hammer pulse | Hammer retumn 1
of hammer time width and settiing time

Start of 1 ! | § End of
print |eus Print cycle time intervel =] print
cycle cycle

Now the printwheel can be moved to its position of | PRINTWHEEL
visibility and the paper carriage can be advanced to the next | POSITION OF
character position. The printwheel's “'position of visibility” is its nor- | VISIBILITY
mal inactive position; in this position a short petal is in front of the
printhammer, so the most recently printed character is visible above the short petal; hence
the ““position of visibility”. Had we not given time for the printhammer to settle back before
moving the printwheel to its position of visibility, a printwheel petal may have been broken,
striking the tip of the still protruding hammer. Also the paper may have smudged movirig
against a bent petal. Since the printhammer has been given time to fully retract, none of
these problems will arise.
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A final 2 millisecond time delay allows the printwheel and paper carriage to
reposition themselves:

PW STROBE
CH RDY ‘
1 )
HAMMER o+
1 [} ‘ T
PULSE | Variable | Fixed h Fixed i Fixed
| Movetoplace | Prntwneel | Verisbe | Hammer rotum | Fine i
petal in front i settling 'Hlmmerpuise| and settling ! movements |
1 ot hammer time 1 width time 1 dotay |
Start of | ! 1 t 1 | End of
print | Print cycle time interval § print
cycle ° cycle

8) What about ribbon logic? In order to get a clean impression on | START
the paper, a fresh piece of ribbon must present itseif bet- | RIBBON
ween the character petal and the paper. Shortly after the PULSE
beginning of the print cycle, therefore, a signal (START RIBBON MO- FFA
TION PULSE) is output to external logic, which actually controls ribbon
movement. This external logic (it is not part of Figure 3-1) sends back
a ribbon movement completed signal {FFA) since we cannot allow the printhammer to be
fired while the ribbon is still moving. Thus the ribbon is advanced while the print-
wheel is initially being positioned and settied:

PW STROBE
CH RDY ’
1
I — ' s
HAMMER "=} 1 A [ ] |
PULSE | veriable | Fired | Fixed j  Fined |
| Move o place | Pintwhes | variable | Hommar rotum | Finad 1
petal in front i settling 'Hmnmorpube'mmﬁ‘m | movements |
'ofhommor time | width time delay |
start of | ! ' l ! | End of
print |- Print cycle time interval o print
{ }
Start Ribbon
ribbon movement

In summary. a print cycle consists of five time delays. each time delay starts out with a flurry of
logical activity. followed by a period of mechanical movement.

INPUT AND OUTPUT SIGNALS

Now that you have a general understanding of the functions which are controlled by logic in
Figure 3-1, the next step is to take a closer look at input and output signals.
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In order 1o know what to do, and when to do it, we must rely entirely upon input signals.
Similarly, output signals represent the only way in which we can transmit control information to
external logic.

Our limited goal, at this point, is to understand what function each input and output 'signal per-
forms, and how — physically — we are going to handle the signals. We will discuss the “how"’
first,

INPUT/OUTPUT DEVICES

" The principal device used to transmit signals and data bet- [ PERIPHERAL
ween an MC6800 microcomputer system and external logic is | INTERFACE
the MC6820 Peripheral Interface Adapter (PIA). ADAPTER

We are going to use two MC6820 Peripheral Interface Adap- [ L ATCHED
ters. BUFFER
Since this device has been described in “An Introduction To Microcom-
puters”, we are going to assume that you understand its capabilities and organization super-
ficially: if you do not, see “An Introduction To Microcomputers: Volume It — Some Real Pro-
ducts” before continuing, otherwise you will not understand the discussion which follows.

THE MC6820 PERIPHERAL INTERFACE ADAPTER (PIA)

The MC6820 Peripheral Interface Adapter (PIA) provides 16 1/O pins which may
be grouped into 1/0O ports as follows:

cB2 Bt 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 CA2 cal

“FIHIIIHHIIIIH"
e, v e ——

N—
Controls Data Data Controis
Port B Port A

Each port has two associated control signals. CA1/CB1 are input control signals; that is to say, ex-
ternal logic inputs control information to the MC6820 via CA1/CB1. CA2/CB2 are bidirectional
control signais.

Pins of 1/0 Ports A and B may be assigned individually to input
data or output data; but no pin can support bidirectional data 1/0 PORT
transfers. Data transfers may occur unaccompanied by any MODES
handshaking controls, or with handshaking controls.

Control signals CA1 and CA2 can be used with 1/0 Port A to generate input data transfer with
handshaking.

Control signals CB1 and CB2 can be used with I/0O Port B to generate output data transfer with
handshaking.

“Input” refers to data transfer from external logic to the MC8820; “output”’ refers to data transfer
from the MC6820 to external logic.
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Table 3-1 summarizes the operating modes available with MC6820 1/0 ports.

Table 3-1. MC6820 Operating Modes

OPERATING MODE MC6800 AVAILABILITY
Simple input I/0 Port A or B
without handshaking
Simple output 1/0 Port A or B
without handshaking
Bidirectional 1/0 Not available, but individual pins
without handshaking of either 1/0 port_ may be separately
assigned to input or output
Input 1/0 Port A only
with handshaking
Output 1/0 Port B only
with handshaking
Bidirectional 1/0 Not Available
with handshaking

Six individually addressable locations are present within an | MC6820
MC6820; there are the two |/0 ports (A and B), a Data Direction register | ADDRESSABLE
associated with each {/0 port, and a Control register associated with each | LOCATIONS

1/0 port. These six addressable locations may be illustrated as follows:
. Control R Control
@ Register B @ Register A

7 6 5 43 210 7 6 543 2 10

AEEEEEEN HEEEEEnE

@ \ Data Direction @ Data Direction

Register B Register A

cg2 cB1 7 6 5 4 3 2 1.0 7 6 5 4 3 2 1 0 cAlcA

H ,, AR
° o o

The six addressable locations are identified by numbers ® through @

1/0O Ports A and B are the conduits via which actual data transfers occur. The two /O ports are
accessed as two individually addressable memory locations.
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Associated with each {/0 port is a Data Direction register. The Data Direction register identifies
each pin of its associated |/O port as being dedicated to either input or output. These are wnte-
only registers. You must write a control word into each Data Direction register: a O in a bit position
configures the corresponding 1/O port as an input, while a 1 results in an output.

7 6 5 4 3 2 1 0 g BitNo.
folr]1]o]Jo] 1 ]o]1 |osts owection register

trottety

Glefels]ef~]-]e]

1/0 Port Pins

1/0 Ports A and B will both be configured as 8-bit input ports when the MCB820 is reset, since
RESET clears all internal registers.

The two Data Direction registers constitute two additional addressable memory locations.

Associated with each 1/0 port there is also a Control register. Each Control register constitutes an
additional addressable memory location, and the contents of the Control register determine the
manner in which its associated |/O port and control signals will operate.

But.an MC6820 has assigned to it just four memory addresses. | MC6820
These four addresses are created by the way in which select logic con- | REGISTER
nects five MC6820 pins to the Address Bus. These are the five select sig- -} ADDRESSING
nals, and their function:

CSO  Must be high

CS1  Must be high

CS2  Must be low

RSO } Select one of four addressable locations
RS1} within the MC6820

We will use two MCB820 devices. The select lines for these two devices will be connected to the
Address Bus as follows:

A0
Al
. B
L]
A13 4
A4
A5 ﬂ
RSO RSO
RSt PR ST
= o<} =
cst & cst
cso . cso
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As a consequence of the above connections, the MC6820 PlAs will respond to the following

memory addresses:

TIZXXXXXXXXXXXYY

Register select
Don’t care

0 and 1 select one of two MCB820 devices

Must both be 1

Thus, all addresses in the range C000, 5 through DFFF ¢ will select one MC6820; addresses in the
range E000,¢ through FFFF,¢ will select the other MC8820. even though in each case only four
addresses are needed. We will use the four addresses C000,,, C001,,, C002,, and
C003,,. and E000,,, E001,,, E002,, and EQO3,,; these addresses are generated if alf X

digits are assumed equal to O.

Each MC6820 interprets its four memory addresses as follows:

Lowest address:
{e.g., CO00,¢)
Next address:
{e.g.. CO014g)
Next address:
(e.g.. CO02,¢)
Highest address:
(e.g.. CO03,)

Data Direction Register A
or I/0O Port A

Data Direction Register B
or I/O Port B

Controt Register A

Control Register B

As illustrated above, a single memory address is assigned to access either a Data Direction
register or its associated /O port. Which of the two will in fact be accessed, depends on the con-
tents of the associated Control register bit 2. Thus, Table 3-2 summarizes MC6820 register ad-

dressing.

Table 3-2. Addressing MC6820 internal Registers

SELECT LINES

RSO | RS1 X

ADDRESSED LOCATION

0 1 | l I | | |x| I Il/OPonAControireqiner

7 6 54 3 2 1 O <= Bit No.

/0 Port A Data Direction register
1/0 Port A Data buffer

76543 2 1 0 -aBitNo.
| 111 1 Ix] lJl/OPonBComrolrsgister

1/0 Port B Data Direction register
1/0 Port B Data buffer
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To illustrate MC6820 addressing, suppose again that the four addresses C000,5, CO01,6, C002,6
and C003,4 select an MCB820. This is how addressable locations within the MC6820 would ac-
tually be selected:

Address Selected

“C000,¢ I/0 Port A Data Direction register, if C002,¢. bit 2 =0
1/0 Port A Data buffer, if C002,¢, bit 2 = 1

CO01,g t/0 Port B Data Direction register, if C003,¢. bit 2 =0
1/0 Port B Data buffer, if C003,e, bit 2 = 1

C002,¢ 1/0 Port A Control register
C003,¢ 1/0 Port B Control register

When would you select the Data Direction register, rather than the associated 1/0 pon?f

In the normal course of events, you will want to address an 1/0 port MC6820 DATA
rather than its Data Direction register. This being the case, bit 2 of the DIRECTION
associated Control register will. normally contain 1. Thus, you will REGISTER

use the following instruction sequence to access a Data ADDRESSING
Direction register:

LDA A CX LOAD THE CONTENTS OF CONTROL REGISTER X INTO AC-
CUMULATOR A

TAB SAVE IN ACCUMULATOR B

AND A #$FB SETBIT2TOO

STA A CX RESTORE CONTENTS OF CONTROL REGISTER X WITH BIT
2=0

LDA A MASK LOAD DATA DIRECTION REGISTER WITH AN APPROPRIATE

STA A CX-2 MASK TO SET (/0 PORT PIN DEFINITIONS

STA B CX RESTORE ORIGINAL CONTROL REGISTER X CONTENTS

Let us examine the above instruction sequence. Control Register X is associated with some 1/0
Port X. We assume that under normat circumstances bit 2 of the Control register is set to 1, since
under normal circumstances you will want to access an 1/O port rather than its Data Direction
register. Therefore we must reset bit 2 of the Control register to O before accessing the Data
Direction register. This is done by reading the Control register contents into Accumulator A,
. masking it with a mask that contains O in bit position 2 and 1s in all other bit positions, then out-
putting the result back to the Control Register CX. The initial Control register contents are saved in
Accumulator B so that they can be restored later. This logic may be illustrated as follows:

Controf Data Direction
Register X Register X~ Accumulator A Accumulator B
Initial Contents XXXXX1XX ? ? ?
LDA A CX XXXXX1XX ? XXXXX 1 XX
TAB XXXXX 1 XX ? XXXXXTXX XXXXX1XX
11111011
AND A #EFB XXX XX 1XX ? XXXXXOXX XXXXX1XX
STA A CX XXXXX0 XX ? XXXXXOXX XXXXX1XX
LDA A MASK XXXXXO0XX ? MASK XXXXX1XX
STA A CX-2 XXXXXO0OXX MASK MASK XXXXX 1 XX
STAB CX XXXXX1XX MASK MASK XXXXX1XX

When the contents of Control Register CX bit 2 are 0, we can access Data Direction Register X. If
you look back you will see that the Data Direction register address is 2 less than its associated
Control register address. This being the case, we load a mask into Accumulator A, then output it
to the address which equals CX-2. Having loaded the necessary mask into the Data Direction
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register, we restore the initial Control register contents, which we assumed contained 1 in bit
position 2. Now another instruction that writes to address CX-2 wilt access an 1/0 port rather than
a Data Direction register.

We have defined the purpose of Control register bit 2.

What about the remaining Control register bits?

You must write Control codes into these remaining bits in MC6820
order to determine the manner in which each 1/O port of an | OPERATING
MC6820 will operate. You have these three options: MODES

it

2)

3)

You may select simple data transfer without any handshaking control signals, in which case
contro! signals are ignored.

You may select data input or data output with automatic handshaking protocol. The auto-
matic handshaking protocol is dependent on control signals CAt and CA2 for I/0 Port A and
control signals CB1 and CB2 for 1/0 Port B. As stated earlier, 1/0 Port A will only handle data
input with handshaking while 1/0 Port B will only handle data output with handshaking. In
each case there are two automatic handshaking options; one uses interrupt logic while the
other does not.

Instead of using automatic handshaking protocot, you can design your own handshaking pro-
tocol. Your own handshaking protocol can generate interrupt requests based on high-to-low
or fow-to-high transitions of control signals. In addition you can modify the levels of control
signals CA2 and CB2 under program control. You cannot modify the levels of control signals
CA1 and CB1 since these are input only signals.

Given these options, let us examine how the individual bits of each Control
register function.

The two high order bits of each Control register are read-only locations, MC6820
which record the status of interrupt requests which may originate from CONTROL
either of two control lines associated with an 1/0O port: CODES

76 54 3 2 1 0 =g Bit No.

I‘l l ll I I IJ Control Register A
|

Status of i up iginating at CA2 logic
Status of interrupt requests originating at CA1 logic

7 6 6 4 3 2 1 0 -etfpmm—pNo.

l l\l 11 11§ ] controiRogisiers

Status of i p iginating at CB2 logic
Status of i pt req iginating at CB1 logic

The remaining six control bits may be written into or read: they define the way in which the 1/0
port will operate.

Figures 3-3 and 3-4 describe the Control register interpretation for 1/0 Ports A and B respectively.
since the two Control register interpretations are very similar, the points of difference are shaded
so that they are easy to spot.

Let us clarify the functions enabled by the two Control registers.
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If an 1/O port is being used for simple data transfer without handshaking control
signals, then load the following code into the 1/0O port Control register:

7 6654 3 2 1 0 <age=BitNo.

IXIXIOIXIOI]'XIOI Control register for 1/O Port A or B
LDisableinterrupts

Select I/0 port rather than Data Direction register
iDon't care

if you are going to use automatic interrupt or programmed handshaking, then you
need to understand in more detail the interactions of the various Control register
bits. These interactions are easy to understand if you bear in mind that the condition of bit 5

determines one of two possible interpretations for bits 4 and 3.
Let us consider the various handshaking options.

Each 1/0 port has its own interrupt request signal: RQA for I/0 Port A
and IRQB for 1/0 Port B. Each interrupt request signal has two separate
sets of request logic, based on an interrupt request originating with a
CA1/CB1 signal transition, or a CA2/CB2 signal transition.

7 6 54 3 2 1 0 - BitNo.
) 1/0 Port A Control register

Iy | 4 A

1 b

0 Set bit 7 and
1 Set bit 7 and

MC6820
INTERRUPT
LOGIC

Figure 3-3. 1/0 Port A Control Register Interpretation
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7 6 6543 2 1 0 g BitNo.

llll'lllll/OPonBCmmolregm

0 Disable \IRQB1
1 Enable {RQB1
0 Set bit 7 and IRQB1 (if enabled) on high-to-low CB1 transition
1 Set bit 7 and IRQB1 {if enabled) on low-to-high CB1 transition

When RSO,RS1=01, select 1/0 Port B Direction register
‘When RS0,RS1= 01 select 1/0 Port B Data buffer

__.{"
1

0 Disable RQB2
{1

Enable IROB2
0 Set bit 6 and IRQA2 {if enabled) Bit§ =0
on high-to-low CA2 transition
?— 1 Set bit 6 and IRQA2 (if enabled)
A and on low-to-high CA2 transition
00 - Select output interrupt handshaking
01 Select output programmed handshaking ¢ Bit 5 =1
1X Set CB2 to X

Status of IROB2
Status of IRQB1

Figure 3-4. 1/0 Port B Control Register Interpretation

Control register bit 0 enables or disables IRQA/IRQB, based on signal CA1/CB1 transitions only.
Quite independently, Control register bit 3 enables or disables TRQA/IRQB based on transitions of
signal CA2/CB2. However, Control register bit 3 has an alternative interpretation; the one we
have just described only applies if Control register bit 6 is O.

Interrupt requests are triggered by the “active transitions™ of a control signal. The active transi-
tions of control signals may be a high-to-low, or a low-to-high transition. For CA1/CB1, the ac-
tive transition is selected by Control register bit 1. For CA2/CB2, the active transition is selected
by Control register bit 4, but only if Control register bit 5 is 0.

Irrespective of whether interrupt request signals IROA and IRQB have been enabled or disabled.
Control register bits 6 and 7 will report the interrupt request as a status; that is to say. if a condi-
tion exists where CA1/CB1 makes an interrupt requesting active transition, then Control register
bit 7 will be set to 1. Similarly, if control signal CA2/CB2 makes an interrupt requesting transition,
then Control register bit 6 will be set to 1. Once set, Control register bits 6 and 7 will remain set
untit a Read operation addresses the Control register; at that time Control register bits 6 and 7 will
both be reset to 0, while other bits of the Control register are left unaltered.

If Control register bit § is 1, then Control register bits 4 and 3 take on a second in-
terpretation. If Control register bits 5 and 4 are both 1, then control signal
CA2/CB2 will be output at all times with the level of Control register bit 3.

Consider the automatic handshaking options of the MC6820.

If Control register bits 6 and 4 are 1 and O respectively, then MC6820
Control register bit 3 specifies an automatic handshaking sig- AUTOMATIC
nal sequence. Let us describe these signal sequences. HANDSHAK-
ING
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Input interrupt handshaking applies to I/O Port A only, and may be illustrated as
follows:

; cemee=d LU
R/W __r_\_- ————

Read Data
CA2 A
- - -
ca1 - E
Active
CA1
transition

CAZ2 is output on the trailing edge of E, after the CPU has read the contents of the 1/0 Port A data
buffer; this tells externat logic that previously input data has been read and new data may now be
input. Extemal logic receives CA2 low, and upon transmitting new data to 1/0 Port A, must cause
an active interrupt requesting transition of input control signal CA1. What constitutes an active
transition will be determined by 1/0 Port A Control register bit 1. When external logic requests an
interrupt via signal CA1, CA2 will be set high again.

Input programmed handshaking applies only to I/0 Port A, and may be illustrated
as follows:

€S0 - cS1 . CS2 J ] L

Once again control signal CA2 is output low when 1/0 Port A data buffer contents are read by the
CPU. This tells external logic that previously input data has been read and riew data may be input.
External logic does not have to identify newly transmitted data with an interrupt request; rather,
CAZ2 will be reset as soon as the MC6820 is deselected. Using programmed handshaking, exter-
nal logic may use the CAZ2 low pulse as a Write strobe, causing new data to be input to'1/0 Port

3-18



Output interrupt handshaking applies only to 1/O Port B, and may be illustrated as
follows:

e A AW aWa W
n/w_L_]""- x=-===

Write Data
CB2
- G GNP G A &
cB1
In this instance, control signal CB2 is output low on the high-to-low transition of E following a
Write to 1/O Port B Data buffer. In other words, CB2 tells external logic that new data has been
output to 1/0 Port B and is ready to be read. Extemnal logic tells the MC8820 that 1/0 Port B con-
tents have been read by making an interrupt requesting active transition of the CB1 signal. Once
again, 1/0 Port B Control register bit 1 will determine what constitutes an active transition of the

CB1 signal. Program logic can use an interrupt to branch to a program which outputs the next
byte of data to /O Port B.

Output programmed handshaking applies only to I/O Port B, and may be illustrated
as follows:

csn-cs1-%8 __f \ —
O T W §
D0-D7 1

" —— N

CB2 makes a high-to-low transition when data is written into the 1/O Port B data buffer, just as
occurred with output interrupt handshaking. However, CB2 will automatically be set to 1 as soon
as the MC6820 is deselected. External logic can use the CB2 low pulse as a strobe, causing it 10
read the contents of 1/0 Port B.

Now consider how you can create your own handshaking options.

When you are creating your own handshaking control signals, bit 5 will be set to 0. Bit O will be
set to 1 in order to enable interrupts generated by CA1 or CB1; bit 3 will be set to 1 in order to
enable interrupts generated by CA2 or CB2. The levels of bits 1 and 4 determine whether a high-
to-low transition or a low-to-high transition of control signals will generate an interrupt request.

You can at any time modify the level being output via CA2 or CB2 as follows:

XX110XXX output to a Control register sets CA2 or CB2 low
XX111XXX output to a Control register sets CA2 or CB2 high

X represents a “don’t care” bit, but should be left equal to whatever value was previously in that
bit position.
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INPUT SIGNALS

Let us now assume that input and output signals are handled via four MC6820 PIA
1/0 ports, which we will identify as 1/0 Ports A, B, C and D, with these memory
addresses:

I/0 Port A address is C000,¢

B C001,¢
C E000¢
D E001,6

Let us turn our attention to the input signals that appear on the left-hand side of
Figure 3-1. We will describe each signal, assign it to an appropriate input pin, and
include a rudimentary instruction seq e to the signal at the most ele-
mentary level.

RETURN STROBE

If the operator is to see the most recently printed character, two things must hap-
pen: :

1) The brintwheel must be moved to its position of visibility.
2} The ribbon must be dropped.

External logic can take care of dropping and raising the ribbon, but logic in Figure 3- 1 creates the
signals that allow the printwheel to move.

In order to move the printwheel to #ts posi_uon of visibility, therefore, the ribbon control external
logic inputs RETURN STROBE low while the ribbon is dropped.

- PRINTWHEEL
Logic within Figure 3-1 uses RETURN STROBE as an alternative signal to REPOSITION-
start a print cycle; however, RETURN STROBE low is accompanied by ING

HAMMER ENABLE FF low, which prevents the printhammer from firing. PRINT CYCLE

Therefore & print cycle initiated by RETURN STROBE low is a
“dummy’’ print cycle which moves the printwheel back to its position of
visibility, but does not fire the printhammer; we refer to this as a printwheel
repositioning print cycle:

: Printing Printwhee!
1 print cycle repositioning
print cycle

PW STROBE ’ \

RETURN STROBE

e . L
e e o o -

:

|

CH RDY

HAMMER ENABLE

1

|

| |

HAMMER PULSE \ / | |

| | Print cycle during
Print cycle during | l which hammer
which hammer 1 ' is not fired, but
is fired and i | printwhee is
character is moved back to
printed : : its position of

visibility




We will assign 1/0 Port B, pin 4 to RETURN STROBE.

In between print cycles, we can test this pin in order to trigger a new print cycle
via the following instruction sequence:

LOOP LDA A 3C001 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
AND A #810 MASK OUT ALL BAR BIT 4
BNE Loor IF THIS BIT IS 1, RETURN AND RETEST

INEW PRINT CYCLE INSTRUCTION SEQUENCE BEGINS. HERE

Here is a check on how the AND instruction works in the sequence above:

76543210 -=—Bit No.
XXXYXXXX Accumuiator A contents
00010000 #$10

000Y0000 AND

This bit corresponds to RETURN STROBE
PFL REL

The printhammer cannot be fired while the paper feed mechanism is moving,
therefore at such times external logic inputs PFL REL low.

Logic within Figure 3-1 will delay firing the printhammer for as long as PFL REL is being input
low.

We will assign Pin O of I/0 Port A to PFL REL.

Before executing the instruction sequence which fires the printhammer, we will input the con-
tents of Port A and test bit O; so long as this bit contains zero, we will not execute the printham-
mer firing sequence.

The following instructions perform the required test:

LOOP LDA A  $C0O00 INPUT CONTENTS OF 1/0 PORT A TO ACCUMULATOR A
AND A #1 MASK OUT ALL BITS BAR BIT 0
BEQ LOOP THE BIT IS 0. DO NOT FIRE THE PRINTHAMMER
PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE
RIB LIFT RDY

This signal s similar to PFL REL; it is input low when ribbon lift logic is moving the rib-
bon. Just as the printhammer cannct be fired while the paper feed mechanism is active, so it
cannot be fired while the ribbon is being moved. By connecting RIB LIFT RDY to Pin 1 of /0 Port
A, we may adjust the printhammer firing initiation instruction sequence as follows:

LOOP LDA A $CO00 INPUT CONTENTS OF 1/0 PORT A TO ACCUMULATOR A
ORA A #8FC MASK OUT ALL BITS BAR O AND 1
COM A COMPLEMENT THE RESULT TO TEST FOR ANY O BIT
PRESENT
BNE LOOP ANY 0 BIT WILL NOW BE 1. IF ANY BIT IS NOW 1, DO

NOT FIRE PRINTHAMMER
PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE
PW STROBE

We have already encountered this signal; it is pulsed high by external logic to start a
normal print cycle, during which a character will be printed.

Remember, RETURN STROBE is input low to initiate a print cycle during which the printwheel will
be moved to its position of visibility, but no character will be printed.
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Assuming that PW STROBE is connected to pin 5 of 1/0 Port B, this is the instruction se-
quence that will be executed between print cycles:

LOOP LDA A  $C001 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
AND A #3$30 ISOLATE BITS 5 (PW STROBE) AND 4 (RETURN STROBE)
CMP A #810 TEST FOR PW STROBE=0. RETURN STROBE =1
BEQ Loop IF TEST IS TRUE, STAY IN LOOP

PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

Observe that either PW STROBE = 1, or RETURN STROBE = O can trigger the start of a print cy-
cle; that is why only PW STROBE =0 and RETURN STROBE = 1 keeps us in the testing instruc-
tion loop.

Now the four instructions shown above execute in a combined total of 12 INPUT SIGNAL
clock cycles. With a one microsecond clock, the four instructions will ex- PULSE WIDTH

ecute in 12 microseconds — which becomes the minimum pulse width
allowed for PW STROBE. If PW STROBE is puised high for less than 12 microseconds,
our instruction cycle may miss it.

FFA

This is another printhammer warning signal. it is set to 0 while external logic is advanc-
ing the ribbon. By connecting this signal to pin 2 of I/0 Port A, we can modify the

instruction sequ which precedes printhammer firing as follows:
LOOP LDA A $C000 INPUT CONTENTS OF 1/0 PORT A TO ACCUMULATOR A
ORA A #S$F8 ISOLATE BITS 2, 1 AND O
COM A ) COMPLEMENT THE RESULT TO TEST FOR ANY 0 BIT
BNE LoopP ANY O BIT WILL NOW BE 1. IF ANY BIT IS 1, DO NOT FIRE
PRINTHAMMER ’

PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE

All we have done is add one more test condition which must be met before the printhammer fir-
ing instruction sequence gets executed.

RESET

This is a signal which is commonly seen in the most diverse types of logic. It is an initializing
signal. Its purpose is to ensure that all logic is in a “beginning” state, which in our case is the
condition which exists between printwheel cycles.

The logic in Figure 3-1 connects the RESET signal to logic devices such that
RESET going high forces all logic to a ‘"beginning’’ condition.

There are many ways in which a microcomputer system can | ReSET
handie a RESET signal. The simplest scheme is to input this | THE cPU
signal to the RESET pin of the MC6800 CPU.

Ancther method of handling RESET is to test the signal in between print cycles
and to prevent any print cycle from starting while RESET is high; this may be ac-
complished by connecting RESET to pin 6 of 1/0 Port B, then modifying our “in
between print cycles’ instruction sequence as follows:

LOOP LDA A  $COO1 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
AND A #840 ISOLATE BIT 6 (RESET) '
BNE Loor IF RESET IS HIGH, STAY IN LOOP

RESET IS LOW. TO TEST PW STROBE AND RETURN STROBE
LDA A $C001 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
AND A #$30 ISOLATE BIT 5 (PW STROBE) AND BIT 4 (RETURN STROBE)
CMP A #$10 TEST FOR PW STROBE =0, RETURN STROBE =1
BEQ LOOP IF TEST IS TRUE STAY IN LOOP

PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
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Now this longer test loop will require 22 cycles to execute. . | siGNAL
That means PW STROBE must pulse high for at least 22 | pyLsg
microseconds, assuming a 1 microsecond clock. WIDTH

PFR REL

This is yet another signal which must be tested before initiating printhammer firing. it indi-
cates when external logic is moving the paper feed. Under such circumstances we can-
not fire the printhammer. By connecting this signal to pin 3 of input Port A, we merely
have to adjust the printhammer firing instruction initiation sequence as follows:

LOOP LDA A  $CO00 INPUT CONTENTS OF 1/0 PORT A TO ACCUMULATOR A
ORA A #SFO ISOLATE BITS 3, 2, 1 AND O
COM A COMPLEMENT THE RESULT TO TEST FOR ANY O BIT
BNE LOOP ANY 0 BIT WILL NOW BE 1. IF ANY BIT IS 1, DO NOT FIRE
PRINTHAMMER
PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE
CA REL

This signalis almost identical to PFR REL. It comes from external logic that controls car-
riage movement. We will connect this signal to pin 4 of input Port A and modify the
hammer firing instruction initiation sequence as follows:

LOOP LDA A  $CO00 INPUT CONTENTS OF 1/O PORT A TO ACCUMULATOR A
ORA A #3$EO ISOLATE BITS 4,3, 2. 1 ANDOQ
COM A COMPLEMENT THE RESULT TO TEST FOR ANY O BIT
BNE Loor ANY 0O BIT WILL NOW BE 1. IF ANY BIT IS 1, DO NOT FIRE
PRINTHAMMER
PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE
FFI

This is the signal which times the first delay in the print cycie — the time during
which the printwheel moves from its position of visibility until the required petal
is in front of the printhammer.

FFlis generated by external logic; it is low while the printwheel is moving and it is high while the
printwheel is not moving.

We will tie FFI to pin 7 of I/O_Port A. Thg following instruction loop  FTIME DELAY
will create a delay which lasts until FFl goes high: BASED ON
LOOP LDA A  $CO00 INPUT PORT A TO ACCUMULATOR A | INPUT SIGNAL
ROL A SHIFT BIT 7 INTO THE CARRY
BCC LOOP IF CARRY = 0O STAY IN THE LOOP

Do you see how this loop works? After I/0O Port A contents have been input to Accumulator A,
we are only interested in bit 7, since this is the bit that corresponds to FFI.

This is what the' ROL A instruction does:

Carry 7 6 5 4 3 2 1 0O =g BitNo.

(XY Jy] Y]y Y]y ]Y ] Accumuator &

If the Carry status equals 1. the printwheel move delay is over. If Carry equals O, program logic
must continue the delay.
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EOR DET
This signal indicates that the end of the ribbon has been reached. Under these cir-
cumstances character printing cannot continue.

When this signal is generated, there will still be fresh ribbon in front of the printhammer, so the
signal is not used to inhibit printhammer firing; rather it is used to prevent the end of the print cy-
cle from ever being indicated. This effectively prevents a new print cycle from ever starting.

We will connect the EOR DET signal to bit 7 of 1/0 Port B. Since EOR DET is a negative
logic signal we will test it prior to going into the “in between print cycle” loop as follows:

TEST FOR VALID END OF PRINT CYCLE

LOP1 LDA A $COO1% INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
ROL A SHIFT BIT 7 INTO CARRY
BCC LOP1 IF ZERO IN CARRY, STAY IN PRINT CYCLE

START OF IN BETWEEN PRINT CYCLES LOOP

LOOP LDA A  $COO1 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
AND A #%40 ISOLATE BIT 6 (RESET)
BNE LOOP IF RESET IS HIGH. STAY IN LOOP

RESET IS LOW SO TEST PW STROBE AND RETURN STROBE
LDA A $C001 INPUT /O PORT B CONTENTS TO ACCUMULATOR A
AND A #3830 ISOLATE BITS 5 (PW STROBE) AND 4 (RETURN STROBE)
CMP A #810 TEST FOR PW STROBE=0, RETURN STROBE =1
BEQ LOOP IF TEST IS TRUE STAY IN LOOP

PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE
Look at the above instruction sequence. There are some interesting aspects to it.

The first three instructions above will be the last three instructions in the print cy-
cle sequence. The instruction labeled LOOP is the first instruction of a sequence which gets ex-
ecuted continuously until the start of the next print cycle. Thus, if EOR DET is low. program logic
will hang up in the first three instructions listed above; constantly looping within these three in-
structions until EOR DET goes high. At that time, the print cycle ends and we go into the “in bet-
ween print cycles” instruction loop. The program now hangs up indefinitely in this instruction
foop until bit 6 which corresponds to RESET equals O, while bit 5 which comesponds to PW
STROBE equals 1, or bit 4 which corresponds to RETURN STROBE equais 0.

There is another interesting feature of the above instruction sequence. We could,
if we wished, eliminate the second LDA instruction, as follows:

TEST FOR VALID END OF PRINT CYCLE

LOP1T LDA A $COO1 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
ROL A SHIFT 8IT 7 INTO CARRY
8CC LOP1 IF ZERO IN CARRY, STAY IN PRINT CYCLE

START OF IN BETWEEN PRINT CYCLES LOOP
AND A - #$80 ISOLATE BIT 6 (RESET)
BNE LOP1 IF RESET IS HIGH, STAY IN LOOP

RESET IS LOW. TO TEST PW STROBE AND RETURN STROBE :
LDA A $C001 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A
AND A #830 ISOLATE BITS 5 (PW STROBE) AND 4 (RETURN STROBEY
CMP A #810 TEST FOR PW STROBE =0, RETURN STROBE =1
BEQ LOP1 IF TEST IS TRUE STAY IN LOOP

PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

By eliminating one instruction, we have saved two bytes of object code. The penalty is that we
have added six clock cycles to the entire instruction loop, which means that the PW STROBE high
pulse goes up from the 22 microseconds we calculated when discussing the RESET signal to 28
microseconds.
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Why does the condensed instruction sequence illustrated above work? The reason
is because external logic is not supposed to be moving the ribbon in between print cycles,
therefore EOR DET will always be high during the in between print cycle instruction execution
loop. If this is so. the ROL instruction will always shift a 1 into the Carry, which will always cause
execution to continue with the AND instruction. Thus the first three instructions become harm-
less. Notice that the AND A #$40 instruction has become an AND A #$80 instruction since the
RESET signal bit has been shifted one position to the left by the ROL instruction.

HAMMER ENABLE FF.

This is the signal which prevents the printhammer from being fired after the print-
wheel is moved to its position of vigibility, as described in connection with the RETURN
STROBE signal.

We will connect HAMMER ENABLE FF to pin 6 of 1/0 Port A, then modify the instruc-
tion sequence which precedes printhammer firing as follows:

LOOP DA A $C000 INPUT CONTENTS OF 1/0 PORT A TO ACCUMULATOR A

ORA A #SA0 ISOLATE BITS 6, 4, 3. 2. 1 AND O
COM A COMPLEMENT THE RESULT TO TEST FOR ANY 0O BIT
BNE LOOP ANY 0 BIT WILL NOW BE 1. IF ANY BIT IS 1, DO

NOT FIRE PRINTHAMMER
PRINTHAMMER FIRING INSTRUCTION SEQUENCE BEGINS HERE

CLK

This is the clock signal that synchronizes all logic in Figure 3-1. Try as we may, we
cannot include this signal in our simulation of Figure 3-1, since events within the
microcomputer program are going to be synchronized by the sequence in which instructions are
executed — not by a clock. Similarly, the next two signals, +5V and RV1, are power
supplies. They are meaningless within a microcomputer program.

H1-H6

These are the six signals which select one of six time durations for the printham-
mer firing puise. We will assign these signals to 1/0 Port C. Once the printhammer fir-
ing instruction sequence gets executed, it simply loads these signals into Accumulator B as
follows:

LDA B $E0QO INPUT FIRING PULSE TIME CODE TO ACCUMULATOR B8
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INPUT SIGNAL SUMMARY

In summary, this is how input signals have been assigned:

FFl
HAMMER ENABLE

MC6820 Port A
assigned to input

CA REL
PFR REL
A
RIB LIFT RDY
PFL REL

of=fv|wia]v]e

EOR DET

RESET

PW STROBE
RETURN STROBE

MC6820 Port B
assigned to input

aslol o] v

Hé
H5
H4
H3
H2
H1

MC6820 Port C
assigned to input

o] =|slwlalo]a] w

OUTPUT SIGNALS

We will now turn our attention to the output signais listed on the right-hand side
of Figure 3-1. These signals are much easier to describe than the input signals. They consist of
six flip-flop outputs — which are simply timing indicators used by external logic — plus four con-
trol signals. We are going to output these signals to the B port of one MC6820 PIA
and the D port of the second MCE6820 PIA as follows:

MC6820 Port D
assigned to output

=1 B LN L B U Y B
R
m

A

START RIB MOTION
HAMMER PULSE
CH RDY

PW RELEASE

MC6820 Port B
assigned to output

lof =fo]w

We assign a pin for FFC.even though it is not output, because I/0 Port D is going to serve a dou-
ble purpose — as a data storage location and as an output signals’ buffer. Simple routines to
generate output signals cannot be concocted: that is the whole purpose of the logic in Figure
3-1. We will therefore simply define the four output control signals:

1) PW REL. This signal marks the end of the fixed printhammer return and set-
tling time delay and the beginning of the fixed Final Movement's delay during
which external logic can move the paper feed and carriage.

3-26



2) CH RDY. This is also referred to as the PRINTWHEEL READY signal. This is the
signal which defines the entire print cycle time interval; it goes low at the start of
the print cycle and stays low until the end of the print cycle.

3) HAMMER PULSE. This signal must be output low for the time interval during
which external logic is supposed to transmit a firing puise to the printhammer
solenoid. .

4) START RIBBON MOTION PULSE. This signal is pulsed high early in the print
cycle, telling external logic that it is safe to begin advancing the ribbon so that
fresh ribbon will be in front of the printhammer when it is fired.

A DIGITAL LOGIC ORIENTED SIMULATION

We are now ready to start simulating the logic illustrated in Figure 3-1 — but first
a brief overview of the logic.

A LOGIC OVERVIEW

At the center of the logic sequence are four 74107 flip-fiops, labeled FFCyy,
FFDyy, FFEw and FFFwy. You will find these flip-flops in the center and to the left of Figure
3-1. These four flip-flops form what is known as a *’Johnson Counter’’. Each flip-flop
is controlled by the output of the previous flip-flop, coupled with a test for external conditions:

Clock 2 & ) 4

Master J J Q J QpP—
74107 74107

Master K K K
R -,
External I

Condition

[2]]

[>]]

Thus the four flip-flops may be visualized as initiating print cycle events in the following way:

FFC “on” FFE “off”
FFD “on” FFE “on” FFF ““on” FFC “off” FFD “off” FFF “off"

I R B {

r

PW STROBE

[}
=
3
<

— | [
HAMMER 1 1 ¥ 1
PULSE | Verisle Fixed | | Fixed |
move to place l Printwheel Variable Fixed | Final |
l petal in front settiing l Hammer puise 'Hammer return ’ movements 1
| ofhemmer !} time width and setting time?  delay
Start of | { l | i 1 Endof
. . N [ N
print ;_ Print cycle time interval 1 print
cycle ‘ cycle
Start Ribbon
ribbon movement
movement complete
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As illustrated above; the print cycle time interval may be divided into five periods.

During the first time interval the printwheel is moved from its posltior; of visibility
until the required petal is in front of the printhammer. This time interval is con-
trolled by external logic, via the FFl input.

The remaining four time intervals are controlled by three 74121 one-shots and the
555 multivibrator.

What about the two 7474 flip-fiops at the top left-hand corner of Figure 3-1?
These are simply cycle initiation logic. Fiip-flop FFA is triggered by a combination of sig-
nals necessary for a print cycle to begin. Flip-flop FFB acts as a switch for the four 74107 flip-
flops. forcing them to turn “off” in between print cycles. Flip-fiop FFB does this by tying its Q out-
put to the reset inputs of the 74107 flip-figps. This results in the 74107 flip-flops always being
turned off if FFB is turned off; we will explain in more detail how this happens later on.

We are now going to follow a print cycle through Figure 3-1. As we progress, we
will create a microcomputer assembly language program that simulates the logic,
device-by-device.

FLIP-FLOP FFAW

Our print cycle begins at the 7474 flip-flop designated FFAyy. | 7474
You will find this flip-flop at the top, left-hand corner of Figure | FLIP-FLOP
3-1. Let us isolate FFAy,, and illustrate it as follows: :

Always high, since

tied to + 5V,
I
PR
CH RDY -2 D for S} Q L] output
7474
FFA
PW STROBE ——-3- C Q J—— significant output
CLR

i

{{CH RDY) OR (PW STROBE)} AND {NOT RESET)

Refer back to the general function table for a 7474 flip-flop. given in Chapter 2.

Since PRESET (PR} is always high, being tied to_+ 5V, a low CLEAR {CLR) input will force the flip-
flop “off", at which time Q is output low and Q is output high.

Look at Figure 3-1 and you will see that CLR is generated as follows:

26
CH RDY s

PW STROBE  —rememrmnenf

27 Y
RESET %
7404
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This is the truth table for CLR:

CH RDY | PW STROBE RESET A4 CLR.
0 0 0 0 1 0
1 0 0
0 1 1 0 1 1
1 0 0
1 0 1 0 1 1
1 0 0
1 1 1 0 1 1
1 0 0

For flip-flop FFAyy to turn “on”, CLR must be high; for CLR to be high, RESET must be low. and
either CH RDY or PW STROBE must be high.

Now CH RDY provides FFAy with its data (D) input, and PW STROBE provides the clock (C) input.
Therefore the function table for flip-flop FFAw may be illustrated as foliows:

INPUTS OUTPUTS
CLOCK D

PRESEYT CLR (PW STROBE) (CH RDY) Q a
J - 1 UGt uoanrt b A"
1 0 Oor? Qor1? o] 1

© © O-or+ ©-or—+ trrstabie
1 1 0—1 1 1 o]
1 1 0—1 0 0 1

Previous Previous

$ t © o+t ) ol

And this devolves to the following small function tabie:

CLR CH RDY PW STROBE a
o] . 1
1 o] 01 1
1 1 0—1i o]

“off” condition

} possible “on” conditions

PRESET=1

PRESET=1

No change

It takes a O to 1 transition of PW STROBE for flip-flop FFAW to tum on. When FFAWy turns on,
however, if CH RDY is O, then the Q output is still 1, representing the “off” condition. Thus, to
wrn FFA “on”', PW STROBE must go from O to 1 while CH RDY is 1.

Recall that CH RDY is a signal which is output high in between print cycles and is output low for
the duration of a print cycle. This means that flip-flop FFAyy will only tum on if PW STROBE
pulses high in between print cycles, as characterized by CH RDY being output high:
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For the moment do not worry about how CH RDY goes to O shortly after flip-flop FFAy turns on.
We will explain how this happens later. The only important thing to note is that a PW STROBE
high pulse will be ignored if it occurs while CH RDY is low.

- What about the RESET signal? What this signal does is over- | RESET

ride all other logic associated with flip-flop FFAy:; whenever
RESET is input high, CLR is forced low which turns flip-flop FFAyy off irrespective
of whatever else is going on.

SIMULATING FLIP-FLOP FFAw

We conciuded in Chapter 2 that a flip-flop is represented in a microcomputer system by a single
bit of read/write memory. A single bit of a read/write buffer will do just as well.

1/0 Port D has been assigned to output signals. This port has an | FLIP-FLOP
8-bit buffer to which port pins are connected; thus each bit of the port SIMULATION
buffer will simulate the flip-flop whose output is transmitted | USING 1/0
via the port pin: PORTS

1/0 Port

=1

Pin transmits
output signal

Buffer bit /

simulates
fiip-flop

Recall that FFA has been assigned pin 0 of I1/0 Port D.
0.K., we are ready to simulate flip-flop FFAyy.

At the same time, how about simulating the three gates below and to the left of
FFAw? These three gates are numbered 26, 27 and 37 and together they create
the CLR input.

Simulating these three gates individually, the foliowing instruction sequence ap-
plies:

SIMULATE GATE 27

LDA B $C001 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR B

comMmB COMPLEMENT ALL EIGHT BITS

AND B  #$40 ISOLATE BIT 6; IT REPRESENTS RESET COMPLEMENT
SIMULATE GATE 26

LDA A $CO01 INPUT 1/0 PORT B CONTENTS TO ACCUMULATOR A

AND A #$22 ISOLATE BITS 5 AND 1; THEY REPRESENT PW

STROBE AND CH RDY
SIMULATE GATE 37

BEQ CLRO IF NEITHER BIT 1 NOR 5 EQUALS 1, CLRIS 0
BIT B - #S$FF TEST COMPLEMENT OF RESET
BEQ -CLRO IF RESULT ISO, CLRISO .
SEC CLR IS 1 SO STORE 1 IN CARRY STATUS
JMP FFAW +2

CLRO CLC CLR is 0 SO STORE O IN CARRY STATUS

SIMULATE FLIP-FLOP FFAW



FFAW BCC FFAQ IFCLRISO, SETI/OPORT D, BITOTO 1

BIT A #8320 CLR IS NOT 0. TEST PW STROBE. IF PW STROBE
IS 0, CLOCK HAS NOT PULSED

BEQ FFAQ SET BIT 0 OF I/OPORT D TO 1
BT A  #8$02 PW STROBE IS 1, TEST CH RDY
BEQ FFAO IF CH RDY IS O, SET BIT 0 OF /O PORT D TO 1
LDA A $E001 LOAD I/0 PORT D INTO ACCUMULATOR A
AND A #SFE BIT O MUST BE RESET TO 0, SINCE FFA IS "ON”
STA A $E0O1
JMP FFB JUMP TO FLIP-FLOP B SIMULATION

FFAO LDA A $EOOT LOAD 1/0 PORT D INTO ACCUMULATOR A
ORA A #1 BIT 0 MUST BE SET TO 1 SINCE FFA IS “OFF”
STA A $E0O1

FLIP-FLOP FFB SIMULATION FOLLOWS

It is very important that you understand how instructions fit together to make a program. Read no
further until you understand completely how the instruction sequence given above simulates the
logic of FFAy and its three associated gates.

Let us look at the above simulations.

The RESET signal, you will recall, has been tied to bit 6 of MC6820 7{o] INVERTER
Port B; this port is addressed as memory location CO01,¢ based on the SIMULATION
way in which we have elected to wire the MC6820 PIA into our
microcomputer system. In order to invert this signal, we input the contents of 1/0. Port B to Ac-
cumulator B, complement the contents of the Accumulator, then isolate the complement of
RESET by setting all bits of Accumulator B to O, bar bit 6.

from 1/0 Port B

LDA B $C001 XXXXXXXX to Accumulator B

coMB XXXXXXXX Complement

AND B #3$40 01000000 Isolate bit 6
0X000000

The complement of RESET is saved in Accumulator B. The simulation of gate 27 is com-
plete.

The simulation of gate 26 is not quite as straightforward. | OR GATE

We are seeking the OR of PW STROBE and CH RDY. These two sig- SIMULATION
nals are represented by bits 5 and 1, respectively, of {/O Port B. Now

what we do is load the contents of 1/0 Port B into Accumulator A, STATUS FLAGS

then execute an AND instruction which sets all bits to 0, bar bits 5 and :ESIEI?E;(E)NT
1. But we do not actually OR these two remaining bits. Why? The LOGIC
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reason is because when the AND instruction is executed, it sets the Zero status to the comple-
ment of (PW STROBE) OR (CH RDY):

Accumulator A Contents
A5 OR HEX 2ERO
Al A7 A6 AS A4 A3 A2 Al A0 VALUE | STATUS
o 4] 0 0 0 0, 0 0 0 00 1
1 0 0 0 4] 0 0 1 .0 02 ]
1 1] 0 1 0 1] ] 0 0 20 0
1 0 [+] 1 [ 0 0 1 1] 22 4]

Pwsmoae/ cnaov/FouowingANDimnmaon/

execution, Zero status is
complement of (PW
STROBE) OR {CH RDY).

We can therefore move on to gate 37.

The purpose of gate 37 is to generate the FFAWCLR input. We are going | ZERO

to simulate CLR using the Carry status. Now we come right out of the | STATUS
gate 26 simulation into the gate 37 simulation; at this time the Zero status
will be O if the OR of PW STROBE and CH RDY is 1: Zero status will be 1 otherwise. {Recall that
Zero statuses always represent the inverse of the O condition. In other words, a O condition
causes the Zero status to be set to 1; a nonzero condition causes the Zero status to be set to 0.)

The first instruction of the gate 37 simulation takes advantage of the fact that we have the OR of
PW STROBE and CH RDY recorded in the Zero status. If the Zero status is 1, CLR must be 0, so
the first BEQ instruction branches to logic that will set the Carry status to 0. The next instruction in
the gate 37 simulation tests the complermnent of RESET as stored in Accumulator B, using a BIT in-
struction. The BIT instruction will not change the contents of Accumulator B, but it will reset
statuses based on the result of an AND. If the complement of RESET is 0, then the BEQ instruc-
tion which follows will branch to program logic which sets the Carry status to 0. If the comple-
ment of RESET is not O, then all conditions have been met for gate 37 to output a nonzero
result — and this condition is simulated by the SEC instruction, which sets the Carry status to 1.

Flip-flop FFA is simulated next. The state of this fliip-flop may be defined as follows:
If CLR is O then Q is 1.
If PW STROBE is O then Q is 1.
If CLR is 1 and PW STROBE is 1 and CH RDY is O then Q is 1.
i CLR is 1 and PW STROBE is 1 and CH RDY is 1 then Q is O.
CLR is simulated by the Carry status. PW STROBE is simulated by bit 5 of Accumulator A. CH RDY
is simulated by bit 1 of Accumulator A. )
The simulation of flip-flop FFA begins with the instruction labeled FFAW.

First we test the status of CLR using the BCC instruction. This instruction CARRY
causes a jump to FFAQ if the Carry status is 0 — which means that CLR i is | STATUS
0. FFAQ is the label for the first instruction in the sequence which sets Q
to 1.
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Observe that we have some unnecessary steps at this point in the program. Here is

our logic:

CLRO

FFAW

LDA A $C001

AND A #$22

BEQ CLRO
BT B  #$FF
BEQ CLRO
SEC

JMP FFAW +2
cc

B8CC FFAQ
BIT A  #8$20

{

Input 1/O Pont 8
to Accumuiator A

1

Isolate bits 5 and 1

i both are 0, branch
to CLRO

Test RESET in B

Set Cary to 1
signifying CLR = 1

Jump to PW STROBE

Set Canry 10 0
signifying CLR =0

. Carry is 1. Test
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Each rectangular box represents a data movement or manipulation operation.

Each diamond represents logic which tests the condition of a status flag.

The logic sequence illustrated above maintains an orderly instruction flow which conforms with
the flip-flop FFAW and its three preceding gates. But if you look at the instructions labeled CLRO
and FFAW, you will see that they are redundant. The instruction labeled CLRO sets the Carry
status to 0. The instruction labeled FFAW tests the Carry status, and upon detecting O branches
to the later instruction labeled FFAQ. But since we have just set the Carry status to 0, the instruc-
tion labeled FFAW must detect a O Carry status; therefore, the only allowed logic path folowing a
branch to CLRO is another branch to FFAQ. We can therefore replace the two instructions which
branch to CLRO with instructions that branch directly to FFAQ; then we can eliminate instructions
labeled CLRO and FFAW. This also efiminates the instruction which jumps to FFAW + 1, since
FFAW + 1 addresses a BIT instruction which becomes the next sequential instruction. We can
also remove the SEC instruction. Since Carry=0 conditions have been accounted for by branches
to FFAQ, the default is Carry=1, which no longer needs 1o be identified. Thus our new instruction
sequence may be. illustrated as follows:

Old Sequence New Sequence
LDA A $C00t LDA A $C001
AND A #$22 AND B #822
BEQ CLRO BEQ FFAO
8T B HSFF BIT B #SFF
BEQ CLRO BEQ FFAQ
SEC
JMP FFAW +1 Unnecessary instructions
CLRO CLC
FFAW BCC FFAQ
BT A  #8$20 BT A #3$20

Let us continue our program analysis with the BIT A #3520 instruction.

Presuming that CLR has a value of 1, we next test PW-STROBE. Again. we use a BIT instruction
for this purpose. PW STROBE is represented by bit 5 of Accumulator A. In order to test the status
of this bit, the BIT instruction ANDs Accumulator A contents with a mask that contains a 1in bit 5
and 0 in alt other bit positions. The result of the AND is discarded — which means the contents
of Accumulator A remain the same; however status bits are set or reset to reflect the result of the
AND:

765432 10--—Bit No.

XXXXXXXX  Accumulator A contents

00100000  BIT mask

00X00000  Resuit is discarded but is used to set status flags

- This bit represents PW STROBE

Assuming that PW STROBE s 1, all that remains is to. check the condition of CH RDY. To do this
we again execute a BIT instruction; however this time the contents of Accumulator A are ANDed
with a mask that contains a 1in bit 1 and Gin all other bit positions. Again the result of the AND is
discarded, which means that-Accumulator A contents are not disturbed; however status flags are
set or reset to reflect the result of the AND operation.



Assuming that all conditions have been met to turn flip-flop FFA on, we must set bit 0 of I/0 Port
D to 0. This is done by inputting the contents of 1/0 Port D to the Accumulator, ANDing with the
appropriate mask, then returning the result:

76543210 g Bit No.

XXXXXXXY Accumulator A contents
11111110 HSFE
XXXXXXXO0 AND

The last three instructions of the flip-flop FFA simulation are the three in-

_structions which set bit 0 of 1/O Port D to 1 {reflecting the fact that flip- SWITCHING
flop FFA is “off*). These three instructions load the contents of I/0 Port D A BIT ON
into Accumulator A, OR with the appropriate mask, then return the result:

76543210 —s——= Bit No.

XXXXXXXY Accumulator A contents
00000001 #1
XXXXXXX 1 OR

Now in all honesty, the program sequence we have just described is a ridiculous
way of simulating flip-flop FFA and its three associated gates.

It is ridiculous because we simulated each gate as an independent transfer func-
tion. Instead, let us consider the flip-flop, with its three gates, as a single transfer
function. We can represent the transfer function with the following state defini-
tion:

SetQ to 0 if RESET = 0, CH RDY = 1 and PW STROBE goes from 0 to 1. Set Q to 1
otherwise.

How are we going to test for the transition of PW STROBE from O to 1?

Using interrupts, the test would be very simple; but we are not going to use interrupts until
Chapter 5.

. L . SIGNAL LEVEL
Without using interrupts, there is only one way to check CHANGES
for a PW STROBE 0 to 1 transition. We must input the con- SENSED

tents of 1/0 Port B to Accumulator A, isolate bit 5, save the result, WITHOUT
input the contents of I/0 Port B to Accumulator A again, isolate bit INTERRUPTS

5 again, then compare the two bits for an old value of 0 and a new
value of 1. But this scheme is risky; it will only catch signal transitions which are lucky enough to
oceur in between the two instructions which load 1/O Port B contents to Accumulator A:

it S 4}

Hit!
@ represents execution of first LDA A $C001 instruction

represents execution of second LDA A $C001 instruction
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Within the logic of a microcomputer program, however, we J EVENT TIMING IN
have no need to rely on signal transitions. Event sequences | MICROCOMPUTER
are determined by instruction execution sequence. The |SYSTEM

whole concept of timing on the leading or trailing edge of a
signal puise has no meaning. Instead of using PW STROBE signal transitions,
therefore, we will use PW STROBE signal levels. Flip-flop FFA can now be de-
scribed with the following state definition:

Set @ to 0 if RESET equals 0, CH RDY equais 1 and PW STROBE equals 1. Set Q to
1 otherwise.

If you are a logic designer, you may be deeply troubled by the } TIMING
blithe way in which we simply replace edge triggering with | AND LOGIC
level triggering. We can do this within a microcomputer | SEQUENCE
system because microcomputer programming gives us an ex-
tra degree of freedom, as compared with digital logic design: The order in which
you stuff logic components into a PC card has nothing to do with the sequence in
which logical events occur. Logic sequence is going to be controlled by edge and
level triggering. But the order in which you write assembly language instructions
is the order in which the instructions will be executed.

To drive this point home, lock at the following flowchart which represents the state definition for
flip-flop FFA:

Set 8 =1

Y

Losd 1/O Port 8
into Accumulator A

=

Isolate bit 1
(CH RDY), bit 5
(PW STROBE) and
bit 6 (RESET)
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Again each rectangular box represents a data movement or manipulation operation, and each
diamond represents logic which tests the condition of a status flag.

The order in which you write down instructions is the order in which instructions will be ex-
ecuted. With regard to the flowchart above, this execution sequence is represented by the con-
tinuous line of downward pointing arrows. Special Jump-On-Condition instructions allow the nor-
mal sequence to be modified, as represented by the horizontal arrows emanating from the sides
of the diamonds. You can follow the arrows to the point where the Jump-On-Condition instruc-
tion takes you. ‘

We will now rewrite the flip-flop FFA simulation treating the fiip-filop and the
three CLR logic gates as a single transfer function.

Since RESET, CH RDY and PW STROBE are all connected to pins of 1/0O Port B, we load the con-
tents of 1/0 Port B into Accumulator A and isolate all three bits. Now there is only one combina-
tion of values that these three bits can have if a new print cycle is to begin. RESET must equal 0,
while CH RDY and PW STROBE both equal 1. We will therefore redraw our program flowchart as
follows: '

Load 1/0 Port B
into Accumulator A

]

Isolate bit 1 (CH RDY)
bit 5 {PW STROBE)
and bit 8 (RESET)
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Our instruction sequence condenses to the following few instructions:

SIMULATION OF FFA AND ASSOCIATED LOGIC
LDA A $E0O1 INITIALLY SET BIT 0 OF I/O PORT D TO 1
ORA A #1
STA A #S$E0O1

LOAD 1/0 PORT B CONTENTS INTO ACCUMULATOR A

AND ISOLATE BITS 1. 5 AND 6 FOR CH RDY.

PW STROBE AND RESET, RESPECTIVELY

L10 LDA A 8COO1 INPUT 1/O PORT B TO ACCUMULATOR A
AND A #862 ISOLATE BITS 6, 5 AND 1
CMP A #$22 IF RESET=0, CH RDY=1 AND
BNE L10 PW STROBE=1, NEW PRINT CYCLE STARTS
LDA A $E0O1 OTHERWISE RETURN TO L10. START NEW
AND A HS$FE PRINT CYCLE BY SETTING I/O PORT D, BIT 0 TO O
STA A $ECO1

NEW PRINT CYCLE INSTRUCTION SEQUENCE STARTS HERE

The first three instructions in the above sequences simply set bit 0 of 1/0 Port D to 1. This is in
anticipation of a new print cycle not beginning. Four instructions, beginning with the instruction
labeled L10, are all that are needed to check for conditions which trigger the start of a new print
cycle. These four instructions execute in 12 clock cycles which, assuming a 1 microsecond clock,
means that PW STROBE must pulse high for at least 12 microseconds.

Providing RESET equals O while CH RDY and PW STROBE equal 1, a new print cycle must begin,
so the last three instructions set bit 0 of 1/O Port D to 0.

Our simulation of flip-flop FFA is complete. .

FLIP-FLOP FFBwy

The next device in our logic sequence is another 7474 flip-flop, marked FFByy in Figure 3-1; it is
just to the right of FFAw. This flip-flop may Be illustrated as follows:

FFA {Q) AND RETURN STROBE

!

PR
2 D {or S} Q 9
- 7474
FFB
FFE (Q) mmmeeed C ap—
CLR
NOT RESET

3-38



The folloWing function table describes FFB, as wired above, with its D input tied to O:

NOT _
_ ] RETURN RESET FFE (Q) _
‘FFA (Q) | STROBE PRESET {CLR) =CLOCK Q Q
0 0 0 1 X 1 0
0 1 0 0 X unstable
1 0 0
1 1 1 0 X 0 1
1 1 0—1 0 1

Chapter 2 provides the standard 7474 flip-flop function table; all we have done is remove the D
column, and the rows that show D = 1. We can also remove the CLR column, and all rows that
show CLR =0, since CLR is tied to NOT RESET. NOT RESET will always be 1 within a print cycle,

since FFA will not tumn on if NOT RESET is O.

The following simplified function table can now be used for FFB, assuming that

CLR (NOT RESET) will always be 1 and D will always be 0:

FFA (Q) AND
RETURN STROBE | FFE (Q) _
=PRESET =ctock | a| @
0 Oor 1 1]o
1 0—1 0 1

Let us take a look at the FFB PRESET input; it is FFA (GQ) AND RETURN STROBE.
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RETURN STROBE, recall, is a signal input by external logic to initiate a | PRINTWHEEL
special print cycle which moves the printwheel back to its position of | REPOSITIONING
visibility, ‘but does not fire the printhammer or print a character. We | PRINT CYCLE
call this a “Printwheel Repositioning” print cycle. In between print cy-
cles, therefore, RETURN STROBE must be input high.

Since RETURN STROBE is input low as an alternative method of initiating a print
cycle, when simulating FFB, we are going to have to consider RETURN STROBE
two ways:

1) As a contributor to the PRESET input.
2) As a signal which can initiate a print cycle, bypassing flip-flop FFA.
But first, let us define the condition of flip-flop FFB in between print cycles.

As we have just seen in our simulation of flip-flop FFA, the FFA @ output is high until the begin-
ning of a print cycle, when Q goes low; the FFA (o) output is therefore high in between print cy-
cles. By definition, RETURN STROBE s high in between print cycles, since RETURN STROBE low
is used to initiate a printwheel repositioning print cycle. Therefore, the FFB PRESET input
will be high in between print cycles:

RETURN STROBE ——— ] \ )
7408
FFA (Q) )

—

PRESET

7474

Since PRESET is input high in between print cycles, we are going to assume that at the beginning
of a print cycle FFB is off. that is, Q is output low and C Q is output high. This also assumes that at
some recent time PRESET was input high when the Q output of flip-flop FFE went from O to 1.
As you will see later on, this is indeed what happens at the end of every print cycle.

Coming into a new print cycle, therefore, FFB has a high PRESET input, with a-
high Q output and a low Q output. This flip-flop now acts as a switch: it is turned
on by PRESET being input low; it is subsequently turned off by a clock 0 to 1 tran-
sition occurring after PRESET has again gone high:

5

Switch Switch
“on' ot

The switch “on” illustrated above occurs under two circumstances:

1) Immediately after the onset of a new print cycle, when FFA outputs Q low, thus forcing
PRESET low.

2} When RETURN STROBE is input low signaling a printwheel repositioning print cycle.
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The switch “off” occurs when the FFE (Q) output makes a low to high transition while PRESET is
being input high; this occurs at the end of every print cycle.

SIMULATING FLIP-FLOP FFB

Bit 1 of 1/O Port D has been assigned to the Q output of flip- | SWITCHING
fiop FFB. The switch ‘‘on’’ illustrated above is therefore simul- ] BITS ON ‘
ated by the following three instructions:

LDA A $EOO1 LOAD FLIP-FLOP DATA BYTE
AND A - #$FD RESETBIT 1 TO O
STA A $EOO1 RESTORE FLIP-FLOP DATA BYTE

This is how the AND instruction works:

76543210 «amem=Bit No.
XXXXXXYX  Accumulator A contents
11111101 #SFD

XXXXXX0X  AND

SWITCHING
Subsequently the switch “off” will be simulated as follows: BITS OFF
LDA A $ECO1 LOAD FLIP-FLOP DATA BYTE
ORA A #2 SETBIT1TO 1
STA A $E001 RESTORE FLIP-FLOP DATA BYTE

This is how the ORA instruction works:

76543210 —=—B8it No.
XXXXXXYX  Accumulator A contents
00000010 #2

XXXXXX1X OR

We now encounter a situation where, with every best intention, we are not going
to be able to directly simulate our digital logic.

it is easy enough to draw one 7474 flip-flop in a logic diagran and connect its pins to suitable sig-
nals. Having done that, you no longer need to worry about when a signal does, or does not
change state. Unfortunately, an assembly language instruction sequence has no pins or signals;
assembly language will simulate events that are occurring at one instant in time
only. For flip-flop FFB, this may be illustrated as follows:

PRESET

CLOCK

ol
L~

TUSNSSS
L

' Digital logic
Microcomputer

program
logic
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Immediately after flip-flop FFA turns on to usher in a new print cycle, it outputs Q low, which in
turn switches flip-flop FFB on. FFB will not switch off until some point much later in the print cy-
cle, when FFE outputs Q high. We must therefore divide our simulation of FFB into two
parts:

1) At the beginning of our program we will simulate FFB switching on, since chronologically it is
the next event within the print cycle. .

2) Later on in the program, when we simulate FFE setting Q high, we must remember to simul-
ate FFB switching off.

But that is not all there is to the FFB simulation. We must also modify the instruction se-

quence that executes in between print cycles, so that RETURN STROBE input low

can be simulated initiating a printwheel repositioning print cycle.

With modified or new instructions shaded, this is how our program now looks:

“SIMULATION
LOAD 1/0 PORT B CONTENTS INTO ACCUMULATOR A AND ISOLATE BITS 1, 5 AND 6 FOR CH
RDY, PW STROBE AND RESET, RESPECTIVELY

LDA A $CO01 INPUT 1/0 PORT B TO ACCUMULATOR A

AND A #8362 ISOLATE BITS 6, 5 AND 1

CMP A #822 IF RESET=0, CH RDY=1 AND PW STROBE=1, START NEW
PRINT CYCLE

BNE L10 OTHERWISE RETURN TO L 10

LDA A S$E0O1 TO START A NEW PRINT CYCLE,

AND A - HSFE RESET I/O PORT DBIT O TO O

STA A $E001

NEW PRINT CYCLE SEQUENCE STARTS HERE

We are not qmto flmshed wuth our simulation of fllp-flop FFB Obsefve that the @
output from FFB goes to:

1} A 7411 AND gate, located approximately at coordinate B6.

2) A 7432 OR gate, located at A7.

The FFB (Q) output is not idie either, but we will look into it Iater.
-First consider the 7411 AND gate located at B6.

If you refer back to the description of output signals, you will notice that CH RDY was declared to
be high in between print cycles, but low during a print cycle.

In reality, CH RDY is output by the 7411 AND gate located at B6; therefore, in between print oy-
cles, all three inputs to this AND gate must be high. Our analysis of flip-flop FFB shows that its O
output will indeed be high in between print cycles, but for the moment you must take it on faith
that the -other two signals input to the AND gate will also be high in between print cycles.
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In any event, as soon as flip-flop FFB switches on, its G output goes low, which
means that no matter what the other two inputs to the 7411 AND gate do, CH
RDY wilt also be driven low. This change in the status of CH RDY is simulated by
adding the following instructions to our program:

TEST FOR RETURN STROBE LOW

L10 LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #$10 ISOLATE RETURN STROBE
BEQ FFB IF IT IS 0. JUMP TO FFB SIMULATION

SIMULATION OF FFA AND ASSOCIATED LOGIC
LOAD 1/0 PORT B CONTENTS INTO ACCUMULATOR A AND ISOLATE BITS 1, 5 AND 6
FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

LDA A $C001 INPUT I/O PORT B TO ACCUMULATOR A

AND A #862 ISOLATE BITS 6, 5 AND 1

CMP A #822 IF RESET=0, CH RDY =1 AND PW STROBE=1. START NEW
BNE L10 PRINT CYCLE. OTHERWISE RETURN TO L10

LDA A $E0O1 TO START A NEW PRINT CYCLE,

AND A #S$FE SETI/OPORTDBITOTO O

STA A $EOO1

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB LDA A $E0O! LOAD 1/0 PORT D INTO ACCUMULATOR A
AND A #S$FD RESET BIT 1 TO O
STA A $E0O1 RESTORE RESULT

gi R 5

We are now faced with an interesting problem. CH RDY becomes the D input to flip-flop FFA and
it contributes to the CLR input of FFA. What happens when CH RDY goes low in
response to FFB switching on?

Notice that PW STROBE only pulses high, therefore the OR gate located at coordinate B2 relies on
CH RDY being high in order to provide a high input to the following AND gate. This AND gate, in
turn, provides a high CLR input to flip-flop FFA. in other words, by the time flip-flop FFB tums
“on” and switches CH RDY low, PW STROBE will have already gone low; thus inputs PW

- STROBE and CH RDY will both be low. If you look back at flip-fiop FFA's CLR truth ta-
ble, you will find that when CH RDY and PW STROBE are both 0, CLR will always
be 0. -

Therefore flip-flop FFA will switch off:

CH ROY

FFA (@)

FFB (@)
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What does this mean? Our conclusion is that flip-flop FFA switches itself ‘‘on’’ at
the beginning of a print cycle, but only stays on long enough to switch flip-fiop
FFB ‘‘on’’. When FFB turns "‘on’’, it sets CH RDY low, and that turns flip-flop FFA
“off,

But here is the rub: if you look again at Figure 3-1, you will | TIMING
find that flip-flop FFA helps generate the J input to flip-flop JAND LOGIC
FFC, in addition to switching on flip-flop FFB. SEQUENCE

Now that events are serialized in time, we can go ahead and

simulate flip-flop FFA being turned ““off"’, so long as we remember, when simulat-
mg flip-flop FFC, that it receives Q low from flip-flop FFA. Bearing this precaution
in mind, we will extend our program as follows:

TEST FOR RETURN STROBE LOW

L10 LDA A $C001 INPUT |/O PORT B TO ACCUMULATOR A
AND A #810 ISOLATE RETURN STROBE
BEQ FFB IF T IS 0. JUMP TO FFB SIMULATION

SIMULATION OF FFA AND ASSOCIATED LOGIC
LOAD /O PORT B CONTENTS INTO' ACCUMULATOR A AND ISOLATE BITS 1, b
AND 6 FOR CH RDY, PW STROBE AND RESET. RESPECTIVELY

LDA A $C001 INPUT 1/O PORT B TO ACCUMULATOR A

AND A #$62 ISOLATE BITS 6,5 AND 1

CMP A #8$22 IF RESET=0, CH RDY=1 AND PW STROBE=1, START NEW
BNE L10 PRINT CYCLE. OTHERWISE RETURN TO L10

LDA A $EO0O1 TO START A NEW PRINT CYCLE,

AND A HSFE SETI/OPORTDBITOTO O

STA A $E001

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB LDA A S$E0O1  LOAD I/O PORT D INTO ACCUMULATOR A
AND A #$FD  RESETBIT 1700
STA A $E0O1  RESTORE RESULT
SIMULATE 7411 AND GATE SWITCHING CH RDY LOW
LDA A $CO01  INPUT I/O PORT B TO ACCUMULATOR A
AND A #$FD  RESETBIT 1700
RESULT

o STA A SCO01 RESTO

Now look at the OR gate located at co-ordinate A7. This gate receives the FFB Q output
as one of its inputs in order to generate PW REL. The other input to this OR gate is the AND of the
Q output from flip-flop FFF, plus the a output of flip-flop FFD. You will find out shortly that these
flip-flops are also turned “off” in between print cycles; they are turned on sequentially during the
course of the print cycie. At the point where FFB switches on, FFF will be switched off, which
means that its Q output will be low: thus, the AND gate located at A6 will output low. which
means that OR gate 26 has been relying on the high Q output from FFB in order to
output PW REL high:

. 26
B (@ PW REL
7432

1 %7 0

FFD (Q)
0

of 7408 ‘

FFF (Q)




Now, when FFB switcl;es “‘on’’ and outputs Q low, PW REL will also output low.
We must therefore modify our program to output bits 0 and 1 of 1/0 Port B low,
since both PW REL and CH RDY are going to be driven low. This is how our pro-
gram now looks:

TEST FOR RETURN STROBE LOW

L10 LDA A $COO01 INPUT (/0 PORT B TO ACCUMULATOR A
AND A #8$10 ISOLATE RETURN STROBE
BEQ FFB IF IT IS 0, JUMP TO FFB SIMULATION

SIMULATION OF FFA AND ASSOCIATED LOGIC
LOAD 1/0 PORT B CONTENTS INTO ACCUMULATOR A AND ISOLATE BITS 1. 6
AND 6 FOR CH RDY, PW STROBE AND RESET. RESPECTIVELY

LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A

AND A #862 ISOLATE BITS 6, 5 AND 1

CMP A #822 IF RESET =0, CH RDY=1 AND PW STROBE=1. START
BNE L10 NEW PRINT CYCLE. OTHERWISE RETURN TO L10
LDA A $EOO1 TO START A NEW PRINT CYCLE,

AND A HS$FE SETI/OPORTDBITOTO O

STA A $E001

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB LDA A $ECO1 LOAD /0 PORT D INTO ACCUMULATOR A
AND A #$FD RESET BIT 1 TO O
RESTORE RESULT

STA A $E001

SO AND

RESTORE RESUL

STA A $C001

CH RDY LOW TURNS FFA OFF. SET BIT 0 OF |/O PORT D TO 1
LDA A S$E001 LOAD {/0 PORT D TO ACCUMULATOR A
ORA A #1 SETBITOTO 1
STA A $EOO1 RESTORE RESULT

Do we have to do anything about the Q output from flip-flop FFB? If you look at
this output you will see that it ties directly to the RESET inputs of flip-flops FFC,
FFD, and FFE. It also becomes one of the inputs to the 565 multivibrator.

In fact, the FFB Q output is a clamping signal; when low, it shuts the four connected devices off:
when high, these four devices are switched on.

The FFB Q output will be taken into account when we simulate the four devices
connected to this signal. Therefore, our simulation of flip-flop FFB is done.
FLIP-FLOP FFC

This is the 74107 flip-flop at co-ordinate C2 in Figure 3-1. Since we are going to simulate four
74107 flip-fiops, you should refer back to Chapter 2 if you cannot immediately recall the charac-
teristics of this device.
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Let us isolate flip-flop FFC to see how it works:

FFF Q)
J—— >— Q-
RETURN STROBE 7408 J
74107

AND FFA (G)
CLOCK C FrC
FFF (Q) X Q-
R
FFB (Q)
INPUTS
R c J kia Q
L X X xjL H
H I s TR L Jstay the same
H 4\ H LI H L
H J e L HIL H
H A\H H invert

Ny

K become Q O
inputs outputs here
here

In between print cycles, the Q output of FFB, being low, switches flip-flop FFC
off. FFC, therefore, outputs Q low and Q high.

What happens when FFB is switched on depends on the J and K inputs arriving at FFC.

In between print cycles flip-flop FFF is switched off, therefore its Q output will be low. FFC
receives its K input from the FFF Q output, therefore when FFC switches on, its K input wili be 0.

The J input to FFC is generated as follows:

37
RETURN STROBE =]
7408 FFB PR (or S) input
FFA (0) ol
12
7408 J

FFF (@

FFF {Q) will be high, since FFF is switched off. The FFC J input will therefore be identical to the
FFB PR input, which we have already described.
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In summary, this is the signal sequence which turns FFC on:

CLOCK

pw STROBE L
FFA (D _\___,
/

FFB(Q)__’

FFC (Q)

When the FFB Q output gaes high, unclamping FFC, FFC waits until the FFA Q output goes high
again; then FFC will receive a high input at J and a low v input at K. On the trailing edge of the next
clock pulse input to FFC, Q will be output high and Q will be output low.

FFC waits for the FFA Q output to go high again, because while FFA is switched on, Q is output
low. While FFA {Q} {or RETURN STROBE) is puised low, FFC receives a low J input. So long as FFC
is receiving low J and K inputs, its outputs will not change — that is one of the properties of a
74107 flip-flop.

Flip-flop FFC will remain in its ““on’’ state until some later point in the print cycle
when flip-flop FFF switches on. At that time, flip-flop FFC will receive a high input
at K and a low input at J; and that will cause FFC to switch off.

SIMULATING FLIP-FLOP FFC

The simulation of flip-flop FFC is indeed straightforward; it involves these three
steps:

1) We must adjust our initialization instructions to ensure that flip-flop FFC is re-
ported as "‘off”’ in between print cycles.

2) The flip-flop FFB simulation must be followed immediately by instructions
which simulate flip-flop FFC turning on.

3) We must remember to simulate FFC turning off — but that will not happen un-
til some later point in the program.

Now the following modifications to the beginning of our program insure that flip-flop FFC is
simulated “'off” in between print cycles:

IN BETWEEN PRINT CYCLES PROGRAM EXECUTION

LDA A
ORA A

$E0O1
#3

INPUT 1/0 PORT D TO ACCUMULATOR A
SET BITS 1 AND O

L
TEST FOR RETURN STROBE LOW

L10 LDA A $C001 INPUT 1/O PORT B TO ACCUMULATOR A
AND A #8310 ISOLATE RETURN STROBE
BEQ FFB IF T IS 0. JUMP TO FFB SIMULATION
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All we have done is add the AND instruction to reset 1/0O Port D bit 2 to O:

Accumuiator A
Contents
76543210 -==Bit No.
LDA A $ECO1 XXXXXXXX
ORA A #3 00000011
XXXXXX11
AND A #$FB 11111011
XXXXXO0 11

Recall that /O Port D bit 2 has been assigned to flip-fiop FFC.

What about the time delay that separates flip-flops B and C ] TIMING AND
switching on? Recall that flip-flop FFC will not switch on until after flip- | LOGIC

flop FFB has switched flip-fiop FFA off. If this is a printwheel repositioning | SEQUENCE
print cycle, then FFC will not switch on untit RETURN STROBE is input
high again.

The simplicity or complexity of our timing problem depends entirely on logic
beyond Figure 3-1. There is nothing within the logic of Figure 3-1 that demands a time delay
of fixed duration or, for that matter, any time delay separating FFB and FFC switching on. We will
therefore pay no attention to the timing considerations associated with FFC switching on; rather
we will simply add simulation to the end of our program as follows:

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON

FFB LDA A $E0O1 LOAD 1/0 PORT D INTO ACCUMULATOR A
AND A #$FD RESET BIT 1 TO 0
STA A $E001 RESTORE RESULT

SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO 7432 OR GATE SWITCHES
PW REL LOW

LDA A $C001 INPUT I/O PORT B TO ACCUMULATOR A
AND A #S$FC RESET BITSOAND 1 TO O
STA A $C001 RESTORE RESULT

CH RDY LOW TURNS FFA OFF. SET BIT 0 OF 1/0 PORT D TO 1
LDA A $EO0O1 LOAD I/0 PORT D TO ACCUMULATOR A
ORA A  #1 SETBITOTO t
STA A S$E0O1 RESTORE RESULT

If you are beginning to think like a programmer, you will detect an oppor- | PROGRAMS
tunity for economy in the simulation of flip-flop FFC switching on. Ob- § MADE
serve that the three instructions directly above are ailso ] SHORTER
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setting a bit of 1/0 Port D to 1. This generates the following sequence of events:

Input to Accumulator A - Input to Accumulator A
LDA A $E0O1 XXXXXXXXE LDA A S$E0O1 XXXXXXX 1
ORA A i1 00000001 ORA A #4 00000100

STA A SEOO1 (XXXXXXX1 STA A $EOO1 (XXXXX1X1

Output to I/O QOutput to 1/0
Port D Port D

We can combine the two operations as follows:

LDA A $EOO1 XXXXXXXX
ORA A #5 00000101
XXXXX1X1

The instructions marked (B) now disappear, and are replaced by these modifica-
tions, marked @

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON
FFB LDA A $E001 LOAD i/0 PORT D INTO ACCUMULATOR A
AND A #$FD - RESETBIT1TOO
STA A $EOO1 RESTORE RESULT
SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO 7432 OR GATE SWITCHES

PW REL LOW
LDA A $C001 INPUT |/O PORT B TO ACCUMULATOR A
AND A #S$FC RESET BITS 0 AND 1 TO 0
STA A $C001 RESTORE RESULT

CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/O PORT D TO 1

$E0O1 LOAD 1/0 PORT D TO ACCUMULATOR A

Our simulation of flip-flop FFC is now complete.

But before we continue, there is another programming economy § ACCUMULATOR
worth exploring. I/0 Port D outputs signals only, yet we load I/0 Port | EFFECTIVE

D contents into Accumulator A prior to every signal level change. If | UTILIZATION
we load 1/0 Port D contents into Accumulator B, and use
Accumulator B in no other way, then we can eliminate all instructions that load
1/0 Port D contents into Accumuiator B — except for the first such instruction.
Since Accumulator B now serves as a buffer for 1/0 Port D, it will always have the same contents
as 1/0 Port D; so why waste time loading identical data into Accumulator B?
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Our program loses three instructions and changes as follows:

IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
INITIALLY SET /O PORTDBIT 2 TO 0, BITS 1 ANDO TO 1

; -
T FOR RETURN STROBE LOW

L10 LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #8310 ISOLATE RETURN STROBE
BEQ FFB IF IT IS 0, JUMP TO FFB SIMULATION

SIMULATION OF FFA AND ASSOCIATED LOGIC
LOAD 1/0 PORT B CONTENTS INTO ACCUMULATOR A AND ISOLATE BITS 1, 5 AND
6 FOR CH RDY, PW STROBE AND RESET. RESPECTIVELY

LDA A  $C001 INPUT I/O PORT B TO ACCUMULATOR A
AND A #862 ISOLATE BITS 6, 5 AND 1
CMP A #822 IF RESET=0, CH RDY=1 AND PW STROBE=1, START

BNE 110  NEW PRINT CYCLE. OTHERWISE RETURN TO L10

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON

i -

- .
SIMULATE 7411 AND GATE SWITCHING CH RDY LO\;L ALSO 7432 OR GATE
SWITCHES PW REL LOW ’

LDA A $CO01 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #$FC RESET BITS 0 AND 1 TO O
STA A $CO01 RESTORE RESULT

CH RDY LOW TURNS FFA OFF. SET BIT 0 OF /O PORT D TO 1
ALSO SIMULATE FFC TURNING ON. SET BIT 2 OF I/O PORT D TO 1

START RIBBON MOTION PULSE SIMULATION

Recall that early in a print cycle the START RIBBON MOTION output signal is
pulsed high to trigger external logic which advances the ribbon; thus when the
printhammer fires, fresh ribbon is in front of the character being printed. The
START RIBBON MOTION signal is generated by a 7411 AND gate (number 7) lo-
cated at co-ordinate C7 in Figure 3-1. This AND gate has three inputs:

1) HAMMER ENABLE FF. This is a signal input to identify a printwheel repositioning print cycle.
2} The Q output from flip-fiop FFC.
3) The Q output from fiip-flop FFD.

HAMMER kENABLE FF will be high unless a printwheel repositiong print cycle is in progress, in
which case the ribbon does not have to be moved. This signal, therefore, suppresses the START
RIBBON MOTION puilse.

In between print cycles, flip-fiops FFC and FFD are both switched off; therefore FFC (Q) is low and
FFD (Q) is high. The FFC (Q) output holds the START RIBBON MOTION signal low.
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When FFC switches on during a normal print cycle, all inputs to AND gate 7 will be
high., so START RIBBON MOTION will pulse high; it will stay high until flip-flop
FFD switches on, at which time FFD will output Q low; and that will drop START RIB-
BON MOTION puise low. Timing may be illustrated as follows:

HAMMER ENABLE FF :\
FFC (Q)
FFD (@)
START RIBBON MOTION

if you look at the timing diagram illustrated in Figure 3-2, you will see that the START RIBBON
MOTION output puise is extremely short. Therefore, instead of using flip-flop FFD to time the end
of the START RIBBON MOTION HIGH PULSE, we will simply execute instructions to turn
bit 3 of I/O Port B on, then immediately turn it off, as follows:

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON
FFB AND B #3$FD RESET BIT 1 TO 0
STA B $EOO1 RESTORE RESULT
SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO 7432 OR GATE
SWITCHES PW REL LOW

LDA A $C001 INPUT 1/O PORT B TO ACCUMULATOR A -
AND A #S$FC RESET BITSOAND 1 TO O
STA A $C001 RESTORE RESULT

CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/0 PORT D TO 1
ALSO SIMULATE FFC TURNING ON. SET BIT 2 OF I/O PORT D TO 1
ORA B #5 SETBITS2 ANDO TO 1
STA B $ECO1 RESTORE RESULT

still in Accumulator A following simulation of CH RDY and PW REL switching low.

We can calculate the START RIB MOTION pulse width by | PULSE WIDTH
adding the instruction execution times between pin 3 of I/0 | CALCULATION
Port B being set high, then being reset low:

Cycles Instruction

5 STA_A__$c001 OUTPUT TO 1/0 PORT B
2 AND A #S$F7 SET BIT 3 LOW
5 STA A $C001 OUTPUT TO I/O PORT B

Pulse width = 7 cycles, or 7 microseconds using a 1 microsecond clock.

What happens next? Our logic sequence may take us to flip-flop FFD, to the right
of FFC, or we may drop down to the 74121 one-shot number 36, just below and to
the right of FFC. ’
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One-shot 36 has its two A inputs tied to ground, which means that they will both input low. If
you look at the 74121 function table given in Chapter 2. you will find that in this configuration, a
one-shot output is triggered by a low-to-high transition at B. FFC (Q) provides this trigger. Any
other B input will keep this one-shot tumed off — which means that Q and Q will output low
and high, respectivgly, until much later in the print cycle, when FFC switches off;
that is when the FFC Q output makes a low-to-high transition.

Flip-flop FFD becomes the next device to be simulated.

FLIP-FLOP FFD

Flip-flop FFD receives its J input directly from the FFC (O) output; it receives its K input from the
FFC (Q) output. Remember, since cne-shot 36 is still switched off, its 0 output will be high; that
means AND gate 12 will simply allow the FFC {Q) output to propagate straight through, to
become the FFD (K) input.

Now. flip-flop FFD receives the same reset and clock signals as FFC, therefore flip-flop FFD
will simply switch on one clock cycle later than flip-flop FFC.
SIMULATING FLIP-FLOP FFD

The simulation of flip-flop FFD is almost identical to the simulation of flip-flop FFC;
the principal difference is that bit 3 of /0 Port D has been assigned to flip- flop FFD. Once again.
we are going to limit ourselves to switching flip-flop FFD on and ensuring that its setting in bet-
ween print cycles is correct.

Flip-flop FFD is switched off later in the print cycle; we must therefore remember to switch it off
later in the program.

Here are the necessary program modifications and additions:
IN BETWEEN PRINT CYCLES PROGRAM EXECUTION

INPUT (/0 PORT D TO ACCUMULATOR B
SET BITS 1 AND 0

$E001
#3

LDA B
ORA B

STA' B $E0O1 RETURN RESUL

TEST FOR RETURN STROBE LOW

L10 LDA A $CO01 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #%10 ISOLATE RETURN STROBE

BEQ FFB IF 1T IS 0, JUMP TO FFB SIMULATION

CH RDY L6W TURNS FFA OFF. SET BIT O OF /0O PORT D TO 1
ALSO SIMULATE FFC TURNING ON. SET BIT 2 OF /O PORT D TO 1

ORAB  #5 SETBITS 2 AND O TO 1

STA B $E001 RESTORE RESULT
PULSE START RIBBON MOTION HIGH

ORA A #8 SET BIT 3 HIGH

STA A $CO01  OUTPUT TO I/O PORT B

AND A #SF7 SET BIT 3 LOW

'STA A $CO01  OUTPUT TO I/O PORT B

Note that we do not have to load 1/0 Port D contents into Accumuilator B; the correct data is
already there.

If the program modifications and additions itlustrated above are not immediately obvious, com-
pare them to the flip-flop C simulation. Do not go on if you do not understand the flip-flop FFD
program changes.
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Just as the simulation of FFC switching on was absorbed into the | PROGRAMS
FFB_simuiation ( () ). so the simulation of FFD switching on | MADE
( @ ) can be absorbed as follows: SHORTER

NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON
FFB AND B HSFD RESET BIT 1 TO 0
STA' B $E0O1 RESTORE RESULT
SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO 7432 OR GATE
SWITCHES PW REL LOW
LDA A $COO1 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #SFC RESET BITS O AND 1 TO 0 )
STA A $C001 RESTORE RESULT
CH RDY LOW TURNS-FFA OFF. SET BIT O OF I/0 PORT D TO 1
AL . Ml el g

PULSE START RIBBON -MOTION HIGH

ORA A #8 SET BIT 3 HIGH
STA A $C001 OUTPUT TO 1/O PORT B
AND A #SF7 SET BIT 3 LOW
STA A $C001 OUTPUT TO I/O PORT B

If the simulations are combined { (F) ), flip-flops FFC and FFD will switch on at
exactly the same instant in time.

The logic in Figure 3-1 shows FFD switching on one clock pulse after FFC. If the
clock period is two microseconds, then there will be a two microsecond delay
between flip-flops FFD and FFC switching on. Both our simulations are wrong.

Does this matter? We honestly cannot tell with the informa- | TIMING AND
tion at hand. We do not know how external logic uses the FFC and FFD | LIMITS OF
outputs. If the switching time interval between these two flip- | SIMULATION
flops has to be very close to two microseconds, then our
simulation is not going to work. Either the two flip-flops must become part of “external
logic”, or some other means of simulating the eventual overall function must be found.

If external logic demands some switching time delay, but is not fussy about the
length of the time delay, then our simulation of flip-flop FFD is adequate.

It is quite possible that the logic in Figure 3-1 shows a switching time delay bet-
waeen flip-flops FFC and FFD only to define the leading and trailing edges of the
START RIBBON MOTION puise; but we have taken care of this high pulse by se-
quentially executing instructions that output 1, then O to bit 3 of 1/0 Port B. So far
as logic internal to Figure 3-1 is concerned, therefore, the need for a switching time delay bet-
ween flip-flops FFC and FFD disappears. This being the case, we will assume that external
logic has no need for a switching time delay between flip-flops FFC and FFD; and
we will adopt the shorter, combined simulation identified by

FLIP-FLOP FFE

The next device in our logic sequence is flip-flop FFE. The circuitry surrounding  this
flip-flop is almost identical to FFD.

The FFE (K) input is tied to the FFD (Q) output, switched by another component of AND gate 12.
The other input to this AND gate is the Q output of one-shot 49. One-shot 49 is wired in the
same way as one-shot 36, which we have just described.



The transition of flip-flop FFD's a output from O to 1 will occur when FFD is switched off; and this
is the transition which will trigger one-shot 49. Therefore, one-shot 49 will output Q high
until flip-flop FFD is switched off, which means that when FFD switches on, its Q
output will propagate straight through the AND gate connecting it to the FFE (K)
. input:

D (@) —
7408 FFE (K)
PW READY ENABLE (Q) =t
High level propagates 0 to 1 transition switches That forces FFE (K)
FFD (@) "as is’, PW READY ENABLE {Q) low, to be Iow\
FFD {Q)
PW READY
ENABLE (G)
FFE (K} | / }
4 .
| Transmit FFD (Q) | Output FFE (K)
' unaltered ' low
| |
| l

The unique feature of flip-flop FFE is the way in which its J input is generated. This
input is the AND of the FFD (Q) output and input signal FFl. Now, the Q output of FFD will go high
as soon as FFD switches on; but FFl is input low from the beginning of the print cycle
until the printwheel has correctly positioned itself. (We described the function of this
input signal earlier in the chapter.) The timing associated with FFl may be illustrated as
follows:

2
3
"]
j

FIAMMER < |
PULSE | ] | g ] ]
| Variable 1 Fixed i i Fixed 1
1 Move to place ' Printwheel Variable Fixed l Final l
' petal in front i settling Hammer pulse 3 Hammer retum ' movements |
of hammer time width "¢ and settling time | delay
Start of | ! ! | | YEnd of
print e Print cycle time interval ao-| print
Start Ribbon
ribbon movement
movement complete
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So long as FFlis low, flip-flop FFE will receive a low J input; low J and K inputs, you will recal,
hoid the-Q outputs of a 74107 flip-flop in their prior condition. Thus input signal FFl has been
used to create the first time delay of the print cycle: a variable time delay needed
to move the required printwheel petal in front of the printhammer. Simulating this
time delay is simple enough; it may be illustrated as follows:

PULSE START RIBBON MOTION HIGH

ORA A #8 SET BIT 3 HIGH
STA A $C001 QUTPUT TO 1/0O PORT B
AND A #SF7 SET BIT 3 LOW

STA A $C001  -OUTPUT TO I/O PORT B

In order to generate the initial time delay. we simply execute a continuous
program loop which inputs the contents of 1/0 Port A to Accumulator A. TIME DELAY

Remember, we have reserved Accumulator B to ‘hold the current bit OF VARIABLE
values for 1/0 Port D; alt other data uses Accumulator A. Bit 7 of 170 Port LENGTH

A has been assigned to input signal FFI. We test this bit by shifting it into | JUMP ON
the Carry status. If the Carry status then has a O content, FFl must still be | NO CARRY

low; so we stay within the loop. As soon as a 1 is shifted into the Carry
status, the BCC instruction will create a ““false” result; the next sequential instruction executes
and we are out of the time delay loop:

VLDC LDA A '$CO00
ROL A
BCC VLDC
Cc=1 AND B #3$DF

Branch if Carry Clear means branch if Carry is O {clear). “Branch” means ““do not go on
to the next sequential instruction”, instead go to VLDC.

Cc=0

The last four instructions of the FFE simulation show both outputs of this flip-flop
becoming output signals. This meets requirements of Figure 3-1. We therefore reset
bit 5 (it represents the Q output) and we set bit 4 (it represents the Q input).

The instruction sequence executed in between print cycles will have to be
modified to ensure that bit 5 has initially been set to 1, while bit 4 has: initially
been reset to 0. Here are the required modifications:

IN BETWEEN PRINT CYCLES PROGRAM EXECUTION

TEST FOR RETURN STROBE LOW

L10 LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #$10 ISOLATE RETURN STROBE
BEQ FFB IFIT IS 0. JUMP TO FFB SIMULATION



PW SETTLING ONE-SHOT

The PW SETTLING one-shot is the 74121 device at co-ordinate BS in Figure 3-1.
We have described this device in Chapter 2. With its two A inputs tied to ground, this one-shot
is triggered by a low-to-high transition at its B input. Since the B input is tied to
the FFE Q output, this transition occurs as soon as flip-flop FFE switches on.

The PW SETTLING one-shot has a two millisecond delay. This delay results from the
external capacitor/resistor combination marked C1 and R1. Therefore as soon as FFE switches

on, the PW SETTLING one-shot outputs Q low for two milliseconds:

FFE (Q)
PW
SETTUNG (@)
FA
PW STROBE
CH RDY } / J
| |
HAMMER T 1 A § ] i
PULSE | Variable | Fixed2ms | |  Fixed ]
Move to place |  Printwheel Variable ! Fixed | Final i
§ petal in front |  settiing Hammer pulse | Hammer return | movements |
st of of hammer §  time | width § and settiing time|  delay bend of
pnt | Print cycle time interval § print
cycle ‘ ‘ cycle
Start Ribbon
ribbon movement
movement complete
SIMULATING THE PW SETTLING ONE-SHOT
Simulating the one-shot time delay is simple enough and may | ONE-SHOT
be illustrated as follows: TIME DELAY
PULSE START RIBBON MOTION HIGH SIMULATION
ORA A #8 SET BIT 3 HIGH
STA A $CO01 OUTPUT TO I/0 PORT B
AND A H#SF7 SET BIT 3 LOW
STA A $CO01 OUTPUT TO /0O PORT B
TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY
vLbC DA A $C000 INPUT /0O PORT A TO ACCUMULA-
TOR A
ROL A SHIFT BIT 7 INTO CARRY
BCC VLDC STAY IN LOOP IF CARRY IS ZERO
AT END OF DELAY SIMULATE FFE SWITCHING ON
AND B #SDF RESET BIT 5
ORA B #$10 SET BIT 4
STA B $EQO1 QUTPUT TH

TH
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There are two instructions in the time delay loop: DEX and BNE; thus the total time delay can be
computed as follows:

250 x 8 + 3_=2003 microseconds

Initial Index/ Timm_—ﬁme to execute

register DEX and BNE initial LDX
contents instructions instruction

The above equation assumes a 1 microsecond clock period.

Notice that we are using the Index register which can hold a 16-bit initial value, even though the
initial Index register contents is 260 — which could fit in an 8-bit Accumulator. Why do we do
this? The reason is because the DEX instruction takes four machine cycles to execute, whereas a
DEC, which decrements the contents of one of the Accumulators, executes in two machine cy-
cles. Thus it would only require six machine cycles to execute the two-instruction loop were we
to decrement an Accumulator. In this instance the initial Accumulator contents would have to be
333 — and that is a number which would not fit within the 8 bits of the Accumulator.

FLIP-FLOP FFF

Once the PW SETTLING one-shot has timed out, we are ready to fire the
printhammer. The 555 multivibrator is actually going to generate the printhammer
firing pulse, but it is most important to ensure that the printhammer does not fire
while any part of the print or carriage mechanisms is moving. The 565 one-shot is
therefore triggered by flip-flop FFF which, in turn, is switched on by a J input that
is the AND of many safeguard signals. Let us isolate flip-flop FFF and examine its
inputs.

51

PFL REL e
PFR REL =—=q 7411 ‘
CA REL wmee 5
RIB LFT RDY 7411 N
FFA 18 '
PW SETTUING (Q) D—J T Qp—
FFE (Q) FFF

LK = c 14107

FFE @ K p Qf—

With its Clear (R} input tied to + 5V, flip-flop FFF has the following function table:

INPUTS OUTPUTS
J|lx]alja

0 [} No c.hange

1 0 1 0

¢} 1 0 1

1 1 Complement

e———
Inputs at Control outputs
positive clock at negative clock
edge edge
CLOCK



In between print cycles, FFE is “'off”", so the K input to FFF is high. The flip-flop FFF J input will be
low since the FFE {Q) output will be low, and FFE {(Q) is one contributor to FFF (J).

In between print cycles, therefore, flip-flop FFF is ‘‘off’’, since a low J input and a high
K input generate steady outputs of Q=0, Q=1; this is characteristic of a flip-flop in its "off”" condi-
tion.

Now when FFE switches on, it inputs a low K to FFF. So long as the J input is also
low, no change occurs. As soon as the seven signals contributing to FFF (J) are all
high, flip-flop FFF will receive a high J input; this will switch Hlip-flop FFF on —Q
is then output high and Q is output low.

SIMULATING FLIP-FLOP FFF

Coming out of the simulation of FFE, we know that FFE (Q) and FFE (Q) have cor-
rect levels for FFF to switch on.

Coming out of the simulation of the PW SETTLING one-shot, the one-shot Q out-
put must be high:

51

?

PFL REL ——,,

PFR REL =z 7411

CA REL ey 5

RIB LFT RDY 7411
FFA 38

PW SETTLING (Q) 7401 | FFF ()

FFE (Q)

FFE (D) 0 FFF (K)

All that is needed is to test the five remaining interlock signals; as soon as they
are all high, we simulate flip-flop FFF switching on. This is the instruction se-
quence:

TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY

VLDC = LDA A $C000 INPUT 1/0 PORT A TO ACCUMULATOR A
ROL A SHIFT BIT 7 INTO CARRY
BCC VLDC STAY IN LOOP IF CARRY IS ZERO
AT END OF DELAY SIMULATE FFE SWITCHING ON
AND B #S$DF " RESETBIT S
ORA B #3%10 SET BIT 4
STA B $E001 OUTPUT THE RESULT
SIMULATE 2 MS PW SETTLING TIME DELAY
LDX HEFA LOAD INITIAL TIME DELAY CONSTANT
PWS DEX DECREMENT INDEX REGISTER

BNE PWS REPECRF_MENT IF NOT ZER

By now, you should be able to understand instructions as they are added to the program.
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The first four instructions simply load the contents of 1/0 Port A into Accumulator A and test for
1s in the tow order five bits. Until such time as all five bits are 1, the program will remain in the
four-instruction loop that begins with LDA A $C000 and ends with BNE FFF.

When bits O through 4 all equal 1, the COM instruction changes ali these bits to O:

Accumulator A contents
FFF LDA A $C000 XXX11111

COM A XXX00000
AND A H#S1F 00011111

00000000 Zero status = 1
BNE FFF Return to FFF only if Zero status =0

ORA B #%$40  Continue here if Zero status is 1

The BNE instruction no longer deflects program execution back to FFF, rather, it allows the next
sequential instruction to be executed.

Observe that following the BNE FFF instruction we can perform an immediate OR upon the con-
tents of Accumulator B in order to set the bit of I/0O Port D which has been assigned to signal
FFF. This is because we have reserved Accumulator B to serve as a storage for 1/0 Port D; and
we use Accumulator B in no other way. Thus it requires just two instructions to simulate flip-fiop
FFF being switched on. The ORA instruction forces bit 6 of Accumulator B to 1, while leaving
other bits of Accumulator B with their previous assignments. The STA instruction outputs the
modified Accumulator B contents to 1/O Port D.

We can make the final modification to the instruction sequence which correctly"
sets flip-flop status in between print cycles. This is what we finish up with:

IN BETWEEN PRINT CYCLES PROGRAM EXECUTION

INPUT }/0 PORT D TO ACCUMULATOR B

What happens when flip-flop FFF switches on?

The FFF (Q) output goes up to pin 9 of AND gate 37 at co-ordinate A6. This is part of
the logic which contributes to the PW REL signal. However, the transition of the FFF (Q)
output from low-to-high is not significant, since the other input to AND gate 37 is the
FFD (Q) output which is currently low. The FFF {Q) output is connected to AND gate 37 to hold
PW REL low early in the print cycle when FFD (Q) is high.

The FFF Q and Q outputs contribute to the FFC J and K inputs. FFF (Q) is one contribu-
tor to AND gate 12, the output of which becomes the FFC {J) input. The other contributor to this
AND gate is the output of AND gate 37 at co-ordinate A3, which is constantly high by this time in
the print cycle; therefore, when the FFF {Q) output goes fow the FFC {J) input also goes low. The
K input to FFC is the FFF (Q) output. FFC will therefore switch off when K goes high and
that will not happen until FFF switches on.
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In our simulation, however, we are going to postpone FFC switching off until the
end of HAMMER PULSE. This is because the purpose of FFC switching off is to
trigger the PW RELEASE ENABLE one-shot, which creates the time delay needed
by the printhammer to settle back. Thus instead of using parallel delays:

i PW RELEASE ENABLE ONE-SHOT )
1 {Fixed Delay) |
)

L

1 [}

| HAMMER ! 1
" ARING | EFFECTIVE PW RELEASE )
" PULSE : ENABLE DELAY |
(Variable Delay) ) *

we will implement serial delays, which more immediately meet Iogié needs:

L L 1
r T |
| HAMMER 1 '
i FRING | PW RELEASE ENABLE |
I Puse l ONE-SHOT (Fixed Delay) |
) (Variablo Delay) | !

The hammer firing pulse is generated by the 555 one-shot. Therefore the 555 one-
shot provides the next event in our chronological sequence; it is triggered by a high-
_to-low transition at pin 2. This pin is created as follows:

FFC (Q)

PN 43
| 7408 7404 2

This is the sequence of events that must be simulated:

555 (@)
FFF (Q)
PW
SETTLING (Q)
FA
PW STROBE
CH RDY [ l l /
i 1
tm—
HAMMER | I '\ " | ]
PULSE l Variable Fixed 2 ms ' Fixed '
} Move toplace | Primwhee! Variable | Fixed N e |
' petal in front ' settling ' Hammer pulse ' Hammer retum ' movements
1 of hammer ' time l width | and settiing limel delay '
p"s,’:';:;e joen- ' ‘ Print cycle time interval > ! p’::d of
Start ribbon Ribbon movement
movement compiete
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THE 555 MULTIVIBRATOR

Compare the way in which the 56565 multivibrator has been wired in Figure 3-1 with the descrip-
tion of the multivibrator, as given in Chapter 2; you will see that flip-flop FFB switches the
multivibrator ‘‘off’’ in between print cycles by inputting a low reset at pin 4. The flip-
flop FFF (Q) output triggers the multivibrator, as we have just described.

The duration of the one-shot output pulse is controlled by in- | ONE-SHOT
puts H1 through H6. One of these six inputs will be true while the § VARIABLE
other five will be false; thus the multivibrator., once triggered, will outputa | PULSE
one-shot which can have a “high” pulse with one of six possible dura-
tions.

The 555 multivibrator one-shot output is eventually inverted to become a hammer
pulse output; however, for the hammer pulse output to occur, additional inputs to
AND gates 37 and 38, located at co-ordinates B8 and C7, respectively, must aiso
be high. We may represent the hammer puise logic as follows:

38

555 (Q) eum—

HAMMER ENABLE FF 7411

HAMMER DISABLE === /

37

HAMMER PULSE
7408

RESET

We will simply have to test the HAMMER ENABLE FF input before generating a HAMMER PULSE
output. .

The HAMMER DISABLE switch must be simulated.

RESET we can ignore, since RESET logic is being simulated in between print cycles.

SIMULATING MULTIVIBRATOR 555

The simulation of the 5565 multivibrator consists of the following logic sequence:

1) Determine if conditions have been satisfied for a 5565 one-shot output to be
transmitted as a HAMMER PULSE output.

2) Examine inputs H1 through H6. Based on these inputs, create one of six
possible time delays.

3) If conditions for a HAMMER PULSE output have been satisfied, transiate the
555 one-shot output into a HAMMER PULSE output.

Let us first look at the HAMMER PULSE output enabling logic. Testing the condition of HAMMER
ENABLE FF is simple enough, it has been assigned pin 6 of /0O Port A.

But there are no switches in assembly language programs; how are - [LOGIC EXCLUDED I

we going to simulate the hammer disable? We could assign the one  |FROM

remaining pin — pin 5 of 170 Port A to an input signal generated by | MICROCOMPUTER
an external switch. It would be just as simple to place this switch in
the path of HAMMER ENABLE FF as follows:

Pin 6 of
1/0 Port A

HAMMER ENABLE FF &
) HAMMER DISABLE
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We will therefore ignore the hammer disable switch and enable a hammer puise output providing
the HAMMER ENABLE FF input is high.

What about the six possible durations for the 5655 multivibrator output? We de-
scribed in Chapter 2 how a time delay can be created by loading a 16-bit value into the Index
register, then decrementing this register within a program loop, remaining in the program loop
until a decrement to zero occurs. Selecting one of six possible time delays is as simple
as selecting one of six possible initial time constants. We can now simulate our
555 multivibrator as follows:

SIMULATE 2 MS PW SETTLING TIME DELAY

LDX #HSFA LOAD INTIAL TIME DELAY CONSTANT
PWS DEX DECREMENT INDEX REGISTER
BNE PWS REDECREMENT IF NOT ZERO
SIMULATE FLIP-FLOP FFF SWITCHING ON
FFF LDA A  $C000 INPUT 1/O PORT A CONTENTS TO ACCUMULATOR A
COM A COMPLEMENT TO TEST FOR 1 BITS
AND A #81F ISOLATE BITS O THROUGH 4
BNE IF ANY BITS ARE 1, STAY IN LOOP

SET BIT 6 OF 1/0 PORT D TO 1

Compared to the other devices we have simulated thus far, the 565 multivibrator requires a lot of
simulation instructions. While it may look as though there is a lot to understand, the logic is. in
fact, quite simple; so let us take it one piece at a time.

Initially we test HAMMER ENABLE FF. HAMMER PULSE will be | SIGNAL
output low only if HAMMER ENABLE FF is high. The three instructions § ENABLE
which test the status of HAMMER ENABLE FF are:

LDA A $C000 INPUT 1/0 PORT A TO ACCUMULATOR A
AND A #8$40 ISOLATE BIT 6
BEQ HPO IF ZERO, BYPASS SETTING HAMMER PULSE LOW
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There are two aspects of these three instructions which need to be explained. First, there is the
logic being implemented. We are determining if conditions have been met for FAMMER PULSE
to be output fow. If conditions have been met, then HAMMER PULSE will be output low im-
mediately; if conditions have not been met, the BEQ HPO instruction branches around the instruc-

tion sequence that outputs HAMMER PULSE low:

LDPA A $CO00
D A #$40 Test hammer pulse output conditions
Q HPO
LPA A $CO01
D A #$FB If conditions have been met, output HAMMER PULSE low
STA A $C001
—ipe—mt-bX #DELY

We output HAMMER PULSE low before starting to compute | EVENT
the duration of the time pulse; why is this? The reason is to save | SEQUENCE
time. Instructions which compute the length of the time delay can be ex-
ecuted at the beginning of the time delay:
STA instruction execution
L —
—
.
IR . mton o |
| 1 time delay |
Set Execute instructions

HAMMER which compute time

PULSE delay length
low

We could just as easily have computed the time delay, then set HAMMER PULSE low; then ex-
ecuted the time delay; events would have occurred chronologically as follows:

STA instruction execution

l<——-Tom time M———»I

lf . l - I‘ Duration of
| | time delay
Compute Set
length of HAMMER
time delay PULSE
fow

Overlapping events in time makes a lot more sense.
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The actual method used to compute time the time delay needs a little explanation. At the end
of our program, there will be 12 bytes of memory in which six 16-bit constants are
stored. This is how the source program will look:

BNE TOLY

OUTPUT HAMMER PULSE HIGH AGAIN
LDA A $C001 INPUT /O PORT B TO ACCUMULATOR A
ORA A #4 SETBIT 2 TO 1

STA A $C001 OUTPUT RESULT

ORG DELY +2

FDB pPpPP H1 TIME DELAY
FDB gqaq H2 TIME DELAY
FDB mre H3 TIME DELAY
FDB .- - . ssss H4 TIME DELAY .
FDB e H5 TIME DELAY
FDB uuuu H6 TIME DELAY

The letters p. g. r. s, tand u have been used to represent hexadecimal values. The six time delays
can be represented by any numeric values, ranging from 0000, through FFFF .

The address of the first memory byte in which the first time delay is stored is
given by the expression DELY+2. Suppose this memory location happened to be
2138:

gy
Address
2138 PP
2139 PP
213A 99
2138 99
213C rr
213D rr
213€ S S
213F $S
2140 1K
2141 [
etc,

DELY is a label to which the value 2136 must be assigned. This assignment is made using an
Equate directive, which wouid appear at the beginning of the program as follows:

DELY EQU $2136
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Now we begin our computation of the time delay by loading the address DELY
into the Index register. Assume that the label DELY has the value 2136, as illustrated above.
After the LDX #DELY instruction has been executed, this is the situation:

DATA "’c":"::;y

Al MEMORY 1Y
8 PP ] 2138
X 2136 PP 2139
sP I 99 213A
——qq | 2138
rr 213C
rr 2130
Ss 2136
i ss 213F
LDX  #DELY Tt 2140
T 2141

The next instruction, LDA A H1H6, loads the contents of 1/O Port C into Accumulator A. The
memory address which causes the I/O port to select itself is represented by the label H1H6. This
memory address is E000,¢ thus H1H6 would have to be assigned the value E000,¢ using an
Equate directive at the beginning of the program, as follows:

DELY EQU $2136
H1HG EQU $EO0O

From our discussion of input signals, recall that of the six inputs H1 through H8. one signal will be
high while the other five signals are low. Therefore, after the LDA instruction has ex-
ecuted, Accumulator A will contain a 1 in one of the six low order bits:

Arbitrary
Memory
Address
2138
2139
213A
2138
213C
213D
213E
213F
2140
214

%xm)j

HE H5 H4 H3 H2 M1



We can compute the address of the required time delay by adding 2 [DATA

to the contents of the Index register a number of times given by the §MEMORY
position of the Accumulator A 1 bit. This may be illustrated as follows: JADDRESS
COMPUTATION

@ Shift Accumulator A contents right one bit, and into Carry:

DATA
A —£] Sl
8
X 2136 PP
sp

Arbitrary
Memory
Address
[ 2138
2139
213A
2138
213C
2130
2138
213F
2140
24

P m
HP1 LSR A
t
@ Add 2 to the Index register:
Arbitrary
DATA  Memory
A MEMORY _ Address
8 PP 2138
x| 2138 ‘PP 2139
SP 99 213A
qq 2138
rr 213C
re 213D
[ 213E
INX ss 213F
INX tt 2140
[13 2141

@ If Carry status is not 1, go back to @ ; otherwise Index register contains the correct ad-
dress.

The logic to make the required address addition is provided by these four instructions:

HP1 LSR A SHIFT ACCUMULATOR RIGHT WITH CARRY
INX INCREMENT INDEX. REGISTER BY 2
INX
BCC HP1 IF CARRY IS CLEAR, SHIFT-AND INCREMENT AGAIN

When the BCC instruction causes program execution to continue with the next sequential in-
struction, rather than branching back to HP1, the index register will contain the address of the in-
itial time delay constant’s first byte. This constant must be loaded. back into the Index register,
since we are going to use the long time delay instruction sequence; this instruction sequence
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decrements the Index register contents till it reaches a O value. The LDX 0.X instruction loads the
index register using direct, indexed addressing. This may be illustrated as follows:

Index register MEMORY
ox  0Xx . pPPP-2
pppp-1
gar PPPR
to Index rr pppp + 1
register

Thus the Index register has been loaded with the contents of the memory location it was just ad-
dressing (qq). plus the contents of the next memory byte {rr); the Index register now contains the
correct initial constant for a long time delay instruction loop.

The actual time delay is created by this instruction loop, which was described in
Chapter 2:

TOLY DEX
BNE TDLY

The last three instructions output HAMMER PULSE high, without making any test for
whether HAMMER PULSE was low. This logic will work since outputting HAMMER PULSE high,
if it was already high, will have no discernible effect. Under these circumstances, the time re-
quired 1o execute the last three instructions is simply wasted. Since it would take three instruc-
tions 1o test if HAMMER PULSE had been set low, the waste is justified.

Let us now give a little thought to the time it will take to TIME DELAY
compute the time delay. Execution times for relevant instructions | COMPUTATION
are listed as follows:

Cycles Instruction
4 LDA A $C001
2 AND A #$FB
5 STA A $C001 = HAMMER PULSE low starts here
3 HPO LDX #DELY
4 LDA A H1H6
2 HP LSR A These four instructions will be executed
2 ::))2 between 1 and 6 times. 14 cycles are in
4 BCC HP1 the toop
6 LDX 0.X
4 TOLY  DEX } These two instructions constitute the
4 BNE TOLY time delay. B cycles are in this loop
4 LDA A $C001
2 ORA A #4
5 STA A $CO01~es=HAMMER PULSE low ends here
57
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Assuming a 1 microsecond clock, the time taken to initiate and terminate the HAMMER PULSE
signal is given by:

57 - 8 - 14 + 14N microseconds

where N is a number between 1 and 6, representing the bit position of Accumulator A that is set
to 1. Thus initiation and termination time will vary between 49 microseconds and
119 microseconds. The shortest time applies to N=1(H1) whereas the longest time applies to
N=6 (H6).

These times must be subtracted from the delays subsequently generated. For ex-
ample, suppose H1 high requires the 555 10 output a one-shot signal which is high for 1.65
milliseconds (approximately); then a delay of 1.6 milliseconds. added to a set up time of 49
microseconds will suffice.

THE PW RELEASE ENABLE FLIP-FLOP

As soon as the 5655 one-shot output becomes low again, flip-flop FFC is simulated
switching off. When FFC switches off, its Q output makes a low-to-high transition
and this triggers the PW RELEASE ENABLE one-shot. This is a 74121 one-shot, iden-
tified by the 36 at approximately co-ordinate E2. The purpose of this one-shot is to allow the
printhammer time 1o settle back before any attempt is made to reposition the printwheel. This
was illustrated as the fixed, hammer return and settling time delay.

SIMULATING THE PW RELEASE ENABLE FLIP-FLOP

This is really a two-part simulation; first we must simulate TIME
flip-flop FFC switching off, then we must execute an appropri- DELAY
ate time delay. A 3 millisecond time delay is sufficient. Instruc-
tions which turn flip-flop FFC off will execute within the 3 millisecond time delay. The computed
time delay will therefore be a little less than 3 milliseconds. Here is the appropriate instruction se-
quence:

OUTPUT HAMMER PULSE HIGH AGAIN

LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #4 SETBIT 2 TO 1
STA A $C001 OUTPUT RESULT

s

Notice that the initial time constant has been identified as a decimal number, 374. The time cons-
tant could be specified as a hexadecimal number thus:

LDX #$176
The three instructions which precede the time delay loop (AND, STA and LDX) execute in 10

microseconds, and the two instructions in the delay loop execute in 8 microseconds. Therefore
the total delay time is given by the equation:

374 x 8 + 10 = 3002 microseconds

To be honest, the 3 millisecond time delay is not a critical number; 2.5 or 3.5 milliseconds would
probably do just as well, so our worrying about 10 microseconds is not meaningful in this ins-
tance. Nevertheless, in your next application, the duration of a time delay may be very critical;
then the timing considerations discussed above will be very meaningful.
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in order to determine what happens at the conclusion of the PW RELEASE time
delay, we must look at the FFC Q and @ outputs. The Q output connects to the START
RIBBON MOTION PULSE AND gate, and to the 555 one-shot trigger logic: in neither case does
the Q high-to-low transition have any effect. The START RIBBON MOTION puilse signal is already
low and the 555 one-shot is triggered by a high-to-low Q transition. The low-to-high transition
simply raises the trigger signal to a high level which requires no simulation:

44
[ P —
7408 7404 , 565 Trigger
£FF (Q) ——#

1

P
FFC (Q) \
FFF (Q) i ’
555 Trigger
This is the : | jl This is simply a reset
trigger slope | i
| |

The FFC (Q) output is ANDed with the PW RELEASE ENABLE 0 one-shot in order to generate the
FFD (K) input. The FFD {J} input comes directly from FFC (Q), therefore as soon as the PW
RELEASE ENABLE one-shot goes high again, FFD will receive a low J input and a
high K input:

FFC FFD
Q J
74107 12 74107
Q K
_ 17408
PW RELEASE ENABLE (@)
FFC (Q)
FFC (Q)
PW RELEASE ENABLE (Q)
FFD () |V
[] [
| J-_L_.
FFD (K) 1
FFD i FFD : FFD
o ! “no change” ! o

A low J and high K input to flip-flop FFD switches this flip-flop off; and that trig-
gers the PW READY ENABLE one-shot.



SIMULATING THE PW READY ENABLE ONE-SHOT

Logic associated with this one-shot is almost identical to the PW RELEASE ENABLE one-shot.
FFD switching off causes a low-to-high Q output, which triggers the PW READY ENABLE one-
shot.

We must now simulate a 2 millisecond time delay: otherwise the next instruction se-
quence is almost identical to the PW RELEASE ENABLE one-shot simulation and may be illustr-
ated as follows:

EXECUTE A 3 MILLISECOND TIME DELAY

LDX #374 LOAD INITIAL TIME CONSTANT INTO INDEX REGISTER
PWR1 DEX DECREMENT INDEX REGISTER
BNE PWR1 REDECREMENT IF NOT

. -
When FFD switches off, the PW REL output goes high again. Here is the PW REL crea-
tion logic:
_ 37
FFD (Q)
7408
FFF (Q) 26
- 7432 PW REL
FFB (Q)

FFB (Q) is still low at this time. But FFD (Q) and FFF (Q) are both high so AND gate 37 outputs a
high level which passes through OR gate 26 to set PW REL high.

These instructions set PW REL high:
EXECUTE A 2 MILLISECOND TIME DELAY

LDX #249 LOAD INITIAL TIME CONSTANT INTO INDEX REGISTER
PWR2 DEX DECREMENT INDEX REGISTER

BNE PWR2 REDECREMENT iF NOT ZERO

L STA e
Now the whole print cycle ends in a hurry. The flip-flop FFD Q and Q outputs become the

FFE J and K inputs. Q is first ANDed with FFI which, at this time. is constantly high; therefore the
moment FFD- switches off, FFE receives a low J input.

The FFE (K} input does not go high until the end of the PW READY ENABLE one-shot, since the
PW READY ENABLE Q output is ANDed with Q from FFD in order to generate FFE (K).

FFE switching off is our next chronological event.

FFE switching off, in turn, c causes FFB and FFF to switch off. FFB is switched off by the
low-to-high transition of FFE (Q) which becomes the FFB clock input. FFF switches off because
its J and K inputs are tied directly to the Q and Q outputs of FFE.
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Once FFB and FFF have switched off, all conditions have been met for CH RDY to
go high again, providing EOR DET is not signaling the end of ribbon:

EOR DET N
CH ROY

FF8 (@)
e e — J

EXECUTE A 2 MILLISECOND TIME DELAY

LDX #249 LOAD INITIAL TIME CONSTANT INTO INDEX REGISTER
PWR2  DEX DECREMENT INDEX REGISTER

BNE - PWR2 REDECREMENT IF NOT ZERO
SET PW REL HIGH

LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A

ORA A #1 SETBT O TO 1

STA A $C001

SIMULATION SUMMARY

The complete simulation program developed in this chapter is given in Figure 3-3.

We can conclude that an absolutely exact, one-for-one simulation of digital logic
using assembly language instructions within a microcomputer system is not feasi-
ble; but then it is not particularly desirable.

If you are not a digital logic designer, you will probably be very confused by the various signal
combinations required within the logic of Figure 3- 1. A great deal of what is going on has nothing
to do with the ultimate requirements of the Qume printer; rather, it reflects one logic designer's
internal logic implementation, aimed at insuring appropriate external signal sequences under all
conceivable circumstances.

If you are a logic designer, chances are you would have implemented the specific requirements
of the Qume printer interface in a totally different way: you may even be grumbling at this imple-
mentation.

The important point to bear in mind is that digital logic contains innumerable
subtleties which are specific to discrete logic devices. These subtleties are not
tied to the requirements of the overall implementation.

Now assembiy language has its own set of subtleties, which aiso have nothing to
do with the ultimate implementation; rather, they are aimed at making most effective use
of individual instructions or instruction sequences.

It should therefore come as no surprise that an exact duplication of digital logic, using assembly
language. is neither feasible nor desirable. So we will move away from digital logic and start treat-
ing a problem from a programming viewpoint.
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The principal difference between digital logic and assembly | ASSEMBLY
language is that assembly language treats events | LANGUAGE
chronologically, while digital logic segregates logic into func- | VERSUS
tional nodes. Thus, one logic device may be responsible for a number } DIGITAL

of events occurring at different times during any logic cycle; when transi- | LOGIC

ated into an assembly language program, each event becomes an isolated
instruction sequence.

in Figure 3-1 for example, the print cycle began with a cascade of flip-flops switching on and
ended with the same flip-flops switching off. In many cases a flip-flop switching on triggered one
event, while the same flip-flop switching off triggered an entirely different event. Within an as-
sembly language program, the two events will havé nothing in common. Each event will be
represented by a completely independent instruction sequence occurring at substantially different
parts of the program.

The other major difference between digital logic and assembly language is the
concept of timing. Within synchronous digital logic, as iltustrated in Figure 3-1, timing is bound
to clock signals and the need for clean signal interactions. Within an assembly language program,
timing results strictly from the sequence in which instructions are executed. Moreover, whereas
components in a digital logic circuit may switch and operate in paraliel; within an assembly
language program everything must occur serially.

Now the key concept to grasp from this chapter is that there is nothing innately
correct about digital logic as a means of implementing anything. The fact that we
have been unable to exactly duplicate digital logic using assembly language instructions does not
mean that assembly language is in any way inferior; it simply means that assembly language is
going to do the job in a different way. ’

Having spent our time in Chapter 3 drawing direct parallels between assembly language and
digital logic. we will now abandon any attempt to favor digital logic. Moving on to Chapter 4, the
logic illustrated in Figure 3-1 will be resimulated — but from the programmer’s point of view.

TEST FOR VALID END OF PRINT CYCLE

LOP1 LDA A  $COO1 INPUT 1/O PORT B CONTENTS TO ACCUMULATOR A
ROL A SHIFT BIT 7 INTO CARRY
BCC LOP1 -IF ZERO IN CARRY, STAY IN PRINT CYCLE

IN BETWEEN PRINT CYCLES PROGRAM EXECUTION
INITIALLY SET /O PORT DBITS 6, 4, 3AND 2 TO 0, BITS 5, 1 AND 0 TO 1

LDA B $EOO1 INPUT 1/O PORT D TO ACCUMULATOR B
ORA B #3%23 SETBITS 5, 1 ANDOTO 1
AND B #3A3 RESET BITS 6, 4, 3 AND 2 TO O
STA B $E0O1 RETURN RESULT

TEST FOR RETURN STROBE LOW

L10 LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #810 ISOLATE RETURN STROBE
BEQ FFB IF IT IS 0, JUMP TO FFB SIMULATION

SIMULATION OF FFA AND ASSOCIATED LOGIC
LOAD /O PORT B CONTENTS INTO ACCUMULATOR A AND ISOLATE BITS 1, 5 AND
6 FOR CH RDY, PW STROBE AND RESET, RESPECTIVELY

LDA A $CO01 INPUT I/0 PORT B TO ACCUMULATOR A

AND A #$62 ISOLATE BITS 6, 5 AND 1

CMP A #822 IF RESET=0, CH RDY=1 AND PW STROBE=1. START NEW
PRINT CYCLE

BNE L10 OTHERWISE RETURN TO L10 TO START A NEW
PRINT CYCLE

AND B HSFE SETI/OPORTDBITOTO O

STA B $EQO1

Figure 3-5. The Complete Simulation Program
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NEW PRINT CYCLE SEQUENCE STARTS HERE
SIMULATE FLIP-FLOP FFB SWITCHING ON
FFB AND B #3FD RESET BIT 1 TO 0
STA B $E001 RESTORE RESULT
SIMULATE 7411 AND GATE SWITCHING CH RDY LOW. ALSO 7432 OR GATE
SWITCHES PW REL LOW

LDA A $COO1 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #SFC RESET BITS O AND 1 TO O
STA A $C001 RESTORE RESULT

CH RDY LOW TURNS FFA OFF. SET BIT 0 OF I/0 PORT D TO 1 )
ALSO SIMULATE FFC AND FFD TURNING ON. SET BIT 2 OF I/0 PORT D TO 1

ORA B #30D SETBITS 3,2 ANDO TO 1
STA B S$EOO1 RESTORE RESULT
PULSE START RIBBON MOTION HIGH
ORA A #8 SET BIT 3 HIGH
STA A $C001 OUTPUT TO I/O PORT B
AND A #S$F7 SET BIT 3 LOW
STA A $C001 OUTPUT TO I/O PORT B
TEST VELOCITY DECODE INPUT TO CREATE PRINTWHEEL MOVE DELAY
VLDC LDA A $C0O00 INPUT 1/0 PORT A TO ACCUMULATOR A
ROL A SHIFT BIT 7 INTO CARRY -
8CC VLDC STAY IN LOOP IF CARRY IS ZERO
AT END OF DELAY SIMULATE FFE SWITCHING ON
AND B #3DF RESET BIT 6
ORA B #3%10 SET BIT 4
STA B $E0O1 OUTPUT THE RESULT
SIMULATE 2 MS PW SETTLING TIME DELAY
LDX HIFA LOAD INITIAL TIME DELAY CONSTANT
PWS DEX DECREMENT INDEX REGISTER
BNE PWS REDECREMENT IF NOT ZERO
SIMULATE FLIP-FLOP FFF SWITCHING ON
FFF LDA A $C000 INPUT 1/O PORT A CONTENTS TO ACCUMULATOR A
COM A COMPLEMENT TO TEST FOR 1 BITS
AND A #81F ISOLATE BITS O THROUGH 4
BNE FFF IF ANY BITS ARE 1, STAY IN LOOP
ORA B #340 SET BIT 6 OF 1/0 PORT D TO 1
STA B S$EQO1
TEST HAMMER ENABLE FF
LDA A $C000 INPUT 1/0 PORT A TO ACCUMULATOR A
AND A #$40 ISOLATE BIT 6
BEQ HPO {F ZERO. BYPASS SETTING HAMMER PULSE LOW

HAMMER ENABLE FF IS HIGH, SO HAMMER PULSE MUST BE OUTPUT LOW.
THEREFORE SET BIT 2 OF I/O PORT B TO 0

LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #8FB SETBIT2TOO ’
STA A $C001 OUTPUT RESULT

Figure 3-5. The Complete Simulation Program (Continued)
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COMPUTE TIME DELAY

HPO LDX #DELY LOAD DELAY BASE ADDRESS INTO INDEX REGISTER
LDA A H1HE LOAD SELECTOR INTO ACCUMULATOR A
HP1 LSR A SHIFT ACCUMULATOR RIGHT WITH CARRY
INX INCREMENT INDEX REGISTER BY 2
INX
BCC HP1 IF CARRY IS CLEAR SHIFT AND INCREMENT AGAIN
LDX 0.X LOAD 16-BIT DELAY COUNTER INTO INDEX REGISTER
TDLY  DEX EXECUTE TIME DELAY LOOP
BNE TDLY
OUTPUT HAMMER PULSE HIGH AGAIN
LDA A $CO01 INPUT 1/O PORT B TO ACCUMULATOR A
ORA A #4 SET BIT 2 TO 1
STA A $COO01 OUTPUT RESULT
SWITCH FLIP-FLOP FFC OFF
AND B #3FB SETBIT2T00
STA B S$EOO1
EXECUTE A 3 MILLISECOND TIME DELAY .
LDX #374 LOAD INITIAL TIME CONSTANT INTO INDEX REGISTER
PWR1  DEX DECREMENT INDEX REGISTER
BNE PWR1 REDECREMENT {F NOT ZERO
SWITCH FLIP-FLOP FFD OFF
AND 8 HSF7 SETBIT3TO0
STA B $EOO1 OUTPUT RESULT
EXECUTE A 2 MILLISECOND TIME DELAY
LDX #249 LOAD INITIAL TIME CONSTANT INTO INDEX REGISTER
PWR2 DEX DECREMENT INDEX REGISTER
BNE PWR2 REDECREMENT IF NOT ZERO -
SET PW REL HIGH .
LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #1 SETBITOTO 1
STA A $C001
TURN.OFF FLIP-FLOPS FFB, FFE AND FFF
AND B8 HSAF RESET BITS 4 AND 6 TO O
ORA B #822 SET BITS 5 AND 1 TO 1
STA B8 $E00! OUTPUT RESULT
SET CH RDY HIGH
LDA A $COO1 INPUT 1/O PORT B TO ACCUMULATOR A
ORA A #2 SETBT 1TO 1
STA A $C001 OUTPUT RESULT
BRANCH TO TEST FOR VALID END OF PRINT CYCLE
JMP LOP1
DELAY COUNT TABLE
ORG DELY +2
FDB PPPP H1.TIME DELAY
FDB QoQa H2 TIME DELAY
FDB RRRR H3 TIME DELAY
FDB SSSS H4 TIME DELAY
FDB ARRAE H5 TIME DELAY
FDB uuuu H6 TIME DELAY

The letters P, Q, R, S, T and U represent hexadecimal digits.

Figure 3-5. The Complete Simulation Program (Continued)
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Chapter 4
A SIMPLE PROGRAM

The problems associated with simulating digital logic, as we did in Chapter 3, can
be attributed to one fact: we tried to divide logic into a number of isolated
transfer functions, each of which corresponded to a digital logic device. We are now
going to abandon digital and combinatorial logic. pretend it does not exist and take another look
at Figures 3-1 and 3-2.

ASSEMBLY LANGUAGE TIMING VERSUS DIGITAL LOGIC
TIMING

Returning to Figure 3-1, simply ignore everything that exists TRANSFER
between the left and right hand margins of the figure. Whatre- | FUNCTION
mains is a set of input signals and a set of output signals. The
output signals are related to the input signals by a set of transfer functions which
have nothing to do with digital logic devices.

The transfer functions for Figure 3-1 are loosely represented by the timing
diagram in Figure 3-2. What does "'loosely represented” mean? 1t means that tim-
ing which relates to system requirements is mixed indiscriminately with timing
that simply reflects the needs of digital logic. We can abandon timing considera-
tions that simply reflect thé needs of digital logic. To be specific, the printhammer
must still be fired by outputting one of six solenoid pulses; the various movement
and settling delays must also be maintained. But we can abandon time delays that
separate one signal’s change of state from another simply to keep the digital logic
clean.

From the programmer’s point of view, therefore, the timing diagram illustrated in
Figure 4-1 is a perfectly valid substitution for the logic designer’s timing diagram
illustrated in Figure 3-2.

INPUT AND OUTPUT SIGNALS

Looking at Figure 4-1 you will see that we have abandoned a lot more than minor
timing delays; we have also abandoned most of our signals. But there is a simple
criterion for determining whether a signal is really necessary within a microcom-
puter system. This is the criterion: if the signal is uniquely associated with real
time events in logic external to the microcomputer system, then the signal must
remain. If the source and destination of the signal are within the microcomputer
system "‘black box"’, then the signal may be abandoned. Based on this criterion,
et us take another look at our input and output signals.

First consider the input signals.

RETURN STROBE and PW.STROBE are meaninglesggignals. As | INPUT
digital logic, these two signals are print cycle sequence initiators. Within SIGNALS
an assembly language program, jumping to the first instruction of a se-
quence is all the initiation you need. The fact that RETURN STROBE represents a print cycle dur-
ing which the printhammer is not fired is unimportant, because HAMMER ENABLE is used to ac-
tually suppress HAMMER PULSE.
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We will combine the various hammer firing inhibit signals into one hammer status
input. There are five such signals: PFL REL, RIB LIFT RDY. RIBBON ADVANCE, PFR REL and CA
REL. Each of these signals owes its origin to different logic external to Figure 3-1; in the digital
logic implementation. these signals are ANDed in order to create a master HAMMER INTERLOCK
signal. In our assembly language implementation we will wire-OR all of these external signals to a
single pin which becomes a HAMMER INTERLOCK status.

RESET will be maintained as a master RESET signal tied to the CPU RESET pin.
RESET can therefore be ignored by the assembly language program; however, recall that once
RESET is activated, program execution is going to resume with the instruction stored at the
memory location whose address is fetched from memory bytes FFFF,¢ and FFFE,.

EOR DET will be maintained. This is the signal which detects end of ribbon and prevents a
print cycle from ever ending, thus inhibiting further character printing after the ribbon is ex-
hausted. '

HAMMER ENABLE FF must be maintained:; it suppresses the printhammer firing pulse
during printwheel repositioning print cycles.

“The function performed by the six hammer pulse length signals, H1 through H8,
must remain, but the signals themselves will disappear. Instead of using six pins of an
1/0 port to identify hammer pulse width, we are going to create time delays directly from ASCII
character codes.

Let us now turn our attention to the output signals.

To begin with, we can eliminate all of the flip-flop outputs. The boundary of each time
interval within the print cycle is already identified by an existing signal changing state. if more
than one external logic event must be triggered by a transition from one time interval to the next,
there is nothing to stop the appropriate signal from being buffered externally, then used to trigger
numerous external logic events. Within the microcomputer program, there is no reason why
duplicate signals should be output simply to identify the transition from one print cycle time inter-
val to the next.

The remaining output signals are maintained. it is possible that some of these signals
would disappear if additional external logic were replaced by more assembly language. programs
within the microcomputer system; but given the bounds of the problem, as stated, the remaining
signals are needed in order to define the print cycle time intervals.

b ornrwies, | prmrwiest : character | prvrwheer | prrwies, ;
| posmonme | seTTLNG | PRNTING | reease |} peaoy OELAY |
= DELAY : DELAY : DELAY { i

VELOCITY DECODE
{FF1) \ '
START
RIBBON PULSE _rL
HAMMER )

INTERLOCK
PRINTWHEEL
RELEASE

PRINTWHEEL
READY (CH RDY)

1

Figure 4-1. Timing For Figure 3-1, From The Programmer’s Viewpoint
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Given our new, simplified set of signals, we can eliminate one PIN
MC6820 PIA: for the single remaining MC6820 PIA, 1/O ports and ASSIGNMENTS
pins are assigned as follows:

7 fe—e——C7
i
: H
MC8820 Port A |2 { | Eione-bin, ASCH
d to input ! character code
4 H
]
Q peatm— CO
7 HAMMER ENABLE
—_—
MC8820 Port B [ EOR DET
amed 1o input VELOCITY DECODE (FF1)
v 4 HAMMER INTERLOCK
START RIB MOTION PULSE
MC8820 Port B 2 HAMMER PULSE
assigned to output 1 PW READY
1] PW REL

MICROCOMPUTER DEVICE CONFIGURATION

We are now in a position to select the devices needed for program implementa-
tion. The selection is really quite straightforward; in addition to the CPU, we will
need one MC6820 Peripheral interface Adapter, some read-only memory for pro-
gram storage and some read/write memory for general data storage. The CPU, in
reality, consists of two devices: the CPU itself and a Clock chip. Combining these
devices, Figure 4-2 illustrates the microcomputer system which results. Now if you
don't immediately understand Figure 4-2 do not despair, there are only a few aspects of this

figure which are consequential to our immediate discussion. :

GENERAL DESIGN CONCEPTS

This is the most important concept to derive from Figure 4-2: when designing
logic by writing assembly language programs within a microcomputer system, the
program you write is going to be highly dependent upon the device configuration.
There is nothing unique about the way in which devices have been combined as illustrated in
Figure 4-2; alternative configurations would be equally viable. The assembly language programs
created, however, might differ markedly from one microcomputer configuration to the next and
this is a factor you should not lose sight of when writing microcomputer programs. Also, do not
be afraid of modifying the selected hardware configuration; that is precisely what we will do in
Chapter 5. Microcomputer device configuration and assembly language program-
ming interact strongly and should not be separated. These two steps should be within
one iterative loop. During the early stages of writing a microcomputer program, you should
assume that in the course of writing the assembly language program. you will discover features
of the hardware that can be improved; that in turn means the program will have to be rewritten.

This is a good point at which to bring up one of the reasons | HIGHER

why higher level languages are not desirable when you are | LEVEL
programming a microcomputer to replace digital logic. Higher LANGUAGES
level languages are problem-oriented. For example, it is hard to look at a
PL/M program statement and visualize the exact way in which data will be moved around a
microcomputer system in response to the statement's execution. It is even harder to relate PL/M
programs to exact device configurations. Assembly language, on the other hand, has a one-for-
one relationship with your hardware.
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MC6870A TWO-PHASE CLOCK

You can use a variety of different clock devices with an MC6800 microprocessor.
The principal difference between one device and the'next is the number of functions in addition
to the simple clock signals which the clock device provides. All of these clock devices are de-

scribed in detail in Chapter 6 of “An Introduction To Microcomputers: Volume I — Some Real
Products”.
r-bo— cso
MCMEB10A MCME830A
RAM 1024x8 Bit
cst ':;' AS fra—, cs3 "M ey
cs2

A0 fag— cs1
rDo- cs3
20

3
Do D7 R/W 07 | PO

GND

3
-~
Address Bus

+5V

=% \3

F

hdd b2

s
'€ §D7 ¢ D0 § RESET

ey i3 e E—
g CSO CA2
4+ 5] cs1 EaiR—d T X «
p— MC6870A 52 . H
RSO L Y] I4
R$1 ———— ) -
——
GND GND, MCE820 ::: s
PB7 a
IRQA el OB 2
1RQB e 1]
= f =
Vee -

Figure 4-2. MC6800 Microcomputer Configuration
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Figure 4-2 represents the simplest implementation of our microcomputer system
and its needs are met by the MC6870A two-phase clock device. This clock device
has an on-chip oscillator so that no external crystal is required. In addition to developing the ®1
and ®2 clock signals required by the MC6800 microprocessor, the MC6870A two-phase clock
develops a TTL level @2 clock. This additional ®2 clock is needed in order to synchronize logic
within the MC6820 Peripheral Interface Adapter. The E input to the Peripheral Interface Adapter is
connected directly to the ®2 (TTL) signal.

The MC6870A two-phase clock provides no other logic. For smali MC6800 microcomputer
systems, the MCB870A two-phase clock is the device of preference; since it requires no external
crystal, it is simple to use.

MC6820 PERIPHERAL INTERFACE ADAPTER (PIA)

Now let us turn our attention to the specific way in which devices have been incorporated into
Figure 4-2.

The MC6820 Peripheral Interface Adapter will respond to memory addresses as follows:

151413121110 9 8 76 5 4 3 2 1 0 ~s—BaNo
|IIIlOIXIXIXIXIXIXIXIXIXIXIXIYIYl Address Bus

J l\—-—_-\{f-/\t ——gs0
. f':"(c.‘

CS2
CS1
CS0

We will assume that all of the don’t care address bits are O; as a resuit | CHIP SELECT
we will use the four addresses C000,,, C001,,, C002,,, | IN SIMPLE
and C003,, to address the single MC6820 PIA in Figure SYSTEMS
4-2. The four addresees will access PIA locations as
follows:

C000,6: 1/0 Port A or Data Direction Register A
CO01,¢ /O Port B or Data Direction Register B
C002,6: Control Register A

COOB,G: Control Register B

If a microcomputer configuration contains a large” number of Peripheral Interface Adapters the
chip select logic may become a little more complex. If a PIA is to respond to four uniqgue memory
addresses, excluding all others, then.the chip select input must be created by combining all 16
address lines in some unique way.

Suppose the MC6820 PIA in Figure 4-2 must respond to CHIP SELECT
memory addresses C000,,, C001,,, C002,, and.  C003,, | IN LARGER
only. Now all of the don't care signal lines must input to logic which SYSTEMS
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is true only when these signal lines are all low. This is one way of creating chip select
logic: ’

A0 RSO
Al RSt
A2 ’

A5
A6

-
—
Py QS
:: ——) 7427
P R
AN _—i

A12

A13 d
t 7411 cs1

A4

A5

The CS1 and CSO signals can be created using a 7427 Triple 3-Input Positive-NOR gate and two
of the three gates in a 7411 Triple 3-Input Positive-AND gate. The CS2 signal comes from two of
the four gates in a 7432 Quadruple 2-Input Positive-OR gate.

Given the above select logic, the MC6820 will consider itself selected if and only if one of the four
specified addresses is output on the Address Bus.

The data direction and port utilization ilustrated for the MC6820 PIA in Figure 4-2
is not a hardware feature. At any time port utilization may be modified by writing
the appropriate control word into the Data Direction registers and Control register of the
MC6820.

The RESET logic needs comment. Instead of testing for a Reset condition | RESET
in between print cycles, as we did in Chapter 3, we are going tousea | LOGIC
hardware RESET signal, but in a microcomputer environment.

The RESET signal connected to the MC6820 PIA will clear all registers in | MC6820
the PIA. This will result in 1/0 ports being defined as inputs; control op- | RESET
tions resulting from all Os in Control register bits will be in effect. At some | LOGIC
point following a RESET we must execute instructions which load Data
Direction’ registers and Control registers appropriately.

The RESET signal being input to the MC6800 microprocessor causes the microprocessor to
reinitialize itself by loading into the Program Counter a 16-bit address which is stored in memory
locations FFFE,s and FFFF, This logic is described in Chapter 6 of “An Introduction To
Microcomputers: Volume It —— Some Real Products”.

Memory select logic illustrated in Figure 4-2 will satisfy RESET logic require-
ments.



ROM AND RAM MEMORY
An MCM6830A provides our microcomputer system with | ROM

1024 bytes of read-only memory. Four select lines, plus ten | ADDRESSES
address lines create ROM addresses as follows:

1514131211109 8 76 5 43 21 08N

If the don’t care bits are assumed equal to 0, then the ROM device will be selected by addresses
in the range EQQ0, through E3FF 4. If the don't care bits are assumed equal to 1 then the ROM
device will be selected by addresses in the range FCO00,¢ through FFFF 6.

As we have just seen, following a Reset, the MCE800 microprocessor will fetch its initialization
address from memory locations FFFE g and FFFF . These wilt represent the two highest memory
locations of the ROM device as implemented in Figure 4-2, providing the don't care bits are
assumed equal to 1.

Notice that under no circumstance will the ROM address space conflict with the MC6820 PIA; ad-
dress line A13 equal to O is a prerequisite for the PIA to be selected, while address line A13 must
be 1 for the ROM device to be selected.

The CSO chip select of the MCMG6830A device is con- § MEMORY DEVICE

nected to the R/W control. Thus, in order to complete ROM SELECT USING
device selection, a read operation must be specified. R/W CONTROL

Were we to assign a unique address space 10 the 1024 ROM bytes,

then the three don't care bits would have to have some specific value which contributes to the
device select logic. Since addresses FFFE,q and FFFF,q are required by RESET logic, our unique
address space must be based on the three don't care bits all having values of 1. For example, a
four input AND gate could be used to generate CS3 as follows:

|

1
1
1

>

cs3

m

>
|

Now the 1K bytes of ROM memory would be selected only by addresses in the range FCOO4¢
through FFFF 4.

An MCM6810A device provides our microcomputer system RAM
with 128 bytes of read/write memory. This memory device | pMEMORY
has six chip select pins which cause the RAM device to be | ADDRESS
selected by addresses in the range 0000, through 007F ;. We
have selected the first 128 addresses for our read/write memory, since
this is common practice in microcomputer systems. In fact. the MC6800 instruction set has direct
addressing instructions which are two bytes jong, rather than three bytes long. assuming that
read/write memory occupies the first 256 bytes of memory. It is for this reason that the two chip
select lines which expect high inputs receive inverted address data.
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In summary, addresses for the microcomputer system illustrated in Figure 4-2 will be interpreted
as follows:

MEMORY
ADDRESSES SELECT
0000, - 007F,5 . Read/Write memory
C000,6 - C003,¢ MC6820 registers
FCO0,¢ - FFFF,g Read-only memory

SYSTEM INITIALIZATION

Let us now turn our attention to system operations.

When the system is initialized, *‘in between print cycles’’ conditions must be re-
established immediately. These are the necessary steps:

1) If the printhammer has been fired, discontinue the fiing pulse and allow the printhammer
time to retract.

2} Move the printwheel back to its position of visibility.
3) Insure that output signals have their “in between print cycles” status.

We now arrive at another fundamental programming con- PROGRAM

cept: there is a ‘‘most efficient’’ sequence in which you § IMPLEMENTATION
should write assembly language source programs. We § SEQUENCE

could go ahead and write an initialization program to implement a
RESET, but that would require a lot of guessing. How do we know that the printhammer has
been fired? How do we move the printwheel back to its position of visibility? RESET is going to
abort a print cycle — therefore the print cycle program must. be created before we can- know
how to abort it.

Generally stated, you should start writing a program by implementing the most
important event in your logic, then you should work away from this beginning, im-
plementing dependent events.

Specifically. we are going to postpone creaﬁng a program to implement the RESET logic until the
print cycle program has been created. '
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1
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ready for
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Figure 4-3. First Attempt At Program Flowchart
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PROGRAM FLOWCHART

Let us now turn our attention to the functions which must be performed by the
microcomputer system. These functions are identified by the flowchart illustrated

in Figure 4-3. We will analyze this flowchart, step-by-step.

We are going to use the velocity decode input signal (FFI) to identify the start of a
new print cycle. In between print cycles, therefore, the program continuously inputs 1/0 Port B
contents to Accumulator A, testing bit 5. So long as this bit equals 1, a new print cycle has not

begun. As soon as this bit equals 0. a new print cycle is identified:

Output 0 to bits 0 and
1,//OPortBand 1 to
bit 3, /0 Port B

Qutput 0 to pin 3,
1/0 Port B

Output high pulse

for start ribbon
motion, set Printwheel
Release and Printwheel
Ready low

—_—— __..___‘*._____
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The first thing that happens within the new print cycle is that @ high START RIBBON MO-
TION pulse is output by sequentially writing a 1, then a 0 to bit 3 of /0 Port B.
Also, Os are output to bits 0 and 1 of 1/0 Port B, since PRINTWHEEL RELEASE and’
PRINTWHEEL READY must both be output low at the start of the print cycle:

Input /O Port B
to Accumulator A

V

Isolate bit & in between
(FF1) print cycles

Input 1/O Port B
to Accumulator A

Isolate bit 5 : P""m:'
PR pasitioning
delay

YES




The printwheel positioning delay is computed by the velocity decode signal FFI. So
long as this signal is low, the printwheel is still being positioned. We therefore go into a variable
delay loop. which in terms of program logic is the inverse of the "'in between print cycles” delay
loop. Once again, 1/0 Port B contents are input to Accumulator A and bit 5 is tested; however,
we stay in the delay loop until bit 5 is 1. At that time the printwheel positioning delay is over:

*YES
Output O to bits 0 and
11/0 Port B, and 1 to
bit 3, 1/O Port B Output high for
start ribbon motion, set
i Printwheel Release and

Printwheel Ready low

Output O to pin8,
/O Port B

Printwheet
Execute a 2 ms settling
delay delay

_____....__*__._...__._..._ —_



The printwheel positioning delay must be followed by a 2 millisecond printwheel
settling delay. The usual delay loop will be executed here:

Input I/O Port B
to Accumulator A

Pri
isolate bit 5 L
(FF1) positioning
delay

YES

Input I/O Port B
to Accumuistor A
bit 7 :'s:t if oov:nons
! ! hammer to fire

=

At the end of the printwheel settling delay. the printhammer is fired, providing the HAM-
MER INTERLOCK signal is low and HAMMER ENABLE is high. Recall that HAMMER
INTERLOCK is a single status bit, used by all external conditions that can prevent the hammer
from being fired. Any signal inputting a high level to this status pin will suppress printhammer fir-

ing.
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A printwheel repositioning print cycle is iden d by HAMMER ENABLE being in-
put low. This condition is detected by isolating bit 7 of /O Port B before testing the condition of
HAMMER INTERLOCK . if bit 7 of 1/0O Port B equals O, then the entire printhammer firing sequence
is skipped and we jump directly to the printwheel ready delay, which is the last time delay of the
print cycle:

Output 0 to bit 2
1/O Port B
{Hammer Pulse)
* Firs hammer
Input 1/O Port A to
Accumuiator A
1
Compute hammer
pulse time delay cor
printing time
" OuRtpUt 101 2 | delay
/0 Port B
{Hammer Pulse)
Execute a 3
ms delay Prin
‘ Release
Output | to Dit 0 Delay
1/O Port B
(PW REL)
Execute 8 2 ms Printwheel
delay Ready Delay




if HAMMER ENABLE is high, this is a character printing cycle, so the printhammer will
be fired, but only when HAMMER INTERLOCK is 0. So long as any signal wire-ORed to pin 4 of
1/0 Port B is high. the program will stay in an endless loop, continuously testing the status of this
1/0O port pin. When finally the 1/0 port pin equals 0, the program will advance to the printhammer
firing instruction sequence:

Output O to bit 2
1/0 Port B
{Hammer Pulse)

Fire hammer

Input 1/0 Port A to
Accumulator A




In order to fire the printhammer, a variable length firing pulse must be output. To
do this a 0 is-output to pin 2 of I/0 Port B, since this is the pin via which the hammer pulse is out-
put. Next the hammer pulse time delay is computed. We will describe how the hammer pulse
width is computed after completing a description of the flowchart. At the end of the printhammer
firing time delay, a 1 is output to bit 2 of I/0O Port B. This terminates the printhammer firing pulse:

i

{solate bit 4
{Hammer Interlock)

Test if conditions
are ready for
hammer to fire

Execute a 3
ms delay
* Release
Delay
Output 1 to bit 0
1/0 Port B
{PW REL)

R
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Now two settling delays follow. First there is a 3 millisecond printwheel release
delay, the termination of which is marked by a 1 being output to bit 0 of 1/0Q Port B. This causes

PW REL to output high:

Output 1 to bit 2 Character
1/0 Port B printing time
{Hammer Pulse} delay

Execute a 2 ms Printwheel
D st
delay Ready Delay

-

Next, a 2 millisecond printwheel ready delay is executed. The end of this delay and
the end of the print cycle is marked by a 1 output to bit 1 of 1/0 Port B; this sets CH
RDY high. We do not want to do this, however, if there is an end-of-ribbon status.

This status is identified by EOR DET being low.
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The program therefore inputs 1/0 Port B and isolates bit 6. via which EOR DET is input to the
microcomputer system. TF EOR DET equals 0. then the program stays in an endless loop, con-
tinuously retesting bit 6 of 1/O Port B; thus another print cycle cannot begin. Only if EOR DET is
detected equal 1o 1 will the print cycle terminate with CH RDY set to 1:

Execute a 3
ms delay
! Releaco
Delay
Dutput 1 to bit 0
1/0 Port B
{PW REL}

——TE=EE——

Execute a 2 ms Printwheel
. de!ny Ready Delay
—m s wr fom - - . - -

Now let us turn our attention to the method via which the |'PRINTHAMMER
appropriate printhammer firing delay is computed. in Figure [ FIRING DELAY
3-1, the appropriate printhammer firing delay was signaled by one of
six lines (H1 through H6) being input true. Some external logic had to generate the true line,
based on the nature of the character being printed; this kind of operation is easier to do
within a microcomputer program.

This is the method we will use to compute the appropriate printhammer firing
pulse time delay: every character to be printed is represented by one ASCH code data byte, as
illustrated in Appendix A.
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If we ignore the high order parity bit, then 128 possible bit combinations remain. If you look at the
ASCIl codes given in Appendix A, you will see that only character codes between 20,4 and 7A ¢
are significant. Therefore, only 5A 4 (or 90,0} code combinations need to be accounted for. Each
of these code combinations will have assigned to it one byte in a 90-byte table; and in this byte
will be stored a number between 1 and 6. This number will identify the time delay required by the
character. A 12-byte table will contain the six actual time delays associated with the six digits.
This scheme may be illustrated as follows:

ASCll DATA
Code Character MEMORY
20 blank n Index Table
21 ! n+1 :
292 — k] &1
23 # n+3
24 $ n+4
etc etc H
]
|
£ B2,
78 x n+58
79 y n+59
7A z n+5A
/
PP Jm = Delay Table
SIS
PP
S
qQq m+2
q9
rr m+4
rr
(3 m+6
ss
[1] m+8 R
tt
uu m+ A gl
uu

In the above illustration the letters “n” and “m”, to the right of the data memory, represent any
valid base memory addresses. For example, “'n” might represent FF80,¢ while “'m” represents
FFFO,6.

Consider two examp!

ASClt code 22, signifies the double quotes character (), which requires the shortest ime delay.
The data memory byte with address n + 2 corresponds to this ASCH code. 1 is stored in this data
memory byte. Therefore, the first time delay, represented by pppp. is the value which must be
loaded into the Index register before executing the long time delay loop which creates the
printhammer firing pulse for the ** character.

ASCIl code 77,4 represents “w’'. The data memory byte with address n + 57,4 corresponds to
this ASCIl code. Within this data memory byte the value 6 is stored, which means that the longest
printhammer firing delay is required for a “w'". Therefore, a value represented by uuuu will be
loaded into the Index register before executing the long time delay loop which creates the
printhammer firing pulse for the w character.

Figure 4-4 identifies the program steps via which the printhammer firing delay will
be computed.
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In order to better understand Figure 4-4, we will go down steps @ through (D for the case
of “w™.
@ The ASCIl representation of iower case w is input to Accumulator A: ~

From 1/0 Port A

A [ xinons)

Input ASCIl character Muitiply by 2
code from Port A -

Move to Index’ register

®@ &

Set bit 7to O
Input delay to
Subtract 20, Index register

Execute printhammer
firing delay

!

© @ © 06

Move to Index register

Input from
Index Table

I

Figure 4-4. Program Flowchart To Compute Printhammer
Firing Pulse Length

® ® ©

We must set the parity bit to 0. To do this Accumulator A contents are ANDed with $7F.

X1110111
A W 01111111
) 01110111

The index Table entry corresponding to lower case w is computed by adding the ASCIl
code, less 20,4 to the Index Table base address. We must subtract 20, because the first
1F codes have no ASCIl equivalent.

01110111
A m 11100000
01010111

Twos complement of 20,0

@ The Accumulator A contents are moved to the Index register:

1111111010101
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@ Using direct, indexed addressing we can now load the required time delay index from the
Index Table to Accumulator A. Assuming the Index Table base address is FF80,¢, this may
be illustrated as follows:

} DA A $80,X

® Since the actual delay is two bytes long, we are going to calculate the address of the ap-
propriate delay by adding twice the index to the Delay Table base address. First we
multiply the index, which is curently in Accumulator A, by 2:

N

@ The Accumulator A contents are again moved to the Index register:

@ Using direct, indexed addressing, the 16-bit delay constant is loaded into the Index
register. Assuming that the Delay Table base address is FFFQ,g, this may be illustrated as

foliows: PROGRAM
MEMORY
p—
_E%—- } LDX $F0,X
F .
DATA
MEMORY
tt FFFA
1t FFFB
Uy FFFC
11 FFFD

@ The Index register now contains the correct initial value for a long delay to be executed as
described in Chapter 2.
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Putting together the program flowcharts illustrated in Figures 4-3 and 4-4, we
generate the entire required program, as illustrated in Figure 4-5. This program is
now described, section-by-section.

PRINT CYCLE PROGRAM
IN BETWEEN PRINT CYCLES TEST FFI (BIT 5 OF 1/0 PORT B) FOR A 0 VALUE

START LDA A  $CO00! INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #3%20 ISOLATE BIT 6
BNE START IF NOT 0, RETURN TO START

INITIALIZE PRINT CYCLE. OUTPUT O TO BITS O AND 1 OF 1/0 PORT B. OUTPUT 1 TO BITS 2
AND 3 OF 1/0 PORT B.

LDA A #S$C LOAD MASK INTO ACCUMULATOR A
STA A $C001 OUTPUT TO I/O PORT B
OUTPUT O TO BIT 3 OF I/0 PORT B. THIS COMPLETES START RIBBON MOTION PULSE
LDA A #4 LOAD MASK INTO ACCUMULATOR A
STA A $COO01 OUTPUT TO 1/0 PORT B
TEST FOR END OF PRINTWHEEL POSITIONING. BIT 5 OF 1/0 PORT B (FF)) WILL BE 1
LOP1 LDA A  $CO001 INPUT 1/0O PORT B TO ACCUMULATOR A
AND A #820 ISOLATE BIT 5
BEQ LOP1 IF 0 RETURN TO LOP1
EXECUTE PRINTWHEEL SETTLING 2 MS DELAY
LDX #SFA LOAD INITIAL TIME DELAY CONSTANT
LOP2  DEX DECREMENT INDEX REGISTER
BNE LOP2 RE-DECREMENT IF NOT ZERO
TEST PRINTHAMMER FIRING CONDITIONS
LOP3 LDA A  $C001 INPUT 170 PORT B TO ACCUMULATOR A
ROL A MOVE BIT 7 INTO CARRY
BCC PRD IF CARRY IS ZERO BYPASS PRINTHAMMER FIRING
AND A #8%20 ISOLATE BIT 4 WHICH IS NOW BIT 5
BEQ LOP3 WAIT FOR NONZERO VALUE BEFORE FIRING
FIRE PRINTHAMMER
‘ LDA A $C001 SET HAMMER PULSE LOW. OUTPUT 0
AND A #$FB TO BIT 2 OF 1/0 PORT B
STA A $C001
LDA A $C000 INPUT ASCIl CHARACTER TO ACCUMULATOR A
AND A #STF MASK OUT HIGH ORDER BIT
SUB A #820 SUBTRACT $20
STA A SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
LDA A INDEXX  LOAD INDEX INTO ACCUMULATOR A
ASL A MULTIPLY BY 2
STA A SCRA+1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
LDX DELY.X LOAD DELAY CONSTANT INTO INDEX REGISTER
LOP4  DEX EXECUTE LONG DELAY
BNE LOP4
LDA A $C001 AT END OF DELAY OUTPUT 1 TO BIT 2
ORA A  #4 OF 1/0 PORT B. THIS SETS HAMMER PULSE HIGH

STA A $C001
EXECUTE A 3 MS PRINTWHEEL RELEASE TIME DELAY

LDX #374 LOAD INITIAL TIME DELAY CONSTANT
LOP5  DEX EXECUTE LONG TIME DELAY
B8NE LOPS
OQUTPUT 1 TO BIT O OF I/0 PORT B. THIS SETS-PW REL HIGH
LDA A $C001 INPUT 1/O PORT B TO ACCUMULATOR A
ORA A #1 SETBITOTO 1
STA A $C001 OUTPUT RESULT
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EXECUTE A 2 MS PRINTWHEEL READY DELAY

PRD LDX H#IFA LOAD INITIAL TIME DELAY
. LOP6  DEX DECREMENT INDEX REGISTER
BNE LOPG RE-DECREMENT IF NOT ZERO
TEST FOR EOR DET (BIT 6 OF /0 PORT B) EQUAL TO 0 AS A PREREQUISITE FOR ENDING THE
PRINT CYCLE
LOP7 LDA A $C001 INPUT /0 PORT B TO ACCUMULATOR A
AND A #8540 ISOLATE BIT 6
BEQ LOP7 RETURN AND RETEST IF O

AT END OF PRINT CYCLE SET BIT 1 OF /O PORTBTO 1
THIS SETS CH RDY HIGH

LDA A $CO01 INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #2 SETBIT 1 TO1

STA A $C001 OUTPUT RESULT

JMP START JUMP TO NEW PRINT CYCLE TEST

Figure 4-5. A Simple Print Cycle Instruction Sequence
Without Initialization Or Reset

In between print cycles the following three-instruction loop continuously tests
the status of 1/0 Port B, bit 5. The FFl signal is input to this pin. So long as this signal is input
high, a new print cycle cannot start. As soon as this signal is input low, the printwheel is identified
as being in motion — which means that a new print cycle is underway:

PRINT CYCLE PROGRAM ) -
N BETWEEN PRINT CYCLES TEST FFI (BIT 5 OF 1/0 PORT B) FOR A 0 VALUE
Enter INPUT 1/0 PORT B TO ACCUMULATOR A
Program ISOLATE BIT 5
IF NOT 0, RETURN TO START
INITIALIZE PRINT CYCLE. OUTPUT 0 TO BITS 0 AND 1 OF 1/O PORT B. OUTPUT 1 TO BITS 2
AND 3 OF |/O PORT :
LA A #SC LOAD MASK INTO ACCUMULATOR A

As soon as a new print cycle starts, the PRINTWHEEL RELEASE and PRINT-
WHEEL READY signals must be output low. Also, a high START RIBBON MOTION
pulse must be output so that when the printhammer fires, fresh ribbon is in front of the
character which is to be printed. These initial signal changes may be illustrated as follows:

INITIALIZE PRINT CYCLE. OUTPUT O TO BITS O AND 1 OF I/0 PORT B. OUTPUT 1 TO BITS 2
AND 3 OF {/0 PORT B.

LOAD MASK INTO ACCUMULATOR A
. OUTPUT TO 1/0 PORT B
OUTPUT 0 TO BIT 3 OF 1/0 PORT B. THIS COMPLETES START RIBBON MOTION PULSE
LOAD MASK INTO ACCUMULATOR A
OUTPUT TO 1/O PORT B

0]

1]

O]

Q
’srART RIBBON MOTION Mo
Msa2o | 2| HAMMER PuLSE IE 1
Port B |1 | prinTwheeL READY T 0|\ _i0
[ 0 | PRINTWHEEL RELEASE ok o
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In the above illustration, notice that I/O Port B, pin 2 has been forced to
output 1. This is the HAMMER PULSE pin, which goes low only for the
duration of the printhammer firing pulse. At this point in the print cycle,
this signal is high, so outputting 1 is harmiess.

The program now executes a variable length delay, during
which time the printwheel either moves until the appropriate
character petal is in front of the printhammer, or the print-
whesl moves back to its position of visibility. In either case exter-

| PROGRAMMED

SIGNAL PULSE

TIME DELAY
OF VARIABLE
LENGTH

nal logic inputs signal FFl low for the duration of the printwheel positioning delay. As soon as the
printwheel has been positioned, FFl is detected high — and program logic advances to the 2
millisecond printwheel settling delay. We have seen this three-instruction delay loop fre-

quently before:

TEST FOR "ND OF PRINTWHEEL POSITIONING. BIT 5 OF 1/0O PORT B (FFi) WILL BE 1

ISOLATE BIT 6

{LOP!
IF 0 RETURN TO LOP1

EXECUTE PR TWHEEL ETTLING 2 MS DELAY

Aj.hv'\

INPUT 1/0O PORT B TO ACCUMULATOR A

- LDX \‘ #$|'A {LOAD INITIAL TIME DELAY CONSTANT
LOP2 DEX % DECREMENT INDEX REGISTER
BNE R LOP& RE-DECREMENT IF NOT ZERO
TEST PRINTHAMMER F|F{ING CONDITIONS
Y
\ A

| Pricswheel\ | Printwheel i Character 1
' - N | Settling 1 Printing i
1 y N Delay |
. H \ |
| 1 ® | |
i 1 3 | 1
VELOCITY DECODE \
(FFA)
starT mmson ruise __f |
" ox =™\

HAMMER PULSE - \ ’

PRINTWHEEL _‘
RELEASE

PRINTWHEEL
READY (CH RDY)

Now the printhammer is ready to be fired. First we test the. condition of HAMMER ENABLE,
which has been connected to pin 7 of I/O Port B. If this signal is low, then we are in a printwheel
repositioning print cycle and the entire hammer firing instruction sequence is bypassed. Notice
that the condition of bit 7 is tested by shifting into the Carry status. If HAMMER ENABLE is
high, we pass this test. But HAMMER INTERLOCK must still be tested; this signal is

input to 1/0 Port 8, pin 4.
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The Shift instruction moved bit 4, (representing the HAMMER INTERLOCK) to bit 5, and bit 7
(representing HAMMER ENABLE) into the Carry status:

Accumulator

Carry 7654321 0-w-stNo
LOP3 LDA A $C001 X y
ROL A D : ELDG L LT
PRD [x] 2 MTIXTTIIT]
AND A #820

?

IOIOIXIOIOIOIOIOI

Having loaded the contents of /O Port B into Accumulator A once. we have serially tested the
condition of two bits. Each bit could have been tested individually via the following six instruc-
tions:

LDA A $COO INPUT 1/0 PORT B TO ACCUMULATOR A
"AND A #$80 ISOLATE BIT-7
BEQ PRD IF BIT 7 IS 0 BYPASS PRINTHAMMER FIRING
LOP3 LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #8$10 ISOLATE BIT 4
BEQ LOP3 WAIT FOR NONZERO VALUE BEFORE FIRING

If HAMMER ENABLE is detected low, execution branches to the instruction labeled
PRD. You will find this instruction close to the end of the program, at the beginning of the instruc-
tion sequence which executes a 2 millisecond PRINTWHEEL READY delay.

Note that the five-instruction sequence itlustrated in Figure 4-5 tests for HAMMER ENABLE low
within the loop that tests for HAMMER INTERLOCK high. Now HAMMER ENABLE will be either
high or low for the duration of the print cycle; it will not change level during the print cycle.
Therefore the fact that it is continuously being tested is redundant — it serves no purpose. but it
does no harm.

Next the printhammer is fired. The instruction sequence which causes the printhammer to
fire implements steps through . which we have already described. In order to make
the instruction sequence easier to understand, it is reproduced below with

labels @ through added:
FIRE PRINTHAMMER
LDA A  $C001 SET HAMMER PULSE LOW. OUTPUT O
AND A #S$FB TO BIT 2 OF 1/0 PORT B :
STA A $CO001
LDA A  $CO00 INPUT ASCIl CHARACTER TO ACCUMULATOR A
AND A #ST7F MASK OUT HIGH ORDER BIT
SUB A #$20 SUBTRACT $20
STA A SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
LDA A INDEXX  LOAD INDEX INTO ACCUMULATOR A
ASL A MULTIPLY BY 2
{STA A  SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
® LDX DELY.X LOAD DELAY CONSTANT INTO INDEX REGISTER
LOP4 {DEX EXECUTE LONG DELAY
0) BNE LOP4
LDA A $C001 AT END OF DELAY OUTPUT 1 TO BIT 2
ORA A #4 OF 1/O PORT B. THIS SETS HAMMER PULSE HIGH
STA A $C001

EXECUTE A 3 MS PRINTWHEEL RELEASE TIME DELAY
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Notice that in order to transfer the contents of Accumulator A to the Index register, we reserve
two bytes of memory as a scratch read/ write area:

STA A SCRA +1 Accumulator A

SCRA SCRA + 1
FF

LDX SCRA Index register

We assume that SCRA contains the value FF .

Why are we loading data into Accumulator A, then wransferring it to the Index register? The
reason is that data contributes to the address computation only if itis stored in the Index register.
While data resides in Accumulator A or Accumulator B. it cannot be used as part of the address
computation. So why did we not load the data into the Index register in the first place? There are
two reasons:

1} You cannot perform arithmetic operations upon the contents of the Index register; and we

need to perform such operations before using the data as part of the address computation.

2) The Index register loads two bytes of data at a time. But we are loading data from an
MC6820 i/0 port. Were we to load data into the Index register, we would get the contents
of 1/0 Port B and Control Register A as follows:

PORT A PORT B ) CONTROL A CONTROL B
$C000 $C001 ~ $C002 $C003
C J ] C 3] ]
L S
Index
Register

Therefore, we have to load the contents of the 1/0 port into an Accumulator, then move it to the
Index register.
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A 3 millisecond PRINTWHEEL RELEASE time delay is now executed and the end
of this time delay is marked by the PRINTWHEEL RELEASE signal being output
high. Next, the 2 millisecond PRINTWHEEL READY delay is executed:

EXECUTE A 3 MS PRINTWHEEL RELEASE TIME DELAY

LDX #374 LOAD INITIAL TIME DELAY CONSTANT
r——-{LOP5 : DEX EXECUTE LONG TIME DELAY
BNE "~ LOPS

OUTPUT 1 TO BIT 0 OF i/O PORT B. THIS SETS PW REL HIGH
LDA A $CO001 INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #1 SETBITOTO 1
STA A 8C001 OUTPUT RESULT

EXECUTE A 2 MS PRINTWHEEL READY DELAY

PRD LDX HEFA LOAD INITIAL TIME DELAY
LOPS DEX DECREMENT INDEX REGISTER
BNE LOP6 RE-DECREMENT IF .NOT ZERO
) ﬁl*\
' Release | Ready |
: Delay | Delay l
VELOCITY DECODE (FF) ! !
START RIBBON PULSE
"HAMMER INTERLOCK
FAMMER PULSE \ /
PRINTWHEEL RELEASE
PRINTWHEEL READY
(CH RDY) J

Before terminating the print cycle by outputting PRINTWHEEL READY {CH RDY}
hlgh the program must insure that the end of ribbon has not been reached. if EOR
DET is detected low the program stays in an endless loop until the ribbon has been changed;
then EOR DET will be input high by external logic.

When EOR DET is detected high. the final instructions of the program set PRINTWHEEL READY
high, then return to the beginning of the program and wait for the next print cycle.

PROGRAM LOGIC ERRORS

The program we have developed in this chapter contains a logic error which could
not occur in a digital logic implementation. The error is in the hammer pulse time
delay computation.

In a digital logic implementation, the ASCIl code for any character would be processed as
seven individual signals. These signals would be combined in some way to generate one of the
time delay signals H1 through H6. It does not matter what ASCII code combination is
input, one of the time delay signals H1 through H6 will be output high: if the signal
generation logic is unsound, a time delay signal will still be created, aithough it may be the wrong
signal.
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Now look at the assembly language program implementation. ] LIMIT

It is simple enough for us to look up the table in Appendix A | CHECKING
and see that valid ASCIl codes only cover the range 20,,
through 7A,,. That does not prevent a logic designer from using the microcom-
puter system we create in a special system that includes unusual characters,
represented by codes outside the normal ASCII range. Our program could output some
very strange results under these circumstances. Suppose the ASCli code 10,4 had been adopted
to represent a special character. Then, our attempt to look up the Index Table would load into Ac-

cumulator A whatever happened to be in memory byte n-10,¢.

There is no telling what could be in this memory byte; in all probability, this byte will be used to
store an instruction code, perhaps a two-hexadecimal-digit value. Suppose it contained 2A 4 the
next program step will double 2A ¢, add it to the base address of the Delay Table and access the
initial delay code from memory location m + 54,

Given the microcomputer configuration illustrated in Figure 4-2, this memory location could easily
be one of the duplicate addresses which spuriously access some memory byte, because we have
used disarmingly simple chip select logic. Had we used more complex chip select logic. then
chances are we would now be attempting to access a memory byte that did not exist. In the
former case, there is no telling what length of hammer pulse would be generated: in the latter
case, an extremely long hammer pulse would be generated, since we would retrieve 0 from a
non-existent memory location, and this value would be interpreted as the initial delay constant for
the long delay program ioop. The hammer pulse would be 524 milliseconds long:

65,636 x 8 = 524,288 microseconds

Time in microseconds to execute long delay loop
once.

Since initial 00004 value will be decremented and
then tested, a maximum delay loop results.

Now in order to avoid this problem we have two options:
1) Program logic can simply ignore any invalid ASCIHl code.

2) Program logic can generate a default hammer pulse width for invalid ASCH
codes.

It we ignore special characters. the conclusion is obvious: the microcomputer system cannot be
used in any application that requires special characters to be printed. Since the special character is
ignored, nothing will happen when such a character code is detected on input -— there will be no
hammer pulse. no carriage movement and no positioning.

Providing a default hammer pulse for special characters means that such characters will be
printed, but they may create uneveness in the density of the typed text.

You, as the logic designer, would have to specify your preference.

Either instruction sequence may be inserted into the existing program as follows:

STA A $Co01 -
LDA A $CO00 INPUT ASCH CHARACTER TO
ACCUMULATOR 4
Check for ———— g AND A #$7F MASK OUT HIGH ORDER BIT
valid ASCII SUB A #3820 SUBTRACT $20

STA /A SCRA+1 MOVE ACCUMULATOR A CONTENTS
TO INDEX REGISTER

codes inserted
here

LDX SCRA
LDA A INDEXX LOAD INDEX INTO ACCUMULATOR A
ASL A MULTIPLY BY 2

4-28



Here is the instruction sequence which ignores non-standard ASCll codes:

LDA A $C000  INPUT ASCH CHARACTER TO ACCUMULATOR A

AND A #S7F MASK OUT HIGH ORDER BIT
COMPARE ASCIi CODE WITH LOWEST LEGAL VALUE
) CMP A - #8520
BLT PRD IF CODE IS $1F OR LESS, BYPASS HAMMER FIRING

COMPARE ASCll CODE WITH HIGHEST LEGAL VALUE
CMP A H#$7A

BGT PRD IF CODE IS $78 OR GREATER, BYPASS HAMMER FIRING
ASCIl CODE IS VALID
SUB A #320 SUBTRACT $20

The second option, illustrated below, prints unknown characters with a median
density, using density code 3:

LDA A $CO00 INPUT ASCIt CHARACTER TO ACCUMULATOR A

AND A #S$7F MASK OUT HIGH ORDER BIT
COMPARE ASCll CODE WITH SMALLEST L EGAL VALUE
CMP A #8520
BGE oK IF CODE IS $20 OR MORE, TEST FOR HIGH LIMIT
CODE IS ILLEGAL, ASSUME A DENSITY OF 3
NOK LDA A  #6 LOAD TWICE THE DENSITY
JMP NEXT
COMPARE ASCIl CODE WITH LARGEST LEGAL VALUE
oK CMP A #S$7A
BGT NOK IF CODE IS $7B OR GREATER, ASSUME A DENSITY OF 3.
ASCIl CODE IS VALID
SuUB A #3%20 SUBTRACT $20 .
STA'A SCRA+1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
LDA A INDEX.X LOAD INDEX INTO ACCUMULATOR A
ASL A MULTIPLY BY 2

NEXT STA A SCRA+1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER

Both of the invalid ASCIl code instruction sequences are simplistic in their solu-
tion to the problem.

The only new feature introduced is the use of the Compare Immediate | COMPARE
{CMP A #) instruction. This instruction subtracts the immediate data in | IMMEDIATE
the operand from the contents of Accumulator A. The result of ‘the ‘BRANCH ON
subtraction is discarded, which means that the Accumulator contents are CONDITION
not altered; however, status flags are set to reflect the results of the
subtraction. We use a BLT {Branch if Less Than) instruction to identify a
negative result, which means that the immediate data in the operand was larger than the value in
Accumutator A. Similarly, a BGT (Branch if Greater Than} instruction identifies a value in the im-
mediate operand which is less than the contents of Accumulator A.
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In the second instruction sequence, if the value in the immediate § CONDITIONAL
operand is less than, or equat to the contents of Accumulator A, the BGE | INSTRUCTION
instruction causes a branch to a later instruction labeled OK. The actual | EXECUTION
program execution paths for the second instruction sequence may appear | PATHS

a trifle confusing to you if you are new to programming; we therefore il-
lustrate execution paths as follows:

LQA A $C000 INPUT ASCH CHARACTER TO ACCUMULATOR A
AlD A #S7F MASK OUT HIGH ORDER BIT
COMPARE RASCIl CODE WITH SMALLEST LEGAL VALUE
@ CyP A #3%20
£ oK IF CODE IS $20 OR MORE, TEST FOR HIGH LIMIT
CODE IS ILYEGAL. ASSUME A DENSITY OF 3
LOAD TWICE THE DENSITY

-l NEXT
COMPARE ASCIl CODE WITH L ARGEST LEGAL VALUE
S P A H#STA T .
BG+ PO IF CODE IS $7B OR GREATER, ASSUME A DENSITY OF 3
ASCIl CODH IS VALID
SyB A #$20 SUBTRACT $20
@S]A A SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LOX SCRA
@ LJA A INDEX.X LOAD INDEX INTO ACCUMULATOR A
AL A MULTIPLY BY 2
ExF—54A A SCRA+1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER

Execution paths, illustrated by circled letters above, can be interpreted as follows:

@ An ASCIl code passes the “lowest legal value™ test, but now must be tested for the “high-
est legal value”.

The ASCII code failed the “lowest legal value™ test. The program loads twice the default
density into the Accumulator and branches to the instruction sequence which accesses
the delay constant appropriate to this default density. This Jump is illustrated by

@ A character which has passed the “lowest legal ASCIt value” test is next checked for
“highest legal ASCll value”’; if it fails this test then program execution branches, as shown
by @ , to instructions which assume a default density of 3. @ . in fact, meets .

® An ASCIl character that passes both the “lowest legal value™ test and the "highest legal
value” test is processed via instruction path . Instructions in this path load the ap-
propriate density index into Accumulator A.

RESET AND INITIALIZATION

In order to complete our program, we must create the necessary Reset and In-
itialization instructions.

Reset instructions will be executed whenever RESET is input true to the microcomputer system.
Initialization instructions will be executed whenever the system is started up.

There is no reason why Reset and Initialization instruction sequences should coin-
cide; in many applications two separate and distinct instruction sequences may be needed. On
the other hand, it is quite common to use Reset in lieu of system initialization. This
means that when you first power up the system, RESET is pulsed true; and this starts the entire
microcomputer-based logic system.

In our case the Reset program is indeed simple. All we have to do is output Control
codes to the MC6820 Peripheral Interface Adapter, then set output signals to the “in between
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print cycles”” condition. In addition, we must set read/write memory location SCRA for use m the
printhammer firing sequence. Here is the necessary Initialization instruction sequence:

ORG $FCO0

SYSTEM RESET AND INITIALIZATION
FIRST OUTPUT CONTROL CODE TO /0 PORT A CONTROL REGISTER

CLR $C002
NEXT OUTPUT CONTROL CODE TO /O PORT B CONTROL REGISTER
CLR $C003

SET I/0 PORT A TO INPUTS ONLY BY OUTPUTTING O TO DATA
DIRECTION REGISTER
CLR $C000
SET /O PORT B TO OUTPUT VIA PINS 0 THROUGH 3 AND TO INPUT
VIA PINS 4 THROUGH 7
LDA A #$OF
STA A $C001
NOW OUTPUT CONTROL CODES THAT SELECT 1/0 PORTS A AND B
LDA A #4
STA A $C002
STA A $C003
SET HAMMER PULSE, PW READY AND PW REL HIGH
SET START RIBBON MOTION LOW
LDA A #7
STA A $C001
LOAD $FF INTO UPPER BYTE OF SCRATCH READ/WRITE AREA
CLR SCRA
coMm SCRA
This is how Control codes for each 1/0 port of the MC6820 PIA are initially constructed:
7654321 Q- BtNo
[o[ofofofo]oo]o]
TR Disable Interrup IRQAT or RQB1
Don't care since we are not using handshaking
b Sgloct Data Direction register instead of 1/0 Port
bt Disable interrupt requests IRQA2 or IRQB2

: Don't care since we are not using handshaking

Read-only

If the microcomputer system is Reset using the RESET input signal, then you will not have to out-
put O Control codes, nor will you have to output 0 to a Data Direction register; the Reset operation
will automatically zero all internal registers of an MC6820 PIA. If you are allowing for any type of
programmed restart that does not use the Reset control signal. then you will have to output O to
appropriate Control registers and Data Direction registers since you have no way of knowing what
might have been in these registers previously.

Recall that the addresses C000,¢ and COO 14 serve a double purpose. These addresses may ac-
cess an 1/0 port. or they may access the Data Direction register associated with the 1/O port. It is
the condition of the associated Control register. bit 2, which determines whether the /0O port or
Data Direction register will be selected. Thus after loading appropriate codes into the two Data
Direction registers, we must output Control codes with 1 in bit 2, to Control registers for both 1/0
Port A and 1/0O Port B.

The codes output to the Data Direction regisiers cause all pins of 1/O Port A to act as inputs.
Recall that O in any bit position of a Data Direction register causes the associated 1/0 port pin to
act as an input pin. A 1in any bit position causes the associated 1/0 port pin to act as an output
pin. Thus the four high order pins of 1/O Port B are assigned to handle data input; the four low
order pins are assigned to handle data output.
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A PROGRAM SUMMARY

First of all, it would be a good idea to put together the entire program, as
‘developed in this chapter. We will include the necessary Assembier directives.
This final program is illustrated in Figure 4-6.

Here is the final program memory map identifying the way in which the program il-
lustrated in Figure 4-6 uses ROM memory:

PROGRAM
MEMORY
FCO0
Object
Program
Storage
FFIF
Index FF80
Table FFEF
FFFO
Delays FFFF
Table B
INDEX EQU $80 EQUATE INDEX TABLE
DELY EQU $EE * EQUATE DELAY TABLE BASE ADDRESS-2
SCRA  EQU $0000 EQUATE SCRATCH AREA

ORG $FCO0
SYSTEM RESET AND INITIALIZATION
FIRST OUTPUT CONTROL CODE TO I/O PORT A CONTROL REGISTER

CLR $C002 )
NEXT OUTPUT CONTROL CODE TO I/0 PORT B CONTROL REGISTER
CLR $C003

SET I/0 PORT A TO INPUTS ONLY BY QUTPUTTING O TO DATA
DIRECTION REGISTER

CLR $C000
SET 1/0 PORT B TO OUTPUT VIA PINS 0 THROUGH 3 AND TO INPUT
VIA PINS 4 THROUGH 7

LDA A #S0F
STA A $C001
NOW OUTPUT CONTROL CODES THAT SELECT 1/0 PORTS A AND B
LDA A #4
STA A $C002
STA A $C003

SET HAMMER PULSE, PW READY AND PW REL HIGH
SET START RIBBON MOTION LOW

LDA A #7
STA A $C001
LOAD $FF INTO UPPER BYTE OF SCRATCH READ/WRITE AREA
CLR SRCA
CcomMm SCRA

PRINT CYCLE PROGRAM
IN BETWEEN PRINT CYCLES TEST FFI (BIT 5 OF 1/0 PORT B} FOR A 0 VALUE

START LDA A  $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #820 ISOLATE BIT 5
BNE START IF NOT 0, RETURN TO START
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INITIALIZE PRINT CYCLE. QUTPUT 0 TO BITS 0 AND 1 OF 1/O PORT B. OUTPUT 1
TO BITS 2 AND 3 OF I/O PORT B

LDA A #SC LOAD MASK INTO ACCUMULATOR A
STA A $C001 OUTPUT TO I/0 PORT B

OUTPUT O TO BIT 3 OF I/0 PORT B. THIS COMPLETES START RIBBON MOTION PULSE
LDA A  #4 LOAD MASK INTO ACCUMULATOR A

STA A $CO01 OUTPUT TO |/O PORT B
TEST FOR END OF PRINTWHEEL POSITIONING. BIT 5 OF 1/0 PORT B (FFI) WILL BE 1

LOP1 LDA A  $C001 INPUT I/O PORT B TO ACCUMULATOR A
AND A #820 ISOLATE BIT 6
BEQ LOP1 IF O RETURN TO LOP1
EXECUTE PRINTWHEEL SETTLING 2 MS DELAY
LDX #IFA LOAD INITIAL TIME DELAY CONSTANT
LOP2  DEX DECREMENT INDEX REGISTER
BNE LOP2 RE-DECREMENT iF NOT ZERO
TEST PRINTHAMMER FIRING CONDITIONS
LOP3 LDA A  $CO01 INPUT 1/0 PORT B TO ACCUMULATOR A
ROL MOVE BIT 7 INTO CARRY
BCC PRD IF CARRY S ZERO BYPASS PRINTHAMMER FIRING
AND A #8320 ISOLATE BIT 4 WHICH IS NOW BIT 5
BEQ LOP3 WAIT FOR NONZERO VALUE BEFORE FIRING
FIRE PRINTHAMMER
LDA A $CO001 SET HAMMER PULSE LOW. OUTPUT O
AND A #3FB TO BIT 2 OF 1/0 PORT B
STA A $C001
LDA A $C000 INPUT ASCIt CHARACTER TO ACCUMULATOR A
AND A #87F MASK OUT HIGH ORDER BIT
COMPARE ASCHt CODE WITH LOWEST LEGAL VALUE
CMP A #20
BLT PRD IF CODE IS $1F OR LESS, BYPASS HAMMER FIRING
COMPARE ASCIl CODE WITH HIGHEST LEGAL- VALUE
CMP A #S7A
BGT PRD IF CODE IS $7B OR GREATER. BYPASS HAMMER FIRING
ASCIl CODE 1S VALID
SUB A #3520 SUBTRACT $20
STA A SCRA+1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
LDA A INDEXX LOAD INDEX INTO ACCUMULATOR A
ASL A MULTIPLY BY 2
STA' A SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA
LDX DELY.X LOAD DELAY CONSTANT INTO INDEX REGISTER
LOP4  DEX EXECUTE LONG DELAY
BNE LOP4
LDA A sCOO AT END OF DELAY OUTPUT 1 TO BIT 2
ORA A #4 OF 1/0 PORT B. THIS SETS HAMMER PULSE HIGH
STA A $C001
EXECUTE A 3 MS PRINTWHEEL RELEASE TIME DELAY
LDX #374 LOAD INITIAL TIME DELAY CONSTANT
LOP5  DEX EXECUTE LONG TIME DELAY -
BNE LOPS
OUTPUT 1 TO BIT O OF 1/0 PORT B. THIS SETS PW REL HIGH
LDA A $CO0t INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #1 SETBITOTO1

STA A $CO01 OUTPUT RESULT
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EXECUTE A 2 MS PRINTWHEEL READY DELAY

PRD LDX H#HSFA LOAD INITIAL TIME DELAY
LOP6  DEX DECREMENT INDEX REGISTER
BNE LOP6 RE-DECREMENT IF NOT ZERO

TEST FOR EOR DET (BIT 6 OF I/O PORT B) EQUAL TO O AS A
PREREQUISITE FOR ENDING THE PRINT CYCLE

LOP7 LDA A $COO01 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #8340 ISOLATE BIT 6
BEQ LOP7 RETURN AND RETEST IF O

AT END OF PRINT CYCLE SET BIT 1 OF /O PORT B TO 1
THIS SETS PW RDY HIGH  ~

LDA A $CO001 INPUT |/O PORT B TO ACCUMULATOR A

ORA A #2 SETBIT 1 TO1

STA A $C001 OUTPUT RESULT

JMP START °  JUMP TO NEW PRINT CYCLE TEST
INDEX TABLE FOLLOWS HERE

ORG $FF80

Data representing 90 index entries follow here
- DELAYS TABLE FOLLOWS HERE

ORG $FFFO

Data representing 6 delays follow here

Figure 4-6. A Simple Print Cycle Program
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Chapter 5
A PROGRAMMER’'S PERSPECTIVE

The program we developed in Chapter 4 is considerably shorter and easier to
follow than the digital simulation of Chapter 3. While we came a long way in
Chapter 4 we still have a way to go. The program in Figure 4-6 treats the logic to
be implemented as a single transfer function, but it is not a well written program.

To the digital logic designer, one of the most confusing things about programming
is the trivial ease with which you can do the same thing in ten different ways.
Does this imply that some implementations are more efficient than others? Indeed
yes. To a great extent writing efficient programs is a talent, just as creating effi-
cient digital logic is a talent; but there are certain rules which, if followed, will at
least help you avoid obvious mistakes. In this chapter we are going to take the
program created in Chapter 4 and look at it a little more carefully.

SIMPLE PROGRAMMING EFFICIENCY

The first thing you should do, after writing a source program, is to go back over it,
looking for slementary ways in which you can cut out instructions.



EFFICIENT TABLE LOOKUPS

On average, you will find that it is possible to reduce a program to two-thirds of its
original length, simply by writing more efficient instruction sequences. In Figure
4-6, the most obvious example of sloppy programming involves the Index Table.
The program loads a value between 1 and 6 from an Index Table byte, then multiplies this value
by two before adding it to the base address of the Delay Table. Why not directly store twice
the index in the Index Table? That cuts out one instruction as follows:

ASCH DATA
Code Character MEMORY
20 blank FF80 Index Table
21 ! FF81
-9 06 Frog
23 # FF83
24 3 FF84
etc etc
” w Odr aa e
78 x FrD8
79 y FFD9
7A 2z FFDA
pp FFFQ <t Delay Table
PP
99 | frr2
qq
re FFF4
rr
S FFF6
SS
1t FFF8
tt
uy FFFA. -~
uy

ASCIl CODE IS VALID
SUB A #%20 SUBTRACT $20

STA A SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
LDX SCRA

STA A SCRA+ ’ \DEX REGISTER
LDX SCRA
LDX DELY.X LOAD DELAY CONSTANT iINTO INDEX REGISTER

ASL

instruction

dropped

In the instruction sequence above, notice that one instruction has been removed following the
shaded LDA instruction.
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There are still a number of additional ways in which we can make the Delay Table lookup more
efficient. Why subtract 20,, from the ASCII code, for example: If we are going to add the
ASCIHi code to a base address, there is nothing to stop us from equating the base address, repre-
sented by the symbol INDEX, to a value 20, less than the first real Index Table byte. Our instruc-
tion sequence now collapses further, as follows:

DATA
MEMORY
FFE0 ~wati=em INDEX
FF61
ASCIl
Code Character |
20 blank FF80 index Table
21 ! FF81
-22 96—t -rrer
23 # FF83
24 $ Fre4
etc etc
|
78 x FFD8
79 y FFD9
7A z FFDA
PP FFFO <t Delay Table
PP
99| FF2
qQq
rr FFF4
rr
$s FFF6
[
tt FFF8
tt
uy FFFA gl
[

INDEX EQU $60 . EQUATE INDEX TO TABLE BASE ADDRESS -$20

COMPARE ASCIl CODE WITH HIGHEST LEGAL VALUE

CMP A #$7A

BGT PRD IF CODE IS 7B OR GREATER, BYPASS HAMMER FIRING
ASCIl CODE IS INVALID

LDX SCRA
LDA A INDEX.X LOAD INDEX X2 INTO ACCUMULATOR A
STA A SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER

LDX SCRA

LDX DELY.X LOAD DELAY CONSTANT INTO INDEX REGISTER
SUB
instruction
dropped
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Okay, so INDEX is now being equated to 60, — which means that we no longer need to
subtract 20,4 from the ASCH code. We have eliminated the SUB instruction which was above the
shaded STA instruction.

Unfortunately there are no goiden rules which, if followed, will ensure that you always write the
shortest program possible. Once you have written a few programs, you will understand how in-
dividual instructions work; and that, in turn, generates efficiency. The purpose of the preceding
pages has been to demonstrate the difference between a compact program and a straightfor-
ward program. If your product is to be produced in high volume, it behooves you to spend the
time and money cutting down program size — then you may be able to eliminate some of your
ROM chips.

HARDWARE UTILIZATION

All computer programmers try to write efficient assembly language programs.
However, only microcomputer programmers must consider hardware utilization as
an integral contributor to programming efficiency.

Now we used the MC6820 Peripheral interface Adapter without handshaking or
interrupts, accessing port bits in the most obvious way. Let us explore some of
the alternatives.

HARDWARE-SPECIFIC INSTRUCTIONS

Observe that much of the time we are setting and resetting individual bits which
become input and output signals.

Each 1/0 port of an MC6820 PIA has one control signal which can be [MC6820 PIA
configured as an output control. These are the CA2 and CB2 control sig- JCONTROL
nals. You could generate two output signals using CA2 and }SIGNAL
CB2 as follows: OUTPUT

1) First output the appropriate Control code to Control
Registers A and B. Here is the required Control code:

76 543 21 Qe BitNo.

ofof1]1]x] 1]oJo] control Register aorB
Ny

Disable Interrupt Requests IRQA or IRQB

Don’t care since IRQA and IRQB disabled
=== Select |/O port rather than Data Direction register

Set CA2 or CB2 to X

Read-only locations

2) Subséquently output $34 to the appropriate Control register to reset CA2/CB2 low.
Output $3C to the appropriate Control register to set CA2/CB2 high.
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Suppose PW READY is assigned to CB2 and PW REL is assigned to CA2. We will use
Accumulator B to hold -appropriate Control codes. These are the program modifications which

result;

Figure 4-6 Program

NOW OUTPUT CONTROL CODES THAT
SELECT /0O PORTS A AND B

LDA A #4

STA A $C002

STA A $C003
SET HAMMER PULSE. PW READY AND
PW REL HIGH. SET START RIBBON
MOTION LOW

LDA A #7

STA A $C001

INITIALIZE PRINT CYCLE. OUTPUT O
TO BITS 0 AND 1 OF 1/O PORT B.
OUTPUT 1 TO BITS 2 AND 3 of I/0
PORT B

LDA A #SC

STA A $COO1
QUTPUT 0O TO BIT 3 OF I/O PORT B.
THIS COMPLETES START RIBEON
MOTION PULSE

LDA A #%4

STA A $C001

OUTPUT 1 TO BIT O OF i/O PORT B.
THIS SETS PW REL HIGH

LDA A $CO001

ORA A #1

STA A $C00t

AT END OF PRINT CYCLE SET BIT 1
OF /O PORT 2 7O 1. THIS SETS
CH RDY HIGH

LDA A $C001

ORA A #2
STA A $COO
JMP START

New Program

. NOW OUTRUT CONTROL CODES THAT
SELECT 1/0 PORTS A AND B, AND
SET PW READY AND PW REL HIGH

LDA B #33C
STA B $C002
STA B $C003

INITIALIZE PRINT CYCLE. SET CA2
AND CB2 LOW.
LDA B #$34
STA B $C002
STA B $C003
OUTPUT START RIBBON MOTION PULSE

LDA A #8C
STA A $C001
LDA A #84
STA A $C001

SET CA2 HIGH. THIS SETS PW REL
HIGH

LDA B #$3C

STA B $C002

1
SET CB2 HIGH. THIS SETS CH RDY
HIGH
STA B $C003
JMP START



Let us look at the way in which program logic has changed when going from instructions as il-
lustrated in Figure 4-6 to the new program.

In both cases three initial instructions are required to-load appropriate Control codes into 1/0 Port
A and B Control registers. In the new program however, PW READY and PW.REL are
simultaneously set high. This eliminates the subsequent need for two. instructions to initialize 1/0
Port B output signals. In the program of Figure 4-6, it is necessary to initially set PW READY -and
PW REL high; simultaneously, we gratuitously set HAMMER PULSE high and START RIBBON
MOTION low, even though these additional settings were not needed. Subsequent instructions
initialize these additional signals appropriately. Thus, two instructions are saved in the new pro-
gram.

The next point at which the new and old programs différ is when we initialize a print cycle by set-
ting PW READY and PW REL low. In the old program, this simply required loading Accumulator A
and outputting it to 1/0 Port B, which also set START RIBBON MOTION high. Two additional in-
structions are needed by the old program to reset START RIBBON MOTION low. In the new pro-
gram, three instructions are required in order to set PW READY and PW REL low. The first in-
struction modified the Control code which we are maintaining in Accumulator B; two additional
instructions output this Control code to its I/0 Port A and B Control registers; these three instruc-
tions do nothing for START ‘RIBBON MOTION, which is pulsed high by four instructions which
follow.

In the new program, print cycle initialization has expanded from-four instructions to seven instruc-
tions. Thus, the use of CA2 and CB2 has not proved economical in this instance. However, notice
that the new program corresponds more closely to the timing diagram illustrated in Figure 3-2.
This may be illustrated as follows:

weee T\
pvRDY T\

Figure 3-2
START RIBBON N
PW REL \
PW RDY \ Fowe 46
START RIBBON j_\
pwhREL T\
PW RDY \ New

START RIBBON e ¥

if some time delay is required between signals PW READY, PW REL and START RIBBON MO-
TION changing state. then the program illustrated in Figure 4-6 will be inadequate.
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We do not manipulate PW READY or PW REL again until the end of the program. Here separate
instruction sequences are required to set each of these two signals high, since a time interval
separates the two signal changes of state. This being the case, the new program acquires a dis-
tinct advantage. The program illustrated in Figure 4-6 needs to input the contents of I/0O Port B,
set a single bit to 1, then output this modified data back to 1/O Port B. These three instructions
need to be executed twice, once for each signal's change of state. In the new program we load a
new Control code into Accumulator B, then output Accumulator B contents to each 1/0O port
Control register. This sequence demonstrates the economy of using control signals CA2 and CB2,
rather than modifying individual bits of 1/0 ports.

DIRECT USE OF HARDWARE FEATURES

Wae are going to assume that external logic uses the PRINTWHEEL READY signal
to ensure that it does not attempt to input a new character code until the prior
character code has been processed. We expend some instructions setting PRINT-
WHEEL READY low at the beginning of the print cycle, then resetting it high at
the end of the print cycle. '

Without a clear definition of the logic external to our microcomputer system, we
have no way of knowing whether the PRINTWHEEL RELEASE and PRINTWHEEL
READY output signals are needed externally to define specific time delays, or
whether they are simply being used to ensure that we allow one character to
complete printing before trying to start printing the next character. If the only
function of the PRINTWHEEL READY signal is to ensure that a new character is
not input to the microcomputer system before the old character has been printed,
then we can dispense with the PRINTWHEEL READY signal and replace it with
automatic input handshaking logic.

MC6820

Input interrupt or programmed handshaking applies to |/O Port A only. FINPUT

1/0 Port A is being used by external logic to input the ASClt character |HANDSHAK-
code which is to be printed; our MC6820 PIA is therefore correctly con-  {ING

figured to use input handshaking. Input handshaking may be illustrated as
follows:

CA2 is output low 8s soon as the External logic must change the

ASCH code is read out of 1/O Port level of CA1 when placing a new

A and into Accumuiator A ASCH code at 1/0 Port A; this
causes CA2 to go high again
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CA2 is output low on the trailing edge of the synchronization signal E, after the CPU has read the
contents of I/O Port A. Thus, as soon as we read the ASCIl character from 1/0 Port A, CA2 wili be
output low. External logic may use a low CA2 signal level as an indicator that another ASCII
character must be written to 1/0 Port A. When external logic writes another character to 1/0 Port
A, it must simultaneously input an active pulse via CA1; what constitutes an active pulse is deter-
mined by the Control code written to the 1/0 Port A Control register. We will assume that exter-
nal logic must input CA1 high when it writes new data to I/0O Port A,

We are going to disable interrupts associated with active transitions of CA1 since it is possible for
external logic to write a new character to /O Port A before the print cycle for the previous
character has been executed. It would be disastrous if a program interrupt occurred while we
were still executing the balance of the print cycle required to print the character which had just
been read from |/O Port A. Instead’of using the interrupt which can be generated by an active
transition of CA1, our program logic will test the status of Control Register A, bit 7, in order to
determine whether the active transition of CA1 has occurred. Recall that an interrupt -request
generated by an active transition of CA1 wilt also set bit 7 of the 1/O Port A Control register; by
polling this bit in between print cycles we can determine when to initiate a new print cycle.

Here is the Control code that must now be written to Control Register A in order
to enable input handshaking:

76 543 2 1 0w BitNo.
xIx]r]oJof t]1]1] control Register A
i ]

Enable IRQA
on low-to-high transition
ke Select /O Port A over Data Direction Register A
Selec(Ainput interrupt handshaking
Read-only status bits

Observe that while using input handshaking you cannot use CA2 as an independent output con-
trol signal, as we just discussed before looking at the direct use of hardware features.



Here are the program changes which must be made upon going to input handshak-

ing:
Figure 4-6 Program

NOW OUTPUT CONTROL CODES THAT
SELECT 1/0 PORTS A AND B

LDA A #4
STA A $C002
STA A $C003

PRINT CYCLE PROGRAM
IN BETWEEN PRINT CYCLES TEST FFI
(BIT 5 OF I/O PORT B) FOR A O
VALUE
START LDA A $C001

AND A #820

BNE START

INITIALIZE PRINT CYCLE.
OUTPUT O TO BITS O AND 1 OF I/0
PORT B. OUTPUT 1 TO BITS 2 AND 3

OF 1/0 PORT B
LDA A  #8C
STA A $COO01

AT END OF PRINT CYCLE SET BIT 1
OF 1/0 PORT B TO 1. THIS SETS PW
RDY HIGH

LDA A  $COO%

ORA A #2
STA A $COO1
JMP START

New Program

NOW OUTPUT CONTROL CODES THAT
SELECT 1/0 PORT A WITH PROGRAMMED
HANDSHAKING AND |/O PORT B WITH
SIMPLE DATA1/O

LDA A #827
STA A $C002
LDA A #4

STA A $C003

PRINT CYCLE PROGRAM

IN BETWEEN PRINT CYCLES TEST THE CA1
STATUS (BIT 7 OF CONTROL REGISTER

A) TO SEE IF CA1 HAS MADE AN ACTIVE

TRANSITION

START LDA A $C002
ROL
BCC START

INITIALIZE PRINT CYCLE
OUTPUT O TO BIT 0 OF I/O PORT B
OUTPUT 1 TO BITS 2 AND 3 OF I/O
PORT B

LDA A #S$C

STA A $C001

AT END OF PRINT CYCLE RETURN TO
START
JMP START

The fact that we are testing bit 7 of Control Register A in order to start a new print cycle also
means that the PW READY signal disappears. We do not save any instructions at the beginning
of the program since we still have to initialize other signals. At the end of the program, however,
there are three instructions which in the program of Figure 4-6 simply set PW READY high. We
may eliminate these three instructions in the new program, since PW READY no longer exists.
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SUBROUTINES

If you look again at the program in Figure 4-6, you will notice that at two points
within this program we execute identical instruction sequences to create a 2
millisecond delay. Now it takes only three instructions to execute a 2 millisecond
delay, so the fact that these three instructions have been repeated is no big tra-
gedy. If you think about it, however, the potential exists for some very
uneconomical memory utilization in longer programs.

We have kept our program simple in Chapter 4 because it must remain small
enough to handle in a book; but project, if you will, a more complex routine where
a 30-instruction sequence needs to be repeated, rather than a three-instruction
sequence. We must now find some way of including the instruction sequence just
once, then branching to this single sequence from a number of different locations
within a program, as needed. That is what a subroutine will do for you.

Let us take the three instructions which execute a 2 millisecond delay and con-
vert them into a subroutine. This is what happens to relevant portions of the pro-
gram:

ORG $FC00
SYSTEM RESET AND INITIALIZATION
FIRST INITIALIZE THE STACK POINTER
LDS #8007F
OUTPUT CONTROL CODE TO I/0 PORT A CONTROL REGISTER

EXECUTE PRINTWHEEL SETTLING 2 MS DELAY
JSR D2MS

EXECUTE A 2 MS PRINTWHEEL READY DELAY

-PRD JSR D2MS
JVP START JUMP TO NEW PRINT CYCLE TEST
SUBROUTINE TO EXECUTE A 2 MS DELAY
D2MS  LDX #EFA LOAD INITIAL TIME DELAY
LOPD  DEX DECREMENT INDEX REGISTER
BNE LOPD REDECREMENT IF NOT ZERO
RTS RETURN FROM SUBROUTINE

INDEX TABLE FOLLOWS HERE
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In order to understand how a subroutine works, we will assign some arbitrary memory addresses
for our source program’'s object code; we will show, step-by-step, what happens when a
subroutine is called and what happens upon returning from the subroutine. First of all, here is the
assumed memory map, which conforms to Figure 4-2:

PROGRAM
MEMORY
LDS #$007F E FC00
- 00 FCO1
- 7F FCO2
LoP1 LDA A $C001 sg FCiC
FC1D
01 FC1E
AND A  #$20 84| FciF
20 ] Fc20
BEQ LOP1 27 | fen
F9 FC22
JSR D2MS BD | FC23
] ozt
F3 FC25
A I LOP3 DA A  $C001 _%8__ 2::
B -
X . Ui FC28
SP -
PC
H ] JMP - START z go
1
o FCF2
D2MS DX HEFA C ﬁ
FA__| FCF5
LOPD  DEX 09 | Fcre
BNE LOPD _% FCF?
FCF8
RTS 39 1 Fcr
DATA
MEMORY
0000
0001
0002
1
] ]
0079
007A
0078
007¢
007D
007€
007F
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SUBROUTINE CALL

Suppose we are about to execute the first JSR D2MS instruction. At this point
registers will contain the following data:

PROGRAM
MEMORY
LDS #$007F [ @E | Fcoo
- Oi) FCO1
- 7F__| Foo2
i '
LOP1 LDA A  $CO01 B ] FCiC
(<] FC1D
01 FCIE
AND A #$20 4] FCIF
20 FC20
BEQ wop [ 27 ] four
=¥ ] Fc22
——
JSR pams | _BR ] ¢
FC FC24.
F3 ] Fezs
Al 20 LOP3 LDA A  $C001 _18_ Fc26
B - C FC27
X - 01 FC28
SP 007F -
PC FC23
1 7 JMP START 7E__I FcFo
FC FCF1
(o] FCF2
D2MS DX H#SFA CE FCF3
00 FCF4
FA FCF5
LOPD  DEX 09 | Fcre
BNE LOPD 6| FCF7
F FCF8
RTS 9 | Fcro
DATA
MEMORY
0000
0001
0002
]
L}
0079
007A
007B
007C
007D
007E
007F

The Program Counter (PC) addresses the first byte of the Jump-to-Subroutine (JSR) instruction’s
object code: this address is FC23,6. The Instruction register holds the object code for the most re-
cently executed instruction; this is a BEQ instruction located at byte FC21,,. The Stack Pointer,
you will notice. was initialized at the beginning of the program; it contains 007F 4. According to
Figure 4-2, this is the address of the first byte of read/write memory. Since the stack has not
beén used, the Stack Pointer will still contain 007F .
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The Accurmulator contains 20,¢ because this was the condition which caused execution to break
out of the holding loop starting at LOP1.

Now when the JSR instruction is executed, steps occur as follows:

The JSR instruction object code is loaded into the Instruction register and the Program Counter is
incremented:

PROGRAM
MEMORY
LDS H#$O07F E FCO0
- FCO1
- ' L_7F FC02
- [} 1
LOP1 LDA A  $COM Bé FCiC
P €] FC1D
o1 FCIE
AND A #%$20 FCIF
20 FC20
BEQ LOP1 27 FC21
F 9 FC22
JSR D2MS BD Fc23
" £C FC24
F3 FC25
A 20 I LOP3 LDA A  $C001 as FC26
8 - C FC27
X - [+]] FC28
sP 007F -
PC FC24 =
i BD_. | JMP START 7E FCFO
FC FCF1
o FCF2
D2MS  LDX HSFA CE FCF3
00 FCF4
FA FCF5
LOPD DEX 09 FCF6
BNE LOPD 29 ] FCF7
FD FCF8
RTS 39 FCF9
DATA
™~ MEMORY
0000
0001
0002
]
]
0079
007A
0078
007C
007D
007E
Q07F

5-13



The Program Counter is incremented by 2 to bypass the JSR address. This incremented value is
saved in the first two stack bytes. The JSR address is then loaded into the Program Counter. The
Stack Pointer is decremented by 2 so that it addresses the first free stack byte:

PROGRAM

MEMORY
LDS #$007F 3 FC00
- + FCot
- 7F FCo2

) ' H
LOP1  ‘LDA A  $COO1 B6 FCIC
. C0 FC1D
o1 FCIE
AND A #$20 84 FCIF
20 FC20
BEQ LOP1 27 FC21
F9 FC22
JSR D2MS — 8D | re23
FC FC24
{ F3 FC25
FC26

E{ LOP3  LDA A  $COO1

-8%%a>»
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The next instruction executed has its object code stored in memory byte FCF3,e: this is the
memory byte now addressed by the Program Counter:

PROGRAM
MEMORY
LDS #$007F i FCoo
- FCO?
- 7F FC02
i '
LOP1 LDA A $C001 B FCIC
[«1] FC1D
01 FCIE
AND A #$20 . FCIF
0 | FC20
BEQ LoP1 27 FC21
[ F9 ] Fc22
JSR D2MS —_BD | FC23
FC FC24
F3 FC25
A ‘:gq LoP3 LDA A scoo1 [ BE 1 Fez
B - co__] oo
X _ 01 FC28
sp 07D - H
PC FCF3 o
1 {3 JMP START ZE FCFO
FC FCF1
06 FCF2
D2MS  LDX HEFA CE FCF3
: FCF4
FA FCF5
LOPD DEX 09 FCFé
BNE LOPD 26 FCF7
FD FCF8
RTS 39 FCF9
DATA
MEMORY
0000
0001
0002
]
0079
007A
0078
007C
0070
FC 007E
26 007F

Instructions within the 2 millisecond delay loop are now executed repetetively until the Index
register contents decrement from 01 to 00.
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SUBROUTINE RETURN

When the Index register finally decrements from 01 to 00, execution passes to
the Return-from-Subroutine (RTS) instruction. This instruction increments the
contents of the Stack Pointer by 2, then moves the contents of the two top stack
bytes into the Program Counter. Thus, program execution returns to the instruc-
tion that follows the Jump-to-Subroutine (JSR).

PROGRAM
MEMORY
LDS #8007F § 8E ] FC0O
- 00 FCO1
——
- ZE FCO2
- |
LOP1 LDA A $C001 B6 FC1C
Co FC1D
1] FC1E
AND A #%$20 14 FCIF
20 FC20
BEQ LOP1 27 Fc21
[ F9 ] Fca2
JSR bams [ BD | Fc23
FC FC24
F3 FC25

A 00 LOP3 LDA A $C001 FC26

s =] _ R

X - 01 FC28

sp

pos | !

v 7€ FCFO
FC FCF1
gé FCF2
E FCF3
00 FCF4
FA FCF5
09 FCF6
6 FCF7
FD FCF8
39 FCF9
DATA

MEMORY
0000
0001
0002
|
0079
007A
0078
oo7C
007D
FC 007E
26 007F
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In summary, this is what happened:

When the Jump-to-Subroutine instruction was executed, the address of the next instruction was
saved in the stack. The Jump-to-Subroutine instruction provided the address of the next instruc-
tion to be executed.

The next instruction to be executed was the first instruction of the subroutine.

The last instruction of the subroutine merely caused the address saved at the top of the stack to
be returned to the Program Counter; and this, in turn, caused execution to branch back to the in-
struction following the Jump-to-Subroutine.

WHEN TO USE SUBROUTINES
There is a price associated with using subroutines:
1) Each JSR instruction represents three additional bytes of object code.

2) The instruction sequence which has been moved to the subroutine must have
an appended Return instruction which costs one byte of object code.

Let us first look at our specific case. The three instructions which constitute the 2 millise-
cond delay occupy 6 bytes of object code. These three instructions occur twice; therefore, com-
bined, they occupy 12 bytes of object code. When moved to a subroutine, adding the Return in-
struction increases the object code bytes from 6 to 7. In addition, there are two JSR instructions
and each requires 3 bytes of object code — which means that the two instructions, plus the
subroutine, generate 13 bytes of object code. This may be illustrated as follows:

NEW
OLD PROGRAM : PROGRAM
LDX #$FA | CE JSR  D2MS )
00 F
FA F3
LOP2 DEX ‘L 09
BNE LOP2 26 JSR D2MS D
N —FC |
F 3

D2Ms  LDX H#HSFA CE

POR  LDX #era [ CE —
00 FA
A LOPD  DEX 3

LOP6  DEX 09
o LoPs BNE  LOPD | 26
£ &)
RTS 39

In our specific case, therefore, moving the 2 millisecond delay instruction se-
quence into a subroutine has cost us one byte of object code.

Now these comments do not imply that subroutines are a dubious programming feature, to be
used sparingly; on the contrary, it is hard to conceive of any program which. when well written,
will not include some subroutines. But bear in mind that therp is a minimum subroutine size
below which subroutines in general become uneconomical.

Suppose there are N bytes of object code in an instruction sequence which you are plan-
ning to convert into a subroutine.

Suppose the N bytes of object code occur M times; that means when the N bytes of ob-
ject code become a subroutine, it will be calied by M JSR instructions.
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Without subroutines, M x N bytes will be consumed repeating N bytes M times.
With subroutines, the number of bytes consumed is:

IM+(N+1)+3+2
“— N
L 2 bytes on stack for address storage

Bytes for stack initialization instruction object codes
Subroutine, including RET instruction

M subroutine calls, assuming extended direct addressing

For the subroutine to be worthwhile, 3M+N+6 must be less than M x N.

Tabie 5-1 shows the minimum economic subroutine length as a function of the
number of subroutine calls.

Table 5-1. The Shortest Economic Subroutine Length As A Function
Of The Number Of Times The Subroutine Is Called

Number Of Subroutine | Minimum Economic
Calls (M) Subroutine Length (N)

2 12 Bytes

3 8 Bytes

4 6 Bytes

5 6 Bytes

10 4 Bytes

20 - 4 Bytes
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MULTIPLE SUBROUTINE RETURNS

Even though none of the repeated instruction sequences within the program in Figure 4-6 are
long enough to justify being turmed into a subroutine, we will nonetheless explore the potential of
subroutines further. '

Consider the printhammer firing instruction sequence in Figure 4-6. Given the pro-
gram as illustrated, this instruction sequence occurs just once, which means that converting it
into a subroutine would make no sense. It is possible to imagine a more extensive pro-
gram which performs a wide variety of printer interface operations, such that
printhammer firing logic might be triggered for a number of different reasons.
Since the printhammer firing logic consists of a fairly long set of instructions, put-
ting these instructions in a subroutine would be absolutely mandatory. Consider
the following subroutine implementation:

PRINTHAMMER FIRING SUBROUTINE
PFIR LDA A $CO001 INPUT 1/0 PORT B 7O ACCUMULATOR A
ROL MOVE BIT 7 INTO CARRY

LDA A  $C001 SET HAMMER PULSE LOW, OUTPUT O
AND A #3FB TO BIT 2 OF I/O PORT B
STA A $C0O1
LDA A $C000 INPUT ASCIl CHARACTER TO ACCUMULATOR A
AND A #S7F MASK OUT HIGH ORDER BIT
COMPARE ASCH CODE WITH LOWEST LEGAL VALUE
CMP A #8320

CMP A #$7A

SCRA +1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER
SCRA

INDX, X LOAD INDEX INTO ACCUMULATOR A
SCRA +1  MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER

SCRA
DELY X LOAD DELAY CONSTANT INTO INDEX REGI

ORA A #4 OF 1/0 PORT B. THIS SETS HAMMER PULSE HIGH
STA A $C001
EXECUTE A 3 MS PRINTWHEEL RELEASE TIME DELAY

LDX 4

LDA A $COO1 INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #1 SETBITOTO 1
STA A $C001 OUTPUT RESULT

The subroutine illustrated above fires the printhammer only if all necessary condi-
tions have been met; a quick exit is executed if any firing condition has not been
met.
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We have added a subroutine within the subroutine. The |NESTED

long delay instruction sequence has been moved to a §SUBROUTINES
subroutine, the first instruction of which is labeled LDLY.
This is referred to as a ‘‘nested subroutine’’.

One novel feature of subroutine LDLY is that it requires the initial | SUBROUTINE
delay constant to be stored in the Index register. The initial delay |PARAMETER
constant becomes a parameter, which allows one subroutine to
implement a complete spectrum of time delays. Subroutine parameters are a very important
feature of subroutine use.

Subroutine PFIR is not as useful as it could be. There are four conditional returns
from this subroutine, each of which is triggered by a different invalid condition.
There is also a subroutine return following valid printhammer firing.

How is the calling program to know whether the printhammer was or was not
fired after PFIR was called? Testing statuses is not very safe, since we cannot be certain
what happens to status conditions during execution of the printhammer firing instructions them-
selves. You cannot test the Carry status to determine whether the BCC instruction caused an exit
from subroutine PFIR; this is because you cannot tell what happens to the Carry status while the
rest of the subroutine executes. For example; the Carry status will be madified by execution of
the CMP instructions.

Subroutines which contain a large number of conditional error exits, in addition to
a standard return, will often contain logic which returns to a number of different
instructions in the calling program. Take the case of subroutine PFIR. The instruc-
tion sequence which calls this subroutine may appear as follows:

RTO JSR PFIR CALL PRINTHAMMER FIRING SUBROUTINE
JMP RT1 RETURN HERE FOR PRINTWHEEL REPOSITIONING
JMP RTO RETURN HERE FOR HAMMER INTERLOCK LOW
JMP RT2 RETURN HERE FOR ASCIl CODE LESS THAN $20
JMP RT3 RETURN HERE FOR ASCIl CODE GREATER THAN $7A

INSTRUCTIONS WHICH FOLLOW ARE EXECUTED AFTER VALID PRINTHAMMER FIRING

INSTRUCTIONS WHICH FOLLOW ARE EXECUTED FOR PRINTWHEEL REPOSITIONING
RT1 -

INSTRUCTIONS WHICH FOLLOW ARE EXECUTED FOR ASCH CODE LESS THAN $20
RT2 -

INSTRUCTIONS WHICH FOLLOW ARE EXECUTED FOR ASCI CODE GREATER THAN $7A
RT3 -



Now for this scheme to work, subroutine PFIR must increment the return address,
which is stored in the top two bytes of the stack, every time a conditional return
is executed. Subroutine PFIR is therefore modified as follows:

PRINTHAMMER FIRING SUBROUTINE

PFIR LDA A $C001 INPUT 1/O PORT B TO ACCUMULATOR A
ROL MOVE BIT 7 INTO CARRY
BCC RTRN+9  IF CARRY IS ZERO. RETURN FROM SUBROUTINE
AND A #3820 ISOLATE BIT 4 WHICH IS NOW BIT 5
BEQ RTRN +6  IF ZERO. RETURN FROM SUBROUTINE
FIRE PRINTHAMMER
LDA A $C001 SET HAMMER PULSE LOW, OUTPUT O
AND A #8FB TO BIT 2 OF I/O PORT B
STA A $C001
LDA A $CO00 INPUT ASCIl CHARACTER TO ACCUMULATOR A
. AND A #$7F MASK OUT HIGH ORDER BIT
COMPARE ASCIl CODE WITH LOWEST LEGAL VALUE
CMP A #320
BLT RTRN +3  IF CODE IS $1F OR LESS, RETURN FROM SUBROUTINE

COMPARE ASCll CODE WITH HIGHEST LEGAL VALUE

CMP A #$7A

BGT RTRN IF CODE 1S $78 OR GREATER, RETURN FROM SUBROUTINE
ASCIl CODE IS VALID

STA'A  SCRA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER

LDX SCRA

LDA A INDX X LOAD INDEX INTO ACCUMULATOR A

STA A SRCA+1 MOVE ACCUMULATOR A CONTENTS TO INDEX REGISTER

LDX SCRA
LDX DELY,X  LOAD DELAY CONSTANT INTO INDEX REGISTER
JSR LDLY EXECUTE LONG DELAY
LDA A $C001 AT END OF DELAY OUTPUT 1 TOBIT 2 °
ORA A #4 OF 1/0 PORT B. THIS SETS HAMMER PULSE HIGH
STA A $C001

EXECUTE A 3 MS PRINTWHEEL RELEASE TIME DELAY
LDX #374 LOAD INITIAL TIME DELAY CONSTANT
JSR LDLY EXECUTE LONG DELAY

OUTPUT 1 TO BIT O OF 1/O PORT B. THIS SETS PW REL HIGH
LDA A $C001 INPUT 1/0 PORT B TO ACCUMULATOR A
ORA A #1 SETBITOTO 1
STA A $C001 OUTPUT RESULT
IMP RTRN + 12 VALID RETURN

‘RTRN  JSR INCR  JUMP HERE FOR ASCIl CODE GREATER THAN $7A
JSR INCR JUMP HERE FOR ASCIl CODE LESS THAN $20
JSR INCR JUMP HERE FOR HAMMER INTERLOCK LOW
JSR INCR JUMP HERE FOR PRINTWHEEL REPOSITIONING:
RTS JUMP HERE FOR VALID RETURN
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SUBROUTINE TO INCREMENT TOP TWO STACK BYTES FOLLOWS

INCR INS INCREMENT STACK POINTER TWICE TO
INS BYPASS INCR RETURN ADDRESS
TSX MOVE STACK POINTER PLUS 1 TO INDEX REGISTER
LDX 0.X LOAD RETURN ADDRESS INTO INDEX REGISTER
INX INCREMENT BY 3 TO BYPASS ONE JUMP
INX INSTRUCTION FOLLOWING SUBROUTINE CALL
INX
STX SCRA SAVE INCREMENTED ADDRESS N SCRATCH MEMORY
LDA A  SCRA LOAD INCREMENTED ADDRESS INTO A (HIGH
LDA B SCRA+1  ORDER BYTE) AND B (LOW ORDER BYTE)
INS INCREMENT STACK POINTER
INS
PSH B PUSH RETURN ADDRESS BACK ONTO STACK
PSH A
DES DECREMENT STACK POINTER TWICE
DES
RTS RETURN FROM SUBROUTINE

Subroutine INCR is interesting; it shows how the stack JSTACK
may be manipulated. Let us take a look at what happens. MANIPULATION

As soon as subroutine INCR is entered, the Stack Pointer contents are
increased by two. This has the effect of addressing the PFIR return address rather than the INCR
return address:

STACK

X }.“ of i ion folowing
Stack X X call to INCR
Poimer/ 7 }.u of i jon fokowing

Yy Call to PHR

The next two instructions load the PFIR return address into the Index register. This transfer is quite
simple to execute. The TSX instruction moves the contents of the Stack Pointer into the Index
register, then increments the contents of the index register. Using an LDX instruction with index-
ed, direct addressing, we can now load the PFIR address back into the Index register. This may be
illustrated as follows:

arbitrary

STACK Memory

MEMORY  Address




With the PFIR return address in the Index register, we can simply increment the Index register
contents three times; we must increase the Index register contents by three since, if you look at
the call to PFIR, it is followed by three Jump instructions; each Jump instruction is three bytes
long. Every time subroutine INCR is called, its purpose is to increase the return address value by
three, thus causing the return to strike a Jump instruction that is one further removed from the
call. This may be illustrated as follows:

RTO JSR PFIR
JMP RT 1 ~.¢—————RETURN HERE AFTER CALLING INCR ONCE
JMP RT2 s RETURN HERE AFTER CALLING INCR TWICE
JMP RT3 g RETURN HERE AFTER CALLING INCR THREE TIMES
7. —— - RETURN HERE AFTER CALLING INCR FOUR TIMES

Unfortunately, getting the incremented return address back into the stack is not simple. We can-
not store the Index register contents using direct, indexed addressing, since the Index register
now contains the data which must be written. The Index register therefore cannot be used
simulitaneously to hold address data. In consequence, we store the Index register contents in two
bytes of read/write memory. then load the data into the A and B Accumulators. Next we incre-
ment the Stack Pointer to address the low order byte of the PFIR return address space. And at last
we can push the incremented address back onto the stack.

Finally we can decrement the Stack Pginter contents twice, so that the Stack Pointer is accessing
the INCR return address. We are now ready to return from subroutine INCR.

MACROS

When talking about subroutines, we glossed over one consideration — you, the programmer.
Subroutines have an additional value, in that if they reduce the number of source program in-
structions, then they will also reduce the amount of time you spend writing the source program,
since program writing time will be directly proportional to program length.

Let us take another look at the 2 millisecond time delay subroutine:

Old Program New Program
LDX HEFA JSR D2MS
LOP2 DEX z
BNE LOP2 JSR D2MS
PDR LDX H#EFA D2MS LDX #IFA
LOPB DEX LOPD DEX
BNE LOP6 BNE LOPD
z RTS

Given just two calls to subroutine D2MS, as occurs in the program of Figure 4-6, the old and new
instruction sequences illustrated above include exactly the same number of source program in-
structions — six. But the old program requires 12 bytes of object code whereas the new program
requires 13 bytes of object code.

What happens when there are three calls to D2MS? This may be illustrated as follows:

Old Program New Program

LDX HEFA JSR D2MS
LOP2 DEX -

BNE LOP2 JSR D2MS

LDX H#EFA JSR D2MS
LOP3 DEX z

BNE LOP3 D2mS LDX HIFA

- LOPD DEX
LDX HEFA BNE LOPD
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LOP4 DEX : RTS

BNE LOP4
9 instructions 7 instructions
18 bytes 16 bytes

Subroutines can decrease the length of your source program, while increasing the
tength of your object program, and the program’s execution time; or subroutines
can decrease source and object program lengths.

Macros decrease the length of your source program, but have absolutely no effect
on your object program.

WHAT IS A MACRO?

A Macro is a form of programming ‘‘shorthand’’; it allows you to define an instruc-
tion sequence with a single mnemonic.

Consider the 2 millisecond time delay instruction sequence; we can §MACRO

define it as a macro, labeled D2MS, as follows: DEFINITION
DX HSFA
LOPD DEX

BNE LOPD

The two shaded instructions above are assembler directives; they bracket JMACRO
a sequence of instructions which henceforth can be identified, as a group. JASSEMBLER

“using the label of the MACRO assembier directive. DIRECTIVES
This is how we \7vould use the 2 millisecond time delay in our print cycle
program:
) New Equivalent
Old Program Program with Macro
LOP1  LDA A  $C001 LOPT  LDA A  $COO1
AND A #$20 AND A #820
BEQ LOP1 BEQ LOP1
EXECUTE PRINTWHEEL SETTLING EXECUTE PRINTWHEEL SETTLING
2 MS DELAY 2 MS DELAY
LDX #IFA D2MS ——
LOP2 DEX TEST PRINTHAMMER FIRING CONDITIONS
BNE LOP2 LOP3 LDA A $C001

TEST PRINTHAMMER FIRING CONDITIONS -
STA A $C001

LOP3  LDA A  $CO001 EXECUTE A 2 MS PRINTWHEEL READY
z DELAY
STA A $C001 PRD D2MS
EXECUTE A 2 MS PRINTWHEEL READY :
DELAY z
IMP START
PRD LDX #EFA D2MS  MACRO
LOP6  DEX LDX HEFA
BNE LOPG LOPD  DEX
: BNE  LOPD
ENDM
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When the Assembler encounters the symbol D2MS in the mnemonic field, what it does is
replace this symbol with the instructions bracketed by directives MACRO and ENDM. The As-
sembler knows which macro to use in the event that your program has more than one macro,
since the symbol in the mnemonic field must be identical to the label of a MACRO directive.

Notice that the Assembler can also do a certain amount of housekeeping associated with the use
of macros. The “Old Program” illustrated above has labels LOP2 and LOPS for the two DCR in-
structions. The “New Program” has a single label, LOPD, within the macro. The Assembler is
smart enough to know that a label appearing within a macro definition must become a series of
separate labels when the macro subsequently is inserted a number of times into the source pro-
gram. :

To summarize, you simply take a sequence of repeated in-- | MACRO
structions, bracket them with MACRO and ENDM direc- |} DEFINITION
tives, then give the macro directive a unique label. Now |LOCATION
use the MACRO's label as though it were an instruction |IN A SOURCE
mnemonic. The macro definition must appear once and only | PROGRAM
once, somewhere in the source program. it is a good idea to
collect all of your macros and insert them at the beginning, or at the end of the entire source pro-
gram.

MACROS WITH PARAMETERS

Instructions within a macro can have variable operands; for example, we can create a
variable time delay macro as follows:

DVMS MACRO TIME

LDX HTIME
LOPD DEX

BNE LOPD

ENDM

Symbols appearing in the MACRO directive’s operand field are assumed by the Assembler to be
“dummy” symbols; the macro reference in the body of the source program must include an
equivalent operand field. The Assembler wili equate the macro reference’s operand field 1o the
MACRO directive's operand field and make substitutions accordingly.

This is how the substitution works:

Equivalent
Source Program Source Program
With Macros Without Macros
@ HSFA LDX HSFA
- LOPD DEX
DVMS MACRO TIME f BNE LOPD
LDX #TIME -
LOPD DEX
BNE LOPD
ENDM

Depending on whose Assembler you are using, you can play interesting games with the macro
parameter list; in theory (but not always in practice), there are no restrictions on the length or
nature of the macro parameter list.

You will have to read the Assembler manual that accompanies your development
system in order to know the exact macro features available to you.
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INTERRUPTS

It would be hard to justify including interrupts within the microcomputer system
developed in Chapter 4. In fact, interrupts should be used quite sparingly in
microcomputer applications.

We will not enter into a long discussion on the strengths and weaknesses { WHEN TO

of interrupts within microcomputer systems — that subject has been ade- . § USE

quately covered in “An Introduction To Microcomputers: Volume |-— | INTERRUPTS
" Basic Concepts”. To summarize, however, recall that interrupts are a valid

tool within microcomputer systems only when dealing with fast, asynchronous events.

Now having issued a warning against the indiscriminate use of interrupts, we will
proceed to incorporate interrupt processing into our microcomputer program in the
interests of demonstrating how it is done.

INTERRUPT HARDWARE CONSIDERATIONS

For an interrupt to be processed within an MC6800 microcomputer system, an in-
terrupt request signal must be input high to the CPU at a time when mterrupts
have been enabled.

Interrupts are enabled and disabled by executing CLI and SEt JINTERRUPT
instructions, respectively. ENABLE

Consider the simple case of a microcomputer system that in- .
cludes one external interrupt. This is the * smple case because it avoids vectoring and in-
terrupt priority arbitration.

In this simple case, when external logic requests an interrupt and [ INTERRUPT
the interrupt is acknowledged, the CPU saves the contents of | ACKNOWLEDGE

the Program Counter, all registers and status on the stack;
then the address stored in memory locations FFF8,, and FFF9,, is loaded into the
Program Counter. This may be illustrated as follows:

Arbitrary

Memory
Address

08F7

The illustration above uses arbitrary memory addresses. There is no specific significance to the
memory addresses which have been selected, but they do make the illustration easier to follow.
Given the memory addresses shown above, the interrupt is acknowledged following execution of
an instruction whose object code was stored in one or more bytes of memory ending at location

1F29,6. The instruction which was about to be executed when the interrupt was acknowledged
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has its object code stored in memory beginning at location 1F2A,s. Following the interrupt
acknowledge, the contents of all registers and status are stored at the top of the stack, as illustr-
ated. Thus after all data has been pushed onto the stack, the new Stack Pointer contents will be
08F6.¢. The new address loaded into the Program Counter in the illustration above is 20FA g
thus program execution will resume, following the interrupt acknowledge, with an instruction se-
quence whose object code is stored in memory beginning at locations 20FA 6.

The microcomputer system that we configured in Figure 4-2 uses the top 1,024
memory addresses to implement read-only memory. Thus, memory addresses
FFF8,, and FFF9,, will select two bytes of read-only memory. Within these two bytes
must be stored the beginning address for an instruction sequence which will be executed in
response to any external interrupt — in our illustration 20FA g is the required-address. This sim-
ple use of interrupt logic requires no special modifications to the microcomputer
system as illustrated in Figure 4-2. A simple connection to the interrupt request input of
the MCB800 CPU is all that will be required. Other changes will occur strictly within the program
that is stored in read-only memory.

Let us suppose that our microcomputer system performs a variety of background
tasks in addition to enabling the print cycle, and the print cycle is initiated by an
interrupt request. Interrupt logic replaces the PW READY signal. These are the
changes which must be made to the program illustrated in Figure 4-6 in order to
initiate the print cycle using an external interrupt:

Old Program New Program

PRINT CYCLE PROGRAM -
IN BETWEEN PRINT CYCLES TEST FFI -
(BIT 5 OF 1/O PORT B) FOR A 0 VALUE -

START LDA A $C001 -
AND A #8320 -
BNE START ORG START

INITIALIZE PRINT CYCLE. OUTPUT O
TO BITS 0 AND 1 OF I/O PORT B.
OUTPUT 1 TO BITS 2 AND 3 OF {/O
PORT B

LDA A $C

STA A $C001
OUTPUT O TO 8BIT 3 OF I/O PORT B.
THIS COMPLETES START RIBBON
MOTION

AT END OF PRINT CYCLE SET BIT 1 OF
/O PORT B TO 1 THIS SETS PW RDY
HIGH

LDA A~ $C001
ORA A #2

STA A $C001
JMP START

INITIALIZE PRINT CYCLE. QUTPUT O
TO BIT-0 OF 1/0O PORT B..

OUTPUT 1 TO BITS 2 AND 3 of I/0
PORT B
START LDA A $C

STA A $C001
OUTPUT 0 TO BIT 3 OF {/0 PORT B.
THIS COMPLETES START RIBBON
MOTION

AT END OF PRINT CYCLE RETURN
FROM INTERRUPT

RTI

ORIGIN INTERRUPT SERVICE ROUTINE
ORG $FFF8
FOB START
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The old program illustrated above is the program of Figure 4-6. Two changes must be made to
this old program.

First of all the interrupt identifies the start of a new print cycle, so we can eliminate the “in bet-
ween print cycles test”".

Next we have eliminated the PW READY signal; therefore instructions which reset and subse-
quentially set this signal can be eliminated.

There is no significant change in the instruction sequence at the beginning of the print cycle since
the same two instructions which reset PW READY remain to initially set and reset other signals.
At the end of the old program, however, there were three instructions that set PW READY; these
three instructions disappear in the new program.

Observe that the new program terminates with a Return-from-Inter- JINTERRUPT
rupt (RT1) instruction. This instruction restores the registers’ and | RETURN

status contents which were saved when the interrupt was
acknowledged; thus program logic branches back to the instruction which was about to get
executed when the interrupt occurred — in our previous illustration the instruction stored at
memory location 1F2A .

Note that in the new program, the beginning address for the print cycle |FDB

routine is stored in memory locations FFF8,g and FFF9,s. This is done JASSEMBLER
using the FDB directive following an ORG directive selecting address JDIRECTIVE
FFF8,¢.

As you will see, program initialization instructions remain outside the interrupt
service routine. Following the external interrupt, only the instructions which ac-
tually implement the print cycle get executed.

In all probability the initialization instructions which occur at |RESET

the beginning of the program illustrated in Figure 4-6 will be JINTERRUPT
executed following a Reset. The MC6800 handles a Reset as
though it were a priority interrupt. The only difference is that the beginning address for the
program which is to be executed following the Reset is fetched from memory locations FFFE
and FFFF,6 and contents of registers and status are not saved. If print cycle initialization instruc-
tions are executed following a Reset, this is how our program will look:

Old Program New Program

INDEX EQU $FF80 INDEX EQU $FF80

DELY EQU $SFFEE - DELY EQU $FFEE
ORG 0 ORG INIT

SYSTEM RESET AND INITIALIZATION SYSTEM RESET AND INITIALIZATION’
FIRST OUTPUT CONTROL CODE TO 1/0 FIRST OUTPUT CONTROL CODE TO 1/0
PORT A CONTROL REGISTER PORT A CONTROL REGISTER

CLR $C002 INIT CLR $C002

SET HAMMER PULSE, PW READY AND
PW REL HIGH. SET START RIBBON
MOTION LOW

LDA A #7

STA A $COO1

SET HAMMER PULSE, PW REL HIGH
SET START RIBBON MOTION LOW

LDA A  #5
STA A $COO01

JMP _SYSTEM
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PRINT CYCLE PROGRAM
IN BETWEEN PRINT CYCLES TEST FFi
{BIT 5 OF I/O PORT B}FOR A O
VALUE
START DA A $CO0%

AND A #8520

BNE START
INITIALIZE PRINT CYCLE. OUTPUT O
TO BITS 0 AND 1 OF 1/0 PORT B.
OUTPUT 1 TO BITS 2 AND 3 OF I/O
PORT B

LDA A $C -

STA A $COO1
OUTPUT 0 TO BIT 3 OF I/0 PORT B.
THIS COMPLETES START RIBBON

- MOTION

AT END OF PRINT CYCLE SET BIT 1

INITIALIZE PRINT CYCLE. OUTPUT O
TO BIT 0 OF 1/0 PORT B.
OUTPUT 1 TO BITS 2 AND 3 OF I/O
PORT B
START LDA A §C

STA A $CO01%
OUTPUT O TO BIT 3 OF 1/O PORT B.
THIS COMPLETES START RIBBON -
MOTION

AT END OF PRINT CYCLE RETURN

OF 1/0O PORT B TO 1. THIS SETS FROM INTERRUPT

PW RDY HIGH RT!
LDA A $COO1 ORIGIN INTERRUPT SERVICE ROUTINE
ORA A #2 ORG $FFF8
STA A $C001 FDB START
JMP START ORG SFFFE
- FDB INIT

So far as the.print cycle interrupt service routine is concerned, nothing has changed. But the print
cycle initialization instruction sequence has been converted into an independent interrupt service
routine which gets executed following a Reset.

We have shown only the print cycie initialization instructions in the Reset interrupt service routine;
in reality, @ number of other initialization steps will be included, taking into account initialization
procedures required by other logic supported by the microcomputer system.

MULTIPLE INTERRUPTS

What if your microcomputer system is connected to more than one external logic ’
device that is capable of requesting interrupts? For example, a single MC6800
microcomputer system might be driving a number of printers. Without going into the
economics of microcomputer multiple interrupt configurations, let us examine the ways in which
multiple interrupts can be handled. : '

The one thing that changes when we go from single interrupts to multiple inter-
rupts is the fact that the interrupt service routine is no longer unique. There must be a
different interrupt service routine for every external device capable of requesting
an interrupt. In turn that means that, following an interrupt acknowledge, we must have some
means of knowing which interrupt service routine is to execute. Also, if more than one device
simultaneously requests interrupt service, which are we going to acknowledge —
and in what order? These are problems of interrupt vectoring and priority arbitration, subjects
which have been covered in some detail in “An Introduction To Microcomputers: Volume | —
Basic Concepts”. We will not repeat discussion of these basic concepts in this book: rather we
will look at practical ways in which multiple interrupts can be serviced within an MC6800
microcomputer system.
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Conceptuaily the simplest method of handling muitiple inter- |INTERRUPT
rupts is to require every external device which is capable of } VECTORING
requesting an interrupt to also have a buffer which can be ac- INTERRUPT
cessed as a memory location. Within this buffer the external logic VECTORING
must store a status flag which indicates whether or not an interrupt has BY POLLING
been requested. Now, following an interrupt acknowledge, we will first
branch to a program that reads the contents of each external device buffer
in order of interrupt service priority, branching to the interrupt service routine for the first external
device found to be requesting an interrupt. This is referred to as “polling”. Here is a polling in-
struction sequence:

ORG START
START OF INTERRUPT SERVICE ROUTINE
READ STATUS OF EACH EXTERNAL DEVICE CAPABLE OF
" REQUESTING AN INTERRUPT
START LDA A DEVI

BNE PRG1
LDA A DEV2
BNE PRG2
LDA A DEV3
BNE PRG3
etc

The labels DEV1, DEV2, DEV3, etc., represent the memory addresses which select buffers of the
individual external devices which are capable of requesting an interrupt. The labeis PRG1, PRG2, .
PRG3, etc. identify the first instruction for the interrupt service routines corresponding to these ex-
ternal devices. Device priorities are determined by the order in which devices are polled. Thus the
device address DEV 1 will ‘have the highest: priority.

The problem with polling is that it takes a fair amount of time to execute the poll-
ing instruction sequence; and within the frame of reference of microprocessor
device cost, the cost of having buffers at the individual devices — together with
select logic for the buffers — may be quite significant.

But any MC6800 series support device that has interrupt logic also has buffers
which may be read in order to implement polling as a means of handling muitiple
interrupt logic. For example, the MC8820 PIA. which we have already described, contains
Control registers within which the two high order bits indicate whether interrupts have been re-
qQuested via the CA1. CA2, CB1 and CB2 contro! lines. We have already seen how Control
Register A is used to determine whether an interrupt request has occurred at an MC6820 PIA. If
your microcomputer system is using such standard devices, then polling following an interrupt re-
guest may have some merit. But.if you are requesting interrupts via your own external logic, then
polling has no merit. It will take no more logic to implement memory location FFF8,¢ and/or
FFF9.6 using an external buffer.

Figure 5-1 illustrates one scheme whereby memory loca-
tion FFF9,, selects an 8-to-3 line priority encoder and an 8-
bit buffer. Devices capable of requesting interrupts also in-
put signals to the 8-to-3 encoder. Now foliowing an interrupt
acknowledge, the memory address which will be fetched from loca-
tions FFF8,4 and FFF9,4-varies with each possible external device that can request an interrupt.

INTERRUPT
VECTORING

BY DATA
MODIFICATION
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The most interesting aspect of Figure 5-1 is the fact that it is exactly the same
logic that was used to generate a Restart instruction for the 8080A microcom-
puter system described in Chapter 5 of ‘8080 Programming For Logic Design’’.
The 8-t0-3 priority encoder is an 8214 device; the 8212 is an 8-bit buffer. Both of these devices
have been described in detail in Chapter 4 of *'An Introduction To Microcomputers: Volume Il —
Some Real Products”.

Eight external devices are capable of requesting interrupts. These eight devices input individual
signals to the RO/R7 inputs of the 8214 device. The inputs are wire-ORed to provide a master in-
terrupt request. The 8214 device is enabled by a clock signal that makes a low-to-high transition.
This clock signal is created by the E synchronization signal of the MC6800 microcomputer
system. The three outputs of the 8214 decoder are input to an 8212 8-bit buffer, the remaining
inputs of which are tied to + 5V. This I/O port is selected by the memory address FFF9,q. Thus,
eight different memory addresses will be read for the eight possible external interrupts as follows:

MEMORY
LOCATION X X
lel
{X represents any hexadecimal digit)
c7
CF
07
LOGIC OF OF
FIGURE 5-1 1 E7
' EF
F7
FF
Service
Device . Routine Origin
RO XXFF
R1 XXF7
R2 XXEF
R3 XXE?
R4 XXDF
RS XXD7
R6 XXCF
R7 XXC7?
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Figure 6-2 shows an alternative configuration which uses an | MC6828
MC6828 Priority interrupt Controller (PIC)-in order to provide §PRIORITY
vectored priority interrupts. The MC6828 Priority Interrupt Controller JINTERRUPT
has been described in detall in “An Introduction To Microcom- CONTROLLER

puters: Volume | — Some Real Products”, Chapter 6.

—1

MCMEBT0A MCMES30A MC6928
RAM 1024x8 it Pic ]

125, ROM
e 1258 cs3 At W

cs2 As | N3

L 07 DO E A1 A4 AW N7

eees ae o

Ill-—lg
H
xxz

13
Adorens Bus

MC6800 A1l

.
——
Oata Bus

bt 2 | o7

aw le—mo—— a1

cso l———— a2

5] cs1 a0
MCE870A = :

RS0 f——— a7

Rs1 MC6820 -~ P80

GND  GND| p—e—— = P82
PR7
I | ____G: ey f———————————cm2
[ IRCB e s C81
= -1..-

PortB  PortA

Figure 5-2. Interrupt Vectors Created Using An MC6828 Priority Interrupt Controller
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The MCE828 PIC is positioned serially, preceding the external memory device
which is to be selected by the addresses FFF8,, and FFF9,,. Address lines A1, A2,
A3 and A4 terminate at the MC6828. Logic within the MC6828 appropriately
manipulates these four address lines and outputs some value which may differ
from the input value. This may be illustrated as follows:

Address Address
transmitted . received
by CPU by memory

——

A1l5
Al4
A13
A12
A1l
A10
A9

A7
A8
A5

A3

||||

ik

Al

MO = = s a2t s e s
PP IS I SN NN

Thus, what the MC6828.does is extend the two addresses FFF8, and FFF9,4 into 16 addresses,
FFE8,¢ through FFF7,.

Conceptually, the MC6828 is acting as an 8-way switch. The CPU addresses the switch by its
“stem”, via a single address. The actual conduit for the transfer of two bytes of data depends on
the switch position at the time the CPU accesses the switch stem: and the switch position is
going to be determined by the highest priority active interrupt request. This may be illustrated as
follows: .

—

IN7_ o FFFS, FFF?

6 @ FFF4, FFF5

NG o=t FFF2, FFF3

_/ NG o FFFO, FFF1

FFF8, FFFO TNT o=t FFEE, FFEF
N2 @mdr—ersemmeme. FFEC, FFED

prer————— FFEA, FFEB

FFEB, FFE9

:

3




Comparing Figures 5-2 and 5-1 we see that there is a fundamental. §INTERRUPT
philosophical difference between the ways in which interrupt vectors | VECTORING
have been created. The MC6828 device in Figure 5-2 modifies the | BY ADDRESS
address which ultimately arrives at memory devices selected by |§MODIFICATION
FFF8,s and FFF9,s. Eight addresses must be maintained in 16 bytes

of external read/write memory; all 16 bytes of external read/write memory are selected by the
same two addresses output from the CPU; logic of the MC6828 PIC determining which two of
the 16 bytes will in fact be selected.

In contrast, logic of Figure 5-1 is selected by a single memory address, but the data which is read
from this single memory address is varied.

Table 5-2. MC6828 Address Vectors Created For Eight
Priority Interrupt Requests

PRIORITY | PN | z4 23 Zz2 2zt | EFFECTIVE ADDRESSES
Highest 7 | N7 10 1 1 FFF6 and FFF7

6 | ING 1 0 1 0 FFF4 and FFF5

5 | N6 1 0 0 1 FFF2 and FFF3

4 | N2 1 0 0 0 FFFO and FFF1

3R] o v 1 FFEE and FFEF

2fNZ] o 1 1 0 FFEC and FFED

1] INT o 1 0 1 FFEA and FFEB
Lowest 0 | INO 0O 1 0 © FFES and FFE9

Table 5-2 defines the priorities that will be applied to INTERRUPT
simuitaneous interrupt requests occurring at pins iNO - IN7. |PRIORITIES
_This table also indicates the exact memory addresses which
will be created by the MC6828 in response to each of the interrupt requests. in
order to use the MC6828 PIC in an MC6800 microcomputer system, 16 bytes of PROM or ROM,
selected by the addresses given in Table 5-2, must be connected to the MC6828. Within these
16 bytes of PROM or ROM, you must store the starting addresses for the eight interrupt service
routines which are going to be executed following acknowledgement of each possible external
interrupt request. For example, suppose that interrupt requests arriving at the N5 pin of the
MC6828 must be serviced by an interrupt service routine whose first executable instruction is
stored in memory location 2E00,¢. The value 2E00,¢ must then be stored in the two PROM or
ROM bytes selected by memory addresses FFF2,¢ and FFF3,6. Remember, the high order byte of
an address is always stored at the lower address. Thus 2E,¢ will be stored in memory location
FFF2,s while 004 is stored in memory location FFF34e.

The MC6828 provides a very elementary level of interrupt in- |INTERRUPT
_ hibit logic. You can output a mask to the MC6828 identifyinga |INHIBIT
priority level below which all interrupts will be inhibited. LOGIC

Now the mask is written out to the MC6828 in a very unusual way.

Recall that the MC8828 requires memory addresses FFES,g through FFF9,4 to access PROM or
ROM. Any attempt to write into these memory addresses will be ignored. The MC6828 takes ad-
vantage of this fact by. trapping attempts to write into memory locations FFES8,¢ through FFF9,.

That is to say. when R/W is low while TS0 is low and CS1 is high, the MC6828 considers itself
selected, but it interprets the four address lines A1, A2, A3, A4 as data, defining the mask level
below which interrupts will be inhibited. Table 5-3 defines the way in which the mask
specified by address lines A1, A2, A3 and A4 will be interpreted.
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Table 5-3. MC6828 Interrupt Masks -— Their Creation And Interpretation

Write anything and Address Bus - | Which will inhibit
to this address: lines A1-Ad will ] all interrupts, including
_have this value: and below:
FFEOQ or FFE1 0000 All interrupts enabled
FFE2 or FFE3 0001 IN1
FFE4 or FFES 0010 IN2
FFE6 or FFE7 0011 IN3
FFE8 or FFE9 0100 IN4
FFEA or FFEB 0101 IN
FFEC or FFED 0110 IN6
FFEE or FFEF [OXR N IN7
FFEO through FFFF | 1000 through 1111] All interrupts disabled

JUSTIFYING INTERRUPTS

Minicomputer programmers and large cohwputer programmers make indiscriminate use of inter-
rupts simply to share the cost of the Central Processing Unit among a number of different applica-
tions.

You, as a microcomputer user, are going to have to justify sharing a cost INTERRUPT
which may range between $5 and $20. Against this cost you must charge ECONOMICS
the cost of external logic needed to create interrupt request signals — as
well as the extra cost of programming. The economic tradeoff makes it far from obvuous
that interrupts are viable within‘microcomputer systems. You must examine your ap-
plication with care before assuming out of hand that interrupts represent the way to go. A second
CPU, or an entire second microcomputer system will frequently be cheaper than using interrupts
to share a single microcomputer system between a number of different applications.

Assuming that interrupts look economical for your apphca- INTERRUPT
tion, timing considerations are also important. TIMING
CONSIDERATIONS

Certainly interrupts look very attractive when your application is han-
dling asynchronous events. In our case, suppose the average
print cycle lasts approximately 10 milliseconds; also, suppose it is impossible to
say whether the time interval between print cycles will be 1 millisecond or 100
milliseconds. Under these circumstances, in order to execute some other program
in the time in between print cycles, we must use interrupts to initiate the print cy-
cle —since we have no idea when the next print cycle is to begin.

In reality, the time which elapses between print cycles will be very accurately known. A
printer will have some advertised character printing rate. If this rate is 45 characters
per second, then 22.2 milliseconds will be required per printed character. Iif 10 of the 22 millise-
conds are needed to execute the actual print cycle routine, then 12 milliseconds will remain in
between print cycles. We no longer need interrupts. So long as the program which executes
in between print cycles is broken into segments, each of which executes in 12 milliseconds or
less, then each segment can terminate with an instruction loop which tests the status of the
velocity decode input in order to initiate the next print cycle:

START LDA A $CO001 INPUT 1/0 PORT B TO ACCUMULATOR A
AND A #%20 ISOLATE BIT 5
BNE START IF NOT 0. RETURN TO START
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Chapter 6
THE MC6800 INSTRUCTION SET

Instructions falsely frighten microcomputer users who are new to programming.
Taken as an isolated event, operations associated with the execution of a single
instruction are easy enough to follow — and that is the purpose of this chapter.

Why are the instructions of a microcomputer referred to as an instruction “set’’? Because the in-
structions selected by the designers of any microcomputer are selected with great care; it must
be easy to execute complex operations as a sequence of simple events — each of which is
represented by one instruction from a well designed instruction “set”.

Remaining consistent with *‘An Introduction To Microcomputers: Volume II"*, Ta-
ble 6-1 summarizes the MC6800 microcomputer instruction set, with similar in-
structions grouped together.

Individual instructions are described next in alphabetic order of instruction
mnemonic.

In addition to simply stating what each instruction does, the purpose of the instruction within nor-
mal programming logic is identified.

ABBREVIATIONS
These are the abbreviations used in this chapter:
ACX Either Accumulator A-or Accumulator B

The registers:
AB Accumulator
X Index register
PC Program Counter
SP Stack Pointer
SR Status register

Statuses shown;

C Carry status
Z Zero status
S Sign status
O Overflow status
I Interrupt status
Ac . Auxiliary Carry status
Symbols in the STATUSES column:
{blank}) operation does not affect status
X operation affects status
0 flag is cleared by the operation
1 flag is set by the operation

ADR8 An 8-bit {1-byte) quantity which may be used to directly address the first 256 loca-
tions in memory, or may be an 8-bit unsigned displacement to be added to the Index
register. B

ADR16 A 16-bit memory address



B2 Instrﬁction Byte 2

B3 Instruction Byte 3

DATA An 8-bit binary data unit

DATA16 A 16-bit binary data unit

DISP An 8-bit signed binary address displacement

xx{Hl) The high order 8 bits of the 16-bit quantity xx; for example, SP(H!) means bits 15 - 8 of
the Stack Pointer.

xx{LO) The low order 8 bits of the 16-bit quantity xx; for example, PC(LO) means bits 7 - 0 of
the Program Counter.

(1 Contents of location enclosed with brackets.

irn Implied memory addressing; the contents of the memory location designated by the
contents of a register.

[MEM]  Symbol for memory location indicated by base page direct, extended direct; or index-
ed addressing.
That is:
{MEM] = [ADRS]

or
[ADR161
or
[{x]+ ADRS8]
[m] Symbol for memory location indicated by extended direct or indexed addressing. That
is:
[M] = [ADR16]
or
([ X1+ ADR8]
Logical AND
Logical OR

Logical Exclusive-OR

I(<>

Data is transferred in the direction of the arrow.

CONDITION CODES

The six condition codes are stored in a Condition Code register as follows:

7 6 5 43210
11 Adls]z]ojc
INYNENY IPL
Carry/Borrow flag
b Overflow flag
__ZBfOﬂlg
Sign fiag
[ upt Enable fiag
Auiliory Carry flag
These bits have fixed values



The effect of instruction execution on status is illustrated in the following way:

Ac1 520C
I | |X|X" IX'
)
Modified to reflect results of execution
hmssamme Unconditionally reset to 0

Within instruction execution illustrations, an X identifies a status thatis set | STATUS
or reset. A O identifies a status that is always cleared. A blank means the | CHANGES

status does not change. WITH
INSTRUCTION OBJECT CODES N

Instruction object codes are represented as 2 hexadeclmal
digits for instructions without variations.

Instruction object codes are represented as 8 binary digits for instructions with
variations; the binary digit representation of variations is then identifiable.

INSTRUCTION EXECUTION TIMES AND CODES

Table 6-2 lists instructions in alphabetic order, showing object codes and execu-
tion times, expressed as machine cycles.
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The following codes are used in Table 6-2:

aa two bits choosing the address mode:
00 immediate data
01 base page direct addressing
10 indexed addressing
11 extended direct addressing

pp the second byte of a two- or three-byte instruction.
qq the third byte of a three-byte instruction.

X one bit choosing the Accumulator:
0 Accumulator A
1 Accumulator B
yy  two bits choosing the address mode:

00 (inherent addressing) Accumulator A
01 (inherent addressing) Accumulator B
10 indexed addressing

11 extended direct addressing

Y one bit choosing the address mode:

0 indexed addressing
1 extended direct addressing

Two numbers in the “Machine Cycles” column {for example, 2 - 5) indicate that execution time
depends on the addressing mode.
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Table 6-2. MC6800 Instruction Set Object Codes

MNEMONIC OPERAND(S) OBJECT CODE BYTE MACHINE CYCLES
ABA 18 1 2
ADC ACX, 1x831001

ADRS or DATA [T 2 2-5
ADR16 aq 3 4
ADD ACX, 1xaa1011
ADRS or DATA po 2 2-5
ADR16 qaq 3 4
AND ACX, 1xaa0100
ADR8 or DATA PP 2 2-5
ADR16 aq 3 4
ASL ACX 01yy 1000 t 2
ADR8 [ 2 7
ADR16 aa 3 6
ASR ACX Olyy0111 1 2
ADR8 pp 2 7
ADR16 qq 3 6
BCC DISP 24 pp 2 4
BCS Disp 25 pp 2 4
BEQ DisP 27 pp 2 4
BGE DISP 2C pp 2 4
BGT pisp 2E pp 2 4
BHI DISP 22 pp 2 4
8IT ACX, 1xaa0101
ADRS8 or DATA pp 2 2-5
ADR16 qg 3 4
BLE DISP % pp 2 4
BLS DISP 23 pp 2 4
BLT DiSP 20 pp 2 4
BMI DISP 28 pp 2 4
BNE DISP 26 pp F) 4
BPL DisP 2A pp 2 4
BRA DISP 20 pp 2 4
BSR DISP 8D pp 2 8
8ve DISP 28 pp 2 4
BVS DisP 29 pp 2 4
CBA 1 2
CcLe oc 1 2
CLt OF . 1 2
CLR ACX Otlyy1111 1 2
ADR8 PP 2 7
ADR16 qaq 3 6
CLv 0A' 1 2
CMP ACX, 1x8a0001
ADRS8 or DATA PR 2 2.5
ADR16 aq 3 4
CcoM ACX O1yy0011 1 2
ADR8 PP 2 7
ADR16 aq 3 6
CPX 10821100
ADRB PP 2 4-6
ADR16 or DATA16 qq 3 3-5
DAA 19 1 2
DEC ACX Otyy1010 1 2
ADR8 pp 2 7
ADR16 ‘aq 3 6
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Table 6-2. MCB800 Instruction Set Object Codes (Continued)

MNEMONIC OPERAND(S) OBJECT CODE BYTE MACHINE CYCLES
DES 34 1 4
DEX 09 1 4
EOR ACX, 1xaa 1000

ADRS or DATA pp 2 2-5
ADR16 qaq 3 4
INC ACX 01yy1100 1 2
ADR8 pp 2 7
ADR16 aq 3 6
INS 31 1 4
INX 08 1 4
JMP 011y1110
ADRS pp 2 4
ADR16 aq 3 3
JSR 101y1101
ADRS op 2 8
ADR16 aq 3 9
LDA ACX, 1xaa0110
ADRS or DATA pp 2 2-5
ADR16 . aq 3 4
LDS 10831110
ADRS op 2 3-5
ADR16 or DATA16 aq 3 46
LDX 11223110
ADR8 pp 2 3-5
ADR16 or DATA16 aQ 3 4-6
LSR ACX 01yy0100 1 2
ADRS PP 2 7
ADR16 aq 3 6
NEG ACX 01yy0000 1 2
ADRS pp 2 7
ADR18 aq 3 6
NOP ] 1 2
ORA ACX, 1xaa1010
ADRS or DATA pp 2 2-5
ADR16 aqa 3 4
PSH ACX 0011011x 1 4
PUL ACX 0011001x 1 4
ROL ACX 01yy 1001 1 2
ADR8 PP 2 7
ADR16 qq 3 6
ROR ACX 01yy0110 1 2
ADRS pp 2 7
ADR16 aq 3 6
RTI 3B 1 10
RTS 39 1 5
SBA 10 1 2
s8C ACX, 1xaa0010
ADRS or DATA pp 2 2-5
ADR16 qq 3 4
SEC oD 1 2
SEI OF 1 2
SEV [o:] 1 2
STA ACX, 1xaa01 11 .
ADR8 pp 2 4-6
ADR16 aq 3 5




Table 6-2. MC6800 Instruction Se} Object Codes (Continued)

MNEMONIC OPERANDIS) OBJECT CODE BYTE MACHINE CYCLES
——
STS 108a1111 .
ADR8 pp 2 5-7
ADR16 qq 3 6
STX 11aa1111 .
ADRS8 [ 2 5-7
ADR16 qq 3 6
SuB ACX, 1%aa0000
' ADRS or DATA pp 2 2.5
ADR16 qaq 3 4
swi 3F 1 12
TAB 16 1 2
TAP 06 1 2
TBA 17 1 2
TPA 07 1 2
TST ACX Olyy1101 1 2
ADR8 PP 2 7
ADR16 aq 3 6
TSX 30 1 4
S 35 1 4
WAI 3& 1 9

*aa = 00 is not permitted.




MC6800 ADDRESSING MODES
The Motorola MC6800 offers seven basic addressing methods:

1)  Memory — Immediate

2) Memory — Direct

3} Memory — Indexed

4) Memory — Extended

5) Inherent

6} Relative

7} Accumulator

MC6800 instructions allow various combinations of these addressing modes to address the

operands required for the instruction. See Table 6-3 for the addressing options available with
each instruction.

MEMORY — IMMEDIATE

In this form of addressing. one of the operands is present in the bytels) immediately following the
first byte of object code. An immediate operand is specified by prefacing the operand with the #
symbol. For example:

ADD A #830

requests the Assembler to generate an ADD instruction which will add the value 304 t0 Ac-
cumulator A.

DATA
MEMORY
Act S z0C
ccr [X] IXPx]X]X]
A X X | @
B PROGRAM
INX MEMORY

SP
PC mm mm
IR 3B - 8B mmmm

30 mmmm + ]

ADD A # $30
——— —r—p—
-’
765432110 7 65432 10"
wteve [1]01010]1]0] 2naeve[0J0]1]110]0]0]00
[ J

These bits select the ADD operation
0 selects A A
00 selects | i ing

“This example demonstrates a single byte immediate operand. Instructions such as AND, BIT, EOR
and SBC use this form.



Double-byte immediate -operands are employed by the CPX, LDS and LDX instructions. The LDS
instruction, for example, may load the Stack Pointer- with the two bytes following the first object
code byte. The instruction:

LDS #83F2A

is illustrated in the following diagram:

DATA
MEMORY
Acl s z0OC
cer ] Ix]xjof ]
A
8 PROGRAM
INX ] MEMORY

SP
PC mm mm .
w[_sE 8E_mmmm
. \ 3F mmmm .+ |

2A mmmm + 2
mmmm + 3

7 6 54 3210

maspefofon {11 0]

7 6 4 3 210
saepe JoJofrfofrjofi]o)
00 selects i dressing

1st Byte

_E
-
.
-

.

This instruction stores the contents of memory location mmmm + 1 into the high order byte of
the Stack Pointer, then stores the contents of memory location mmmm + 1 into the low order
byte of the Stack Pointer.

MEMORY — DIRECT

This form of addressing uses the second byte of the instruction to identify an operand present in
the low 256,, words of memory. This form of addressing is specified when the expression used
as the operand reduces to a value between 00, and FF,¢. For example:

ADD A $30

requests the Assembler to generate an ADD instruction which will add the value present at
memory location 0030, to Accumulator A.
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DATA

MEMORY
Ac1 5 20C yy 0030
cer XL IxIxIxIX] 0
A x X
B PROGRAM
INX ' ) MEMORY
SP )
PC mm mm
IR 5B o8 mmmm
30 mmmm + 1|
mmmm 4+ 2
,/APBAS.,\ S
7 65 4 3210 76 54 3 210
1s‘Byte|||0|'||]|]I0|'||:I zmsyta|0|0|1|1|0|0|0|ol
1
T“ ’ ‘ ‘ 4 These bits select the ADD operation
0 selects A ik A
11 selects Direct addressing

MEMORY — INDEXED

This form of addressing combines the second byte of the instruction with the contents of the In-
dex register to produce the memory address of the data to be used as an operand. Indexed ad-
dressing on the MCB800 differs from indexed addressing as described in “An Introduction To
Microcomputers: Volume |” in that the one-byte displacement provided by the memory
reference instruction is added to the Index register as an unsigned 8-bit value. The contents of

the Index register are not changed.

DATA
MEMORY

’ / XX ppqq+cc

INx . pp | 94 MEMORY

YY mmmm
X mmmm + |

If instruction yy specifies indexed addressing. then the effective address of one operand will be
ppaq + cc. Therefore xx will be one of the operands used by the instruction.
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Indexed addressing is specified by including:

X
X
expr,X

in the operand field of the instruction. For example:
ADD A $30.X

requests the Assembler to generate an ADD instruction which will add to Accumulator A the
value present at the memory location specified by adding 30,5 to the contents of the index
register. If the Index register contains 0316,4 at the time this instruction is executed, the following
diagram summarizes the instruction execution:

DATA
MEMORY
Acl s 20C Yy 0346
cer X Ix]x]x]x]
xx+ yy
A X X
8 0316 +30 PROGRAM
INX 03 16 MEMORY

SP
PC mm mm
IR A B AB mmmm

30 mmmm + |

765 43 2 76 543210
steve o] fo ] fo] v maeve JOJof 1] 1 Jo]Jofofo}
Ar WYY EN) »
These bits select the ADD instruction
l 0 selects A lator A
10 selects Indexed ad ing

This instruction adds the contents of Accumulator A to the contents of the memory location
specified by adding the second byte of the instruction to the contents of the Index register.

Note that implied addressing may be implemented by specifying indexed addressing with a dis-
placement of 0.

MEMORY — EXTENDED :

This form of addressing combines the setond and third bytes of object code to form the address
of the data to be used as an operand. Motorola extended addressing is identical to the direct ad-
dressing mode described in “An Introduction To Microcomputers: Volume I”. Extended address-
ing is specified in the same way as direct addressing. i.e.. an expression is given as the operand. If
the expression evaluates to a number in the range 256 < expression < 65,355 then extended
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addressing is used. For example:
ADD A  $31F6

requests the Assembler to generate an ADD instruction which will add the value present at
“memory location 31F6,¢ to the contents of Accumulator A.

DATA
MEMORY
Acl s 20C yYy 31F6
cer [ X]_Ix]xIx|x]
xX+ yy
A x X
8
INX
SP
PC mm mm
IRL BB
ADD A $31 F6
~

76543210
lstIIIOIIIIIIIOIIII
AAA A A AR

765 43210

[riv]v]rfofr]r]ofaaene
These bits select the Add operation

0 selects Accumulator A
11 selects Extended addressing

In addition, there are several instructions which do not provide a direct addressing option
{0 < expr < 255), e.g.. CLR, DEC, ROR. For those instructions, extended addressing is used
whenever a memory location is to be directly accessed.

INHERENT

Inherent addressing is specified when it is obvious by the nature of the instruction mnemonic
which registers, statuses or memory locations are to be used as operands. For example, ABA, the
Add Accumulator B to Accumulator A instruction, specifies what registers are to be the operands.
CLI, the Clear Interrupt Mask instruction, specifies what status is to be affected by the instruction
and RTS, the Return from Subroutine instruction, specifies that a return is to be executed:; this will
access the stack to determine the new value of the Program Counter.

RELATIVE

Branch and Branch-on-Condition instructions use program relative addressing; a single byte dis-
placement is treated as a signed binary number which is added to the Program Counter, after the
Program Counter contents have been incremented to address the next sequential instruction.
This allows displacements in the range + 1294 to - 125, bytes.
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ACCUMULATOR

Accumulator addressing is used by instructions having a single operand. Most of these instruc-
tions can select either Accumulator A or Accumulator B or a memory byte via the operand. For
example, the :
" CR A
instruction is one of four forms of the CLR instruction:
1} CLR A — Clear Accumulator A
2) CLR B— Clear Accumulator B
3) CLR expr,X — Clear memory byte selected by indexed addressing
4) CLR expr— Clear memory byte selected by extended addressing

The CLR A instruction is illustrated in the following diagram:

DATA
MEMORY
Acl §Z20C
cerL_] Jofi]o]o] o R
A
B PROGRAM
INX MEMORY
sSP
PC mm mm
IR 4F AF mmmm
mmmm + 1

CLR A
7 6543210
IOIIIOIOI]III]III
0 selects A ator A

0 selects Accumulator addressing
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Table 6-3. Addressing Options

IMMEDIATE

DIRECT

INDEXED

EXTENDED

mas
INHERENT

RELATIVE [ ACCUMULA-

TOR

X X X

xX X X

x

x

X X X X X

x

X X X X X X X x

x

X X X X X

X X X X X XX x

x

X X X

x

X X X X X X

XX X X XX XX XX

x

X X X X
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Table 6-3. Addressing Options (Continued)

lMM?)IATE DF!ECT INDEXED_' EXTENDED | INHERENT | RELATIVE JACCUMULA-
TOR
SEl X
SEV X
STA X X X
STS X X X
STX X X X
sus* X X X X
swi X
TAB X
TAP X
TBA X
TPA X
TST X X X
TSX X
TXS X
WA X
*These are dual d i i one is from memory and the other is the selected Accumulator.
ABA — ADD ACCUMULATOR B TO ACCUMULATOR A
DATA
MEMORY
Acl s zo0C
cer [X] [x]x]
A X X o
B8 yy PROGRAM
INX MEMORY
SP
rC mm mm
IR 18 1B mmmm
mmmm + )

ABA
——
1B

Add the contents of Accumulator B to the contents of Accumulator A. Store the result in Ac-
cumulator A, If xx = B4,g and yy = 20,4, then after the instruction:

ABA .

has executed, Accumulator A will contain E1,g.
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Ba =10110100
20 =00101101
11100001

No Cany,

setCtoQ U \ -
Nonzero result, set Z to 0

There is a carry out of bit 3, set Ac to 1
Bit 7is 1, setSto 1
O is set to O since the XOR of the carry out of bits 6 and 7 is 0

This is a routine data manipulation instruction.

ADC — ADD MEMORY, WITH CARRY, TO ACCUMULATOR A
OR B

This instruction uses four methods of addressing data memory and allows the contents of data
memory and the carry status to be added to Accumulator A or B. The four methods of addressing
memory are:

1) Immediate

2) Direct

3) Extended

4) Indexed

The first byte of object code determines which addressing options are selected:

[ #expr]
A [expr]
ADC 8 [expr.X]1
A}\—-\

7 6 4 3 2 1 0
Ill I IxIIIOIOIII
}

gt 5 fn

This bit selects the Accumulator
0 Accumulator A
1 Accumulator B
These two bits select the memory addressing mode
00 Immediate addressing (2 object bytes)
01 Direct addressing (2 object bytes)
10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes}




First, consider performing an addition with carry using immediate data.

DATA
MEMORY
Acl §20C
CCR X XIXEX X
C+xx +yy
A X X
8 PROGRAM
INX MEMORY
Sp )
PC mm mm
IR 25 ) 89 mmmm
h N Yy mmmm + 1

mmmm 4 2

To Accumulator A, (selected by bit 6 of the byte in the Instruction register), add the contents of
the next program memory byte, (addressing mode selected by bits 5 and 4 of the byte in the In-
struction register) and the-Carry status. Suppose xx = 3Aq. yy = 7Cie. C = 1. After the instruc-
tion:

ADC A #$7C

has executed, the Accumulator will contain B7,g:
' 3A =00111010
€ =01111100
Carry = 1
101101 1 1 <amgmNonzero result, set Z to 0

NoCury,CsattoO% \) » Carry out of bit 3 sets Ac to 1
T1.setsSto 1
L——»ow-o,s«o«n

Consider adding using direct memory addressing:
DATA
MEMORY

00qq

mmmm

mmmm + |
mmmm + 2
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To Accumulator 8 add the Carry status and the contents of the data memory addressed by the
next program memory byte (mmmm + 1). Note that the next program memory byte will address
data memory bytes in the range Oy < aq < 25540. If xx =3As6. qa = 1F6. vy = 7Cyg and
C =1, then execution of the instruction:

ADC B $IF

generates the same result as execution of the previously described ADC A #87C instruction,
with the exception that the result is stored in Accumulator B instead of Accumulator A.

Addition with carry using extended addressing works in a similar manner to direct addressing:

DATA
MEMORY
Acl s zo0C Yy Jepaq
cer ] IxIx]xIx]
A X X
B PROGRAM
INX MEMORY
SP
PC mm mm .
IR B9 @ B9 __Jmmmm
PP mmmm + |

99 mmmm + 2
mmmm + 3

To Accumulator A, add the Carry status and the contents of data memory addressed by the next
two program memory bytes, (high order address byte in the second object code byte,
mmmm + 1, and the low order address byte in the third object code byte, mmmm + 2). Note that
the two program bytes can address data memory bytes in the range 0 < ppaq < 65,355 If
xx = 3A.q PP = 5056 qq = 2346 Yy = 7Cyg and C = 1, then execution of the instruction:

ADC A $5023

produces the same result as execution of the ADC A #8$7C instruction which was described
above.

Indexed addressing takes two different forms. indexed addressing with no displacement, similar
to implied addressing described in “An Introduction To Microcomputers: Volume I” uses the
contents of the Index register to ascertain the memory address to be referenced.

DATA
MEMORY
Acl s z0C yy Jpraq
cer IxI IxixIx]x}-
XX +yy+C
A % X
8 PROGRAM
INX PP q4q MEMORY

SP ) -
PC mm mm .
™ ) A9 Jmmmm
00 mmmm + 1
mmmm + 2
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To Accumulator A, add the Carry status and the contents of data memory addressed by the Index
register. Note that the Index register can address data memory bytes in the range
0 < ppaq < 65.355. If xx = 3A,4 ppag (the contents of INX) = 5023, yy = 76,6 and C = 1.
then execution of the instruction:

ADC A X
produces the same result as ADC A $5023 which has been described above.

Indexed addressing with displacement allows a displacement in the byte following the instruction
to be added to the contents of the Index register.

DATA
MEMORY

Yy ppqq+cc

P PROGRAM
INX pp aq MEMORY

SP
PC mm mm 5 mmmm
IR A9 <

cc mmmm + |

mmmm 4 2

To Accumulator A. add the contents of memory addressed by the sum of the Index register and
the program memory byte following the instruction code. {Note that in the previous example
mmmm + 1 was 0), and the Carry status. The value in mmmm + 1 s treated as an 8-bit unsigned
integer when the addition with the Index register is performed. if xx = 3A,5. ppaq = 500D,
cC = 164 Yy = 7646 and C = 1, then the instruction:

ADC A 316X
generates the same result as the ADC A $5023 instruction discussed previously.

The ADC instruction is most frequently used in multibyte additions, to include the carry in the ad-
dition of the second and subsequent bytes.
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ADD — ADD MEMORY TO ACCUMULATOR

This instruction ADDs the contents of a memory location to Accumulator A or B. This instruction
offers the same memory addressing options as the ADC instruction, and will be illustrated using

direct addressing; consult the ADC instruction for the other available modes.

DATA
MEMORY
Acl s zo0C Yy 00pp
cer [X] Ix]xX[x] M
A XX
8 . Aocumulntof AorB PROGRAM
INX containg xx MEMORY
SP
PC mm mm
IR x xx101 1xxx1011} mmmm
PP mmmm + 1
A qq mmmm + 2
ADD B mmmm 4+ 3
——
{ Lexpr]
[ #expr) (extended only}
[expr,X]
7654 32 10
Tixgx]Ixjtrjo]1]1
‘ 0 for A A
1 for Accumulator B
00 di ddressing (2 object bytes)

01 Direct addressing {2 object bytes)
10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes}

To the selected Accumulator, add the contents of the selected memory byte. Suppose xx = 24,
vy = 8Bys. pp =43, and C = 1. After the instruction:

ADD A $43

has executed, Accumulator A will contain AF g

88 = 10001011
24 00100100
1010111 1 ~semNonzero resuit, set Z to 0

No Carry, set C to 0
Bit7is 1, setSto t

\ » No Carry from bit 3, set Ac to 0

NoCanyfrombitsGorIsgtOtoO

ADD is the binary addition instruction used in normal, single-byte operations; it is also the instruc-
tion used to add the low order bytes of two multibyte numbers.

AND — AND MEMORY WITH ACCUMULATOR

This instruction ANDs the contents of a memory location with the contents of Accumulator A or
B. This instruction offers the same memory addressing options as the ADC instruction, and will be
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illustrated using immediate addressing; consult the descﬁption of the ADC instruction for the
other addressing modes.

DATA
MEMORY
Acl § Z20C
cer L] Ix]xjoj] |
A
8 X X * Accumulator A or B PROGRAM
INX containg xx ] MEMORY
SP .
PC mm mm
IR 31x x x 0100 1xxx0100§ mmmm
YY mmmm + |
mmmm + 2
AND mmmm 4 3
Lexpr]
[expr,X]
[ #expr]
4 3 2
Lllxl | x]o] 1| fOI
| { )
0 selects A A A
1 selects Accumulator B
00 Immed ing (2 object bytes)

01 Direct addressing {2 object bytes)
10 Indexed addressing (2 abject bytes)
11 Extended addressing (3 object bytes)

AND the contents of the selected memory byte with the selected Accumulator and store the

result in the selected Accumulator. Suppose xx = FCyg and yy = 13,¢. After the instruction:
AND B #$13

has executed, Accumulator B will contain 10,4

FC = 11111100
13 = 00010011
000100 0 O <as— Nonzero result. Set Z to 0

o

AND is a frequently used logical instruction.

Oin bit 7 sets Sto O O is cleared to 0



ASL — SHIFT ACCUMULATOR OR MEMORY BYTE LEFT

Perform a one-bit arithmetic left shift of the contents of Accumulator A or B or the contents of the
selected memory byte.

First, consider shifting an Accumulator:

DATA
MEMORY
Acil s z0C
CCR XIXIX]XT
AT~
8 PROGRAM
INX MEMORY
k14
PC mm mm
IR }010 x 1000 0101000} mmmm
mmmm. + )
A
ASL B
-v-/—.-r

0 selects A ik A
1 selects Accumulator B

Suppose Accumulator A contains 7A,¢. Performing an:

ASL A
instruction will set the Carry status to O, the Sign status to 1. the Overflow status to 1. the Zero
status to O and store F4,q in Accumulator A.

Carry Accumulator A

X 01111010
ASLA 0O 1111010 0 casmm= Nonzero result, set Z to 0
vy
SetSto 1 N - 0¥ 1 =13t 0t01
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The ASL instruction uses two data memory addressing options:

1) Extended
2) Indexed

DATA
MEMORY

Acl sz0C
cer CTTXIXX]X] /o

+

A
A —/
INX i i MEMORY
sP
PC mm mm W
iR 1011 x 1000 011x1000] mmmm

xx/pp |mmmm +1
99 jgmmmm + 2

Vi

ASL: {Extended only)
———
\ [expr]
[expr.X]
76 54 3 210
o i fx]1Jofofo]
0 Indexed ing {2 object bytes)
1 Extended addressing {3 object bytes)

Suppose indexed addressing is used, iii = 3F3C,g, xx = 4A,q ppaq = 3F86,¢ and the contents
of ppaq are CB,g. After executing an:
ASL $4A.X
instruction, the contents of ppaq will be altered to 96,4 and Carry will be set to I
Carry 3F86

X 110010119 ‘
1 10010110 = Nonzero result, set Z to 0

N\ N\
-,
SetSto 1 s 1¥1=0,5t 010 -

The ASL instruction is often used in multiplication routines and as a standard logical instruction.
Note that a single ASL instruction multiplies its operand by 2.
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ASR — SHIFT ACCUMULATOR OR MEMORY BYTE RIGHT

Perform a one-bit arithmetic right shift of the contents of Accumulator A or B or the contents of a
selected memory byte.

First, consider right shifting an Accumulator:

DATA
MEMORY
PROGRAM
MEMORY
57 mmmm
mmmm + |
76543210
loJifofxfofr]i]1]
!
0 selects A A A
1 selects Accumulator B
Suppose Accumulator B contains 7A,q. Performing an:
ASR B
instruction will set Carry to O, Sign to 0, Overflow to 0, Zero to 0 and store 3D, in Accumulator B.
Accumulator B Camry
01111010 X

———————
Nonzero result, set Z 10 () =————wvele- 0 0 1 11101

J
SotStoO/\———»ov-o=o,momo
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The ASR instruction uses two memory addressing options:
1) Extended
2) Indexed

DATA
MEMORY

INX MEMORY

sP
PC mm mm
ir[o1Ix0111 011x0111) mmmm

PP mmmm + |

g9 mmmm + 2
ASR mmmm 4 3
——r—

)

7 6 3 21

0
ooBpomn

|

{expr]
[expr.X}

[~ Jen
T P N

Ol ing (2 .object bytes)
1 Extended addressing (3 object bytes)

Suppose extended addressing is used, pp = 01,5 qq = 3446 and the contents of 0134,4 are
CB,¢. Executing an:

ASR $0134
instruction will alter the contents of memory location 01344 to E5,,.

0134 Carry
G‘IOO|0|I X
————
Nonzero result, set Z t0 ( =i { 1 100101 1
SetStot 1¥1=0,30t0t0 0

ASR is frequently used in division routines.
BCC — BRANCH IF CARRY CLEAR
BCC

24

This instruction is identical to the BRA instruction except that the branch is only executed if the
Canry status equals 0, otherwise the next instruction is executed.
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In the following instruction sequence:

after the BCC instruction, the ABA instruction is executed if the Carry status equals 0. The AND
instruction is executed if the Carry status equals 1.

BCS — BRANCH IF CARRY SET

BCS

“——

25
This instruction is identical to the BRA instruction except that the branch is only executed if the
Carry status equals -1, otherwise the next instruction is executed.

In the following instruction sequence:

After the BCS instruction, the ABA instruction is executed if the Carry status equals 1. The AND
instruction is executed if the Carry status equals O.
BEQ — BRANCH IF EQUAL

BEQ

g

27

This instruction is identical to the BRA instruction except that the branch is executed only if the
Zero status equals 1; otherwise the next instruction is executed.

In the following instruction sequence:

After the BEQ instruction, the ABA instruction is executed if the Zero status equals 1. The AND
instruction is executed if the Zero status equals O.

BGE — BRANCH IF GREATER THAN OR EQUAL TO ZERO
BGE

——

2C

This instruction is identical to the BRA instruction except that the branch is executed only if the
Exclusive-OR of the Sign and Overflow statuses is O: i.e.. Sign and Overflow are both 1 or Sign
and Overflow are both Q; otherwise the next instruction is executed.

.6-35



Inthe following instruction sequence:

(S¥0)=1 NEXT
#S7F

After the BGE instruction, the ABA instruction is executed if the Sign and Overflow statuses are
both 1 or if they are both 0. The AND instruction is executed if the Sign status does not equal the
Overflow status.

This instruction is used to perform a twos complement greater than or equal branch.
BGT — BRANCH IF GREATER THAN ZERO

BGT"

——

2E

This instruction is identical to the BRA instruction except that the branch is executed only if one of
the following two conditions is met: ’

1) The Zero status is 0 and the Sign and Overflow statuses are O.
2) The Zero status is O and the Sign and Overflow statuses are 1.

Otherwise, the next instruction is executed.

In the following instruction sequence:

ZVS¥0)=0

_ After the BGT instruction. the ABA instruction is executed if the Zero flag is O and the Exclusive-
OR of the Sign and Overflow statuses is 0. In all other cases. the AND instruction is executed.

This instruction is used to implement a twos complement greater than branch capability.

BHI — BRANCH IF HIGHER
BHI

22

This instruction is identical to the BRA instruction except that the branch is executed only if the
Zero status and the Carry status are O; otherwise the next instruction is executed.

In the following instruction sequence:
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After the BHI instruction is executed, the ABA instruction is executed if the Zero and Camy
statuses are 0. The AND instruction is executed if either the Zero or Carry status is 1 or both the
Zero and Carry statuses are 1.

This instruction provides an unsigned greater than branch instruction. Contrast this instruction
with the BGT instruction. :

BIT — BIT TEST

This instruction ANDs the contents of Accumulator A or B with the contents of a selected memo-
ry location, sets the condition flags accordingly, but does not alter the contents of the Accumula-
tor or memory byte. This instruction offers the same memory addressing options as the ADC in-
struction. This instruction will be illustrated using extended addressing; consult the ADC instruc-
tion for the other available modes.

DATA
MEMORY
Acl sz0C yy__Jrpaq
cer L] Ixixjo] |
A X X }
B =~ Contents of PROGRAM
INX Accurmulator A or B are xx MEMORY

sP
PC mm mm
IR 11x xx 0101 Ixxx0101) mmmm

pp mmmm + }
qQq mmmm + 2

A mmmm + 3
BT B {expr]
[expr,X]1
/ [ #expr) {extended only)
7 65 43210
1xix]xjojijol
I |
0 selects A [ A
1 selects Accumulator B
00 Immed ing (2 object bytes)

01 Dirsct addressing (2 object bytes)
10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

AND the contents of the specified Accumulator with the contents of the selected memory loca-
tion and set the Sign and Zero condition flags accordingly. Suppose xx=A6,e. yy=EQ,g and
ppaq=1641,6. After the instruction:

BT A $1641

has executed, Accumulator A will still contain AB,¢, location ppaq will still contain EQ,¢ but the
statuses will be modified as follows:

A8 = 10100110
€0 = 11100000
1010000 0O -<as==Nonzero resuit, set Z to 0

sﬂs'o“_/ O is always cleared by a BIT instruction

6-37



BIT instructions frequently precede conditional Branch instructions. BIT instructions are also used
to perform masking functions on data.

BLE — BRANCH IF LESS THAN OR EQUAL TO ZERO
BLE

2F

This instruction is identical to the BRA instruction with the exception that the branch is executed
only if one or more of the three following conditions exist:

1) The Zero status is 1.
2) The Overflow status is 1 and the Sign status is O.
3) The Overflow status is O and the Sign status is 1.

Otherwise the next instruction is executed.

In the following instruciion sequence:

ZV(S¥O0)=1

Zvisvoy=0 NEXT
B¥O=0 g

ABA

After the BLE instruction, the ABA instruction is executed if the Zero status is 1 or the Exclusive-
OR of the Sign and Overflow statuses is 1. The AND instruction is executed if the Zero status is O
and the Exclusive-OR of the Sign and Overflow statuses is O.

This instruction provides the programmer with a twos complement less than or equal branch.

BLS — BRANCH IF LOWER OR SAME
BLS

——

23

This instruction is identical to the BRA instruction except that the branch is executed only if either
the Carry or Zero status is set; otherwise the next instruction is executed.

in the following instruction sequence:

After the BLS instruction, the ABA instruction is executed if the Carry or Zero status equals 1. The
AND instruction is executed if both the Carry and Zero statuses are 0.

This instruction is useful as an unsigned less than or equal branch. Compare this instruction with
the BLE instruction which provides a twos complement less than or equal branch.

BLT — BRANCH IF LESS THAN ZERO
BLT

2D
This instruction is identical to the BRA instruction except that the branch is performed only when
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the Exclusive-OR of the Sign and Overflow statuses is 1; otherwise the next instruction is ex-
ecuted.

In the following instruction sequence:

‘ _ o NEXT
ARD (S¥0)=0 HEIF

After the BLT instruction, the ABA instruction is executed if the Sign and Overflow statuses are
not equal. The AND instruction will be executed if the Sign and Overflow statuses are equal.

This instruction provides a twos complement less than branch capability.
BM{ — BRANCH IF MINUS

BMI

28

This instruction is identical to the BRA instruction except that the branch is executed only if the
Sign status is 1; otherwise the next instruction is executed.

In the following instruction sequence:

NEXT
#S7F

After the BMI instruction, the ABA instruction is executed if the Sign status is 1. The AND instruc-
tion is executed if the Sign status is 0.
BNE — BRANCH IF NOT EQUAL

BNE

R

26

This instruction is identical to the BRA instruction except that the branch is-executed only if the
Zero status is 0; otherwise the next instruction is executed.

In the following instruction sequence:

NEXT
Z=1
HSTF

After the BNE instruction, the ABA instruction is executed if the Zero status is 0. The AND in-
struction is executed if the Zero status is 1.
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BPL — BRANCH IF PLUS
BPL

2A

This instruction is identical to the BRA instruction except that the branch is executed only if the
Sign status is O; otherwise the next instruction is executed.

In the following instruction sequence:

NEXT
#S7F

After the BPL instruction, the ABA instruction is executed if the Sign status is 0. The AND instruc-
tion is executed if the Sign status is 1.

BRA — BRANCH TO THE INSTRUCTION IDENTIFIED
IN THE OPERAND

DATA
MEMORY
Acl s z0C
CCR
A
8 PROGRAM
INX MEMORY
SP
PC mm mm
IR 20 20 mmmm
~y rr mmmm 4 |

BRA disp
—— ——
20 m

This instruction adds the contents of the second object code byte (taken as a signed 8-bit dis-
placement) to the contents of the Program Counter plus 2; this becomes the memory address for
the next instruction to be executed. The previous Program Counter contents are lost.

In the following instruction sequence:

BRA NEXT
AND H#HSTF
NEXT  ABA

After the BRA instruction, the ABA instruction will be executed. The AND instruction will never
be executed unless a Branch or Jump instruction somewhere else in the instruction sequence
jumps to this instruction. {Note that since this instruction is not labeled, this is a very unlikely
event.)
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The Branch instruction uses Branch-Relative addressing, which is similar to Program Relative Pag-
ing as described in *'An Introduction To Microcomputers: Volume | — Basic Concepts”. The ex-
ception is that the Program Counter contents are incremented to point 1o the next instruction
before the 8-bit signed displacement is added. Therefore, the Program Counter contents are
replaced by:

[PCl+2+m

Note that in the above example, the ABA instruction labeled by NEXT must be within 129 object
bytes {not instructions) of the Branch-to-Next instruction. If it isn't, the Assembler will flag the BRA
instruction as an error. ’

BSR — BRANCH TO THE SUBROUTINE IDENTIFIED IN
THE OPERAND

DATA
MEMORY
XXXX —2
Acl s zOC mm  Ixxxx —1
ck (TTTTT] mm+2_§xxxx
XXXX — 2
A
8 PROGRAM
INX MEMORY
SP X X x X
PC mm mm m
IR 80 ‘ §p__jmmm
rr mmmm + }
mmmm + 2
disp
~—— ——
8D "

Store the address of the instruction following the BSR on the top of the stack; the top of the stack
is a data memory byte addressed by the Stack Pointer. Then subtract two from the Stack Pointer
in order to address the new top of stack. Add the contents of the.second byte of the instruction
and two to the Program Counter and begin execution.

Consider the instruction sequence:

BSR SUBR
AND #STF
SUBR  ABA

After the BSR instruction has executed, the address of the AND instruction is saved at the top of
the stack. The Stack Pointer is decremented by 2. The ABA instruction will be executed next.

BVC — BRANCH {F OVERFLOW CLEAR
BVC

28

This instruction is identical to the BRA instruction except that the branch is executed only if the
Overflow status is O; otherwise the next instruction is executed.
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In the following instruction sequence:

After the BVC instruction, the ABA instruction is executed if the Overflow status is 0. The AND in-
struction is executed if the Overflow status is 1. -
BVS — BRANCH IF OVERFLOW SET

BVS

’ ~——

29

This instruction is identical to the BRA instruction except that the branch is executed only if the
Overflow status is 1; otherwise the next instruction is executed.

In the following instruction sequence:

after the BVS instruction, the ABA instruction is executed if the Overfiow status equals 1. The
-AND instruction is executed if the Overflow status equals 0.

CBA — COMPARE ACCUMULATORS

DATA
MEMORY
Acl s ZzOC
cer [ ] Ixjxix]x]
Al xx O
81 vy PROGRAM
INX MEMORY

SP j
PC mm mm
IR 1] 11 mmmm

CBA

n
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Subtract the contents of Accumulator B from the contents of Accumulator A. Discard the result.
i.e.. do not affect the contents of either Accumulator, but modify the status flags to reflect the
result of the operation.

Suppose xx =E3,g and yy = ADe. After the instruction:
CBA

has executed, Accumulator A will stifl contain E3,¢ and Accumulator B will still contain AQ4e, but
statuses will be modified as follows:

E3 11100011
Twos complementof A0 = 01100000
010000 1 | —at==Nonzero result, set Z to 0

Carry sets Cto O "
OsetsSt00 \._._‘nn——mo:oo

Notice that the resulting Carry is complemented.

Compare instructions usually precede conditional Branch instructions.

CLC — CLEAR CARRY

DATA
MEMORY
Aci s 70C
ccri_ 11171 Jo]
A
8 PROGRAM
INX MEMORY

sP
PC mm mm
IR . oc OC mmmm

ac

——

oc

Clear the Carry status. No other status or register's contents are affected.
The Carry status is also cleared by the CLR and TST instructions.
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CLI — CLEAR INTERRUPT MASK

DATA
MEMORY
Acl s z0C
cer_Jof T 1 [ ]
A
B PROGRAM
INX MEMORY
SP
PC mm mm
* = \__/ 2 -
cu
———
O

Clear the interrupt mask bit in the Condition Code register. This instruction enabies the MC6800's
interrupt service ability, i.e.. the MCB800 will respond to the Interrupt Request control line. No
other registers or statuses are affected.

CLR — CLEAR ACCUMULATOR OR MEMORY

This instruction clears a specified Accumulator or a selected memory byte. The Zero flag is set to
1; the Sign, Overflow and Carry statuses are set to O.

First, consider clearing an Accumutator:

DATA
MEMORY
Acl s z0C
ccr| | Jofifofo]
oL t n
8 X X \.AccumulﬂonrB RAM
INX is cleared ME
SP ‘
PC mm mm
IRJO10Xx111) 010x1171 ] mmmm
A
ClR B
N
/ |
e g /

765 43210

Llifofxr i)

0 selects Accumulator A
1 selects Accumulator B
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Clear the contents of the specified Accumulator. Suppose Accumulator B contains 43,¢. After the
instruction:
CLR B

- is executed, Accumulator B will contain 00,. In addition. Sign, Overfiow and Carry will be O; Zero
will be 1.

The CLR instruction also has two memory addressing modes, Indexed and Extended.

DATA
MEMORY
Acl sz20C xx__|ppad
CCR ..m“ﬂm o
A
8 PROGRAM
INX MEMORY

k14
PC mm mm
IREOIIX1111 011x1111] mmmm

PP mmmm + 1

99 mmmm + 2

CLR
—— (extended only)

{expr]
{expr.X]

765 43210

lohlll:l'llllﬁl

0 for d ing (2 object bytes)
1 for Extended addressing (3 object bytes)

Suppose pp = 43,4 qq = 1444 and xx = 0564. After the execution:

CLR $4314 .
instruction, the contents of memory location 4314, will be 00 and the status flags will be ap-
propriately modified.

CLV — CLEAR OVERFLOW DATA
MEMORY
Acl s z0C
cerL 1 1 1 Jof |
A
B . PROGRAM
INX MEMORY
SP
PC mm mm
IR 0A 0A __fmmmm
CcLwv
——
0A
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Clear the overflow bit in the Condition Code register. No other regis{ers or statuses are affected.

CMP — COMPARE ACCUMULATOR WITH MEMORY

This instruction subtracts the contents of a selected memory byte from Accumulator A or B, sets
the condition flags accordingly. but does not alter the contents of the Accumulator or memory
byte. This instruction offers the same memory addressing options as the ADC instruction. This in-
struction will be illustrated using indexed addressing; consult the ADC instruction for examples of
the other available modes.

DATA
MEMORY
Acil s z0C Yy ppqqtcc
CCr ] IxJx]x]x]
A X X. {
B ., Accuvpulator AorB PROGRAM
INX pp q9 contains xx MEMORY
SP
PC mm mm
IR Ixxx0001 I1xxx0001] mmmm
- cc mmmm + )
A
mmmm + 2
"CML 8 {extended only)
- [expr]
[expr.X]
[ #expr)
7 654 3210
lllxlxlxlOIOIOllI
L .
1 selects Accumulator B
00 di ddressing (2 object bytes)
01 Direct addressing (2 object bytes)

10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

Subtract the contents of the selected memory byte from the contents of the specified Accumula-
tor and set the Sign, Zero, Overflow and Carry statuses to reflect the result of the subtraction.
Suppose xx =F6g vy = 184 and cc = 43,4

After the instruction:
CMPB  $43.X

has executed. Accumulator B will still contain F8,, location ppaq + 43,6 will still contain 18,4 but
the statuses will be modified as follows:

. FF = 11110110
Twos complementof 18 = 11101000
’ 1101111 0-—a==mNonzero resuit, set Z to 0

s«c:ood/

s-xs:o14/\——-—w~1=o,momo

Notice that C is the complement of the resulting carry.
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Compare instructions are most frequently used to set statuses before the execution of Branch-
on-Condition instructions.

COM — COMPLEMENT ACCUMULATOR OR MEMORY
This instruction complements a -specified Accumulator or a selected memory byte.

First, consider complementing an Accumulator:

DATA
MEMORY
Acl s z0C
cer ] Ix]xjo]i]
A X X
B . A lator A or B ins xx PROGRAM
INX MEMORY
SpP
PC mm mm mmm
ir [o10x0011 o10x0011} ™
A
CcoM )
—— ~———
/

0 selects Accumulator A
1 selects Accumulator B

Complement the contents of the specified Accumulator. No other status bit or register's contents
are affected. Suppose Accumulator B contains 3A,e. After the instruction:

comB
is executed, the Accumulator will contain C5,¢.

m, = ?10

111
Complement 000 10 1 <ushems Nonzero result, Z is set to 0

Curvismtol/
Sissetto 1 Overflow is set to 0

-0

[}
1
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The COM instruction also offers two memory addressing modes:
1) Extended

2) Indexed
DATA
MEMORY
Acl sz0C YY lppqq+cc

cer [ _Ixixlo]1]

A

8 PROGRAM
INX PP qq MEMORY

SP

PC mm mm

IR} 011x0011 011x 0011 mmmm

ce mmmm + |
mmmm +4 2
CcOoM {extended ondy)
Somym—
\ [expr]
{expr,X]
7 6 54 3 2
CoonEan)
A
0 for Indexed ing (2 object bytes)

1 for Extended addressing (3 object bytes)
Suppose that the contents of the Index register are 0100,4, and the contents of memory location
011344 are 23,¢. After a:
COM $13.X
instruction executes, memory location 0113,¢ will be altered to DCys.

23
Complement

00100011
1101110 0-emi==Nonzero result, Z is set to 0

Carry is automatically set to 1
Sets Sto 1

CPX — COMPARE INDEX REGISTER

This instruction compares the contents of the Index register with the contents of two selected
memory locations. This instruction offers the same memory addressing options as the ADC in-
struction. This instruction will be illustrated using direct addressing; consult the discussion of the
ADC instruction for the other addressing modes. .



DATA

MEMORY
Act §20C X X 00rr
cer L1 EXEXIX] ] YY ]00rr~]
PP —xX
aq -~y
A Y
B PROGRAM
INX PP aa_ 4 MEMORY
SP ‘
PC mm mm
IRJ10xx1100) 10 x x 1100] mmmm
rr mmmm + |
ss mmmm 4+ 2
EP.,).(, . ) {extended and
\ [¥expr] immediate)
Lexpr,X]
[exprl
7 65 43210
00 Immedi ing (3 object bytes)

01 Direct addressing (2 object bytes)
10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

Subtract the contents of the memory byte immediately following the selected memory byte from
the low byte of the index register, and discard the result. Subtract the contents of the selected
memory byte from the high byte of the Index register. Set the Sign and Overflow statuses accord-
ing to the result, set the Zero status to 1 if the resuit of both subtractions was 0, and discard the
result.

Suppose pp = 1A qq = BOjg, Xx = 1By, yy =BO,g and 1 = 43,¢. After the instruction:
CPX $43

has executed. the Index register will still contain 1ABO,¢, location 0043, will still contain 1B, and
memory location 0044, will still contain BO,e. but the statuses Sign, Zero and Overflow will be
modified as follows:

1A = 00011010
Twos complementof 1B = 11100101

1

1111111 Both results are not zero, set Z to 0
SetsSto!J
——-\

0¥0=0,5t0t 0

BO = 10110000
Twos complementofB0 = 01010000
00000000
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DAA — DECIMAL ADJUST ACCUMULATOR

Acl §20C

cer [ IXIx]x]x]

A X X
B

INX

SP

PC mm mm
IR 19

Convert the contents of Accumulator A to binary-coded-decimal form. This instruction should be

DAA
——
19

DATA
MEMORY

MEMORY

mmmm

used only after adding two BCD numbers, i.e., look upon ABA DAA or ADD A DAA or

ADC A DAAorSUB A DAAorSBC A DAA as compound decimal arithmetic instructions
which operate on BCD source to generate BCD answers.

Suppose Accumulator A contains 39,4 and Accumulator B contains 47,5, After the instructions:

ABA
DAA

have executed, the Accumulator will contain 86,6 not 8046.

The Sign and-Zero flags are modified to reflect the status they represent. The Overflow status is
destroyed and the Carry status:is set or reset as if a hypothetical binary-coded-decimal addition

had just taken place.
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DEC — DECREMENT ACCUMULATOR OR MEMORY

This instruction decrements a specified Accumulator or a selected memory byte.

Consider decrementing Accumulator A or B.

Aci s z0OC

cer | IXIX]X] |

A
B xx }\AccurnulnoerrB
INX contains xx
sPjl .
PC mm mm @
IR 010 x 1010
A
DEC 8
o ——
7/
7654 3210
o1 Jox[ 1 ]1]o]o]
0 selects A ator A

1 selects Accumulator B

Subtract 1 from the contents of the specified Accumulator.

Suppose Accumuiator B contains 3A . After instruction:
DEC B

has executed, Accumulator B will contain 39,4

3A = 00111010
Omsfomplumtofl = 11111111

DATA
MEMORY

MEMORY

010x1010

mmmm

m——————————
Carry not affected 0011100 1 «esmmmeNonzero result, Set Z to 0

Omsm()/\_-——>1¥1 =O:Oi;mi00
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The DEC instruction also offers two memory addressing modes:

1) Extended
2) Indexed ‘
DATA
MEMORY
Acl s zOC XX ppaq+cc
cer L IxIx]x] |
A
8 PROGRAM
INX PP a4 MEMORY
SP
PC mm mm I
IRfO11x1010 011x1010
cc mmmm <4}
mmmm + 2
DEC mmmm 4 3
——
\ Lexpr]
[expr.X] {extended onty)

7 65 43210

Lol fx] o] o]

0 Inck {2 object bytes)
1 Extended (3 object bytes)

Decrement the contents of the specified memory byte.

If xx = AB,q, ppaq =0100,6 and cc = 0A,q, then after execution of the instruction:
DEC $0A X

memory location 010A,¢ will be altered to Ad,q.

A5
Ones complement of 1

10100101
11111111

10100 10 O-u==Nonzero result sets Z to 0

Carry is not altered \l ;\

Sets Sto 1 1¥13ets O to 0



DES — DECREMENT STACK POINTER

DATA
MEMORY
Act sz20C
cce (LLITT) @
A
B PROGRAM
INX MEMORY
SP X X Yy .
PC or — ! mmmm
IR 34 34
DES
——
34

Subtract 1 from the 16-bit value in the Stack Pointér. No other registers or condition codes are-
affected.

Suppose the Stack Pointer contains 2F7A,4. After the instruction:
DES
has executed, the Stack Pointer will contain 2F79,¢.

DEX — DECREMENT INDEX REGISTER

DATA
MEMORY
Acl s 20C
cer ) 1 Ix] 1 |
ppqq—1
A )
B PROGRAM
INX PP qq MEMORY
SP
PC mm mm memmm
R[ 09 09
DEX
——
08

Subtract 1 from the 16-bit value in the Index register. The Zero status is set to 1 if the 16-bit result
is 0.
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Suppose the Index register contains 310C,e. After the instruction:
DEX )

has executed, the Index register will contain 310B,¢ and the Zero status will be set to 0.

EOR — EXCLUSIVE-OR ACCUMULATOR WITH MEMORY

Exclusive-OR the contents of Accumulator A or B with the contents of a selected memory byte.
This instruction offers the same memory addressing options as the ADC instruction, and will be il-
lustrated using immediate addressing; consult the ADC instruction for the other addressing
modes.

DATA
MEMORY
Acl sz0C
ccri_J [x][xjof ]
A X X }
B PROGRAM
INX MEMORY
SP
PC — 1x xx1000] mmmm

A mmmm + 2
EOR 8 (Extended Only)
= > Lexpr]

\ [expr,X]
/ [ #expr]
3 2

P Ix[xIx]rjofo]o]

0 selects A . A

1 selects Accumulator B

00 tmmedi ing (2 object bytes)
01 Direct addressing (2 object bytes)

10 indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

Exclusive-OR the contents of the specified Accumulator with the contents of the selected memo-
ry location, treating both operands as simple binary data. Suppose that xx =E3,gand yy = AQss.
After the instruction:

EOR A  #$A0
has executed, Accumulator A will contain 43,.

€3 = 11100011
A0 = 10100000
Carry is not affected 010000 1 T Nonzero result, set Z to 0

Osets St0 0 Overflow is cleered

EOR is used to test for changes in bit status.
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INC — INCREMENT ACCUMULATOR OR MEMORY

This instruction increments the specified Accumulator or selected memory byte.

First, consider incrementing an Accumulator:

DATA
MEMORY
Acl s z20C
cer L] IXExIX] |
‘A X X } .
B \AccumulatoerrB PROGRAM
INX ] contains xx MEMORY
SP I\
PC mm mm |
IRJO10x1100 010x}100] mmmm
A
INC B
‘W\ ———

7 6 543210

lelifofx]1fr]jo]o]

0 selects Accumulator A
1 selects Accumuiator B

Add 1 to the selected Accumulator. Suppose that xx = 3A,e. After the instruction:
INC A
has executed, Accumulator A will contain 3B e.
0011101 1~ Nonzero result, set Z to 0

Carry status not affected

&31004/\———» 0%0 =0, 58t 0 10 0

The INC instruction also offers two memory addressing modes:

1} Extended
2) Indexed
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DATA

MEMORY
Act s 70C XX ppaq
cer ] IXIxEx] | -
A
Bl PROGRAM
INX MEMORY

SP
PC mm mm
IR J0O11 %1100 011x1100§ mmmm

pP mmmm + 1

q9 mmmm 4 2

INC (Extended Only)
——

\ {expr]
[expe,X]
7 6 5 4 3 210
l‘OIIIIIxIlIlIOIOl
4 0 Ind ing (2 object bytes)
1 Extended addressing {3 object bytes}

Increment the selected memory byte.
If pp =01,6 qq = A2, and xx = CO4q. then after executing an:
INC $01A2
instruction, the contents of memory location 01A2,¢ will be incremented to Cl,q.

The INC instruction can be used to provide a counter in a variety of applications, e.g., counting
the occurrences of an event or as an iterative counter which specifies the number of times a task
is to be performed.

INS — INCREMENT STACK POINTER

DATA
MEMORY
Acl sz0C
cex CLTLIT)
8 PROGRAM
INX MEMORY

SP XX Yy
PC mm mm
IR 31 31 mmmm

{7
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Add 1 to the 16-bit value in the Stack Pointer. No other registers or condition codes are affected.

Suppose the Stack Pointer contains 2F7A,5. After the instruction: )
INS

has executed, the Stack Pointer will contain 2F78,.

INX — INCREMENT INDEX REGISTER

DATA
MEMORY
Ac1t 5 20C
CCR
A
B PROGRAM
INX X3 qq MEMORY

mmmm + |

sp
PC mm mm
IR} 08 08 mmmm

INX
~——

08

Add 1 to the 16-bit value in the Index register. The Zero status is set to 1 if the 16-bit result is 0.
Suppose the Index register contains 310C,g. After the instruction:

INX
has executed, the Index register will contain 310D,
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JMP — JUMP VIA INDEXED OR EXTENDED ADDRESSING

This instruction will be illustrated using indexed addressing.

DATA
MEMORY
Acl s 270C
CCR
A
B PROGRAM
INX il 94 MEMORY
SP D
PC mm mm +rr
IRJO1I x 1110 . Ppas 011x1110) mmmm
‘ ~N rr mmmm + )
’ mmmm + 2
JMP {Extended Onty)

——
\ J Lexpr]
[expr,X]
76 5 3 210
IOI]I!I IlIllllOI

4

X

4 0 Indk ing (2 object bytes)
1 Extended addressing (3 object bytes)

Jump to.the instruction specified by the operand by loading the address of the selected memory
byte into the Program Counter.

In the following instruction sequence:

LDX #JPTBL
JMP 2.X

JPTBL  BRA NEWDATA
BRA PROCESSDATA
BRA FLAGDATA

If the Index register contains the address of JPTBL, then the JMP. instruction will perform an in-
dexed jump relative to JPTBL. In this case, the instruction executed following the:

JMP 2.X .
. instruction would be the BRA PROCESSDATA instruction.

More frequently, the JMP instruction uses the extended addressing mode. In this case, the sec-
ond byte of the instruction is loaded into the high byte of the Program Counter, and the third byte
of the instruction is loaded into the low byte of the Program Counter. Instruction execution con-
tinues from this address.
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JSR — JUMP TO SUBROUTINE USING INDEXED OR
EXTENDED ADDRESSING

This instruction will be illustrated using extended addressing.

DATA
MEMORY

Xxxx —2

Act $ 20C mm  xxxx~—1

CCR mm+2, /43] x % x x
. Com=t)

INX ‘ MEMORY

1d X X X X
PC mm mm
PPQ
IR 101 %1101 ) ? 101 x1101] mmmm

PP
N 99

Lexpr]
Lexpr.X}
7 5 3 2 0
1 1 1

6 1
IIIOI I I I IOI I

i % | &

0 Indexed
1 Extended addressing

The Program Counter is incremented by 3 (if extended addressing is used), or 2 (if indexed ad-
dressing is used), and then is pushed onto the stack. The Stack Pointer is adjusted to point to the
next empty location in the stack. {These functions are detailed in the description of the BSR in-
struction.) The address of the selected memory byte is then stored into the Program Counter. Ex-
ecution continues from this point.

Consider this instruction sequence:

JSR SUBR
AND #87F ; !
SUBR.  ABA

After the JSR instruction 'has executed, the address of the AND instruction will be saved at the
top of the stack. The ABA instruction will be the next instruction executed.
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LDA — LOAD ACCUMULATOR FROM MEMORY

Load the contents of the selected memory byte into the specified Accumulator. This instruction
offers the same memory addressing options as the ADC instruction and will be illustrated using
indexed addressing; consult the ADC instruction for the other addressing modes.

DATA
MEMORY
Acl s Z0C Yy ppaq+ce
cer [ ] Ix]xjol | /
<+
A Yy }
B PROGRAM
INX pp qq9 MEMORY
sp ‘
PC mm mm .
IRF1xxx0110 Ixxx0110] mmm
\ cc mmmm + 1
A mmmm 4 2
DA B {Extended Only)
—— [expr]
S Lexpr,X]
[ #expr]
76 543210
Illxlxlxlolllllol
‘ 0 selects A ! A
1 selects Accumulator B
1] dd g (2 object bytes)

11 Extended addressing (3 object bytes}
Load the contents of the selected memory byte into the specified Accumulator.

Suppose the Index register contains 0800, and cc = 43,4, If memory location 0843, contains
AA.s: then after:

LDA'A  $43X
has executed, Accumulator A will contain AA 6.
1010101 O —~ett—— Nonzero resuit, set Z to 0

Sissetto 1
O is cleared



LDS — LOAD STACK POINTER

Load the contents of two selected memory locations into the Stack Pointer. This instruction offers
the same memory addressing options as the ADC instruction, and will be illustrated using im-
mediate addressing; consult the discussion of the ADC instruction for examples of the other ad-

dressing modes.

DATA
MEMORY
Act1 s z0C
cer L ExjxJol |
A
8 PROGRAM
MEMORY

INX

SP
PC mm mm
IRE1Oxx1110 10xx1110] mmmm
N mmmm + 1

\\ p.P
qq mmmm + 2,
mmmm 4+ 3

LDS
———
\ [ #expr)
X
::::'] ! (Immediate and Extended Only)
76 54 3210
lllOIXIxI]IlI]IjI
|
00 Immed ing (3 object bytes)
01 Direct addressing (2 object bytes)
10 indexed addressing (2 object bytes)
11 Extended addressing {3 object bytes)

Load the contents of the selected memory byte into the high byte of the Stack Pointer. Load the
contents of the memory byte immediately following the selected memory byte into the low byte
of the Stack Pointer. Set the Sign status if the most significant bit of the Stack Pointer is set; set
the Zero status if all 16 bits loaded are 0. Clear the Overflow flag.

Suppose pp = 14,6 and qg = 00+6. After executing a:
LDS #81400
instruction, the Stack Pointer will contain 1400,
0001010000000000 —ag——Set Z to 0

SetSto 0 O is cleared
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LDX — LOAD INDEX REGISTER

Load the contents of two selected memory locations into the Index register. This instruction
offers the same memory addressing options as the ADC instruction, and will be illustrated using
direct addressing; consult the ADC instruction for the other addressing modes.

DATA
MEMORY
Act s zo0C PP J00rr
cer (T IXIxJoL ] aa
pPPaq
A
8 PROGRAM
INX MEMORY
sp
PC mm mm S
IRI1Ixx1110 11xx1110
[ mmmm +
mmmm + 2
LDX mmmm + 3
——
\ { #expr]
L expr,X] )
Texpr] (Immediate and Extended Only)
7 65 4 3 210
1xIxj1]111]0
|
00 ddressing (3 object bytes)
01 Direct addressing {2 object bytes)
10M1dexedlddnuin\g(2obi.c1bytea)

11 Extended addressing (3 object bytes)

Load the contents of the selected memory byte into the high byte of the Index register. Load the
contents of the memory byte immediately following the selected memory byte into the low byte
of the Index register. Set the Sign status if the most significant bit of the Index register is set. Set
the Zero status if all 16 bits of the Index register are set to 0. The Overflow status is cleared to O.

“Suppose that rr = 9046, pp = 01,6 and qq = 004¢. Executing the:
LDX $90

instruction will load 0100, into the Index register.

0000000100000000 <tfmmem St Z to 0

SetSto 0 Overflow fiag is cleared
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LSR — LOGICAL RIGHT SHIFT OF ACCUMULATOR
OR MEMORY

This instruction performs a one-bit logical right shift of the specified Accumulator or the selected
memory byte.

DATA
MEMORY
PROGRAM
MEMORY
PC mm mm .
IR 1010 x 0100 010x0100] mmmm
A
LSR B
g el e ad

0 selects A k A
1 selects Accumulator B

Shift the selected Accumulator's contents right one bit. Shift the low order bit into the Carry
status. Shift a 0 into the high order bit.

Suppose Accumulator B contains 7Ass. After the:
LSR B

instruction is executed, Accumulator B will contain 3D and the Carry status will be set to 0.

Accumulator B Carry
01111010

001 11101
S is always set 10 0 ‘ Qmmuhmzwo
080 =030t 010
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Two methods of memory addressing are available with the LSR instruction. Indexed and Ex-
tended.

A
B PROGRAM
INX MEMORY

sP

PC mm mm

1R [G71x 0100 011x 01004 mmmm
PP mmmm + |

99 mmmm + 2
{Extended Only)

\ [expr]
[expr,X]

o]
[~ |
e Bl R
o]
[~ |
o]
a

0 Ind ing (2 object bytes)
1 Extended addressing (3 object bytes)

Logically shift the contents of the selected memory location right by one bit.

Suppose pp = 04,6, qq = FA, and the contents of memory location 04FA 4 are 0D,q. After the

instruction:
LSR $04FA
is executed, the Carry status will be 1 and the contents of location 04FA g will be 06,
O4FA Carry
00001101

X
00000110 1
J \_,Nonmonsuh,mzmo
Sissetto 0
0¥ 1=1,38t0to1
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NEG — NEGATE ACCUMULATOR OR MEMORY

This instruction negates the specified Accumulator or the selected memory byte by replacing the
Accumulator or memory byte with the twos complement of its contents.

First, consider negating an Accumulator:

DATA
MEMORY
Acl s Z20C
cer ] IxPxIx]x]
A X X a
8 PROGRAM
INX " MEMORY
sP
PC mm mm -
1IR4010x0000 0100000} ™
mmmm + 1
A
NEG B8
N-—— ——

Negate the contents of the specified Accumulator by taking the ones complement of the con-
tents of the specified Accumulator and adding one to the result. ’

Suppose Accumulator A contains 3A,e. After the instruction:
NEG A
is executed, Accumulator A will contain C64¢.

3A = 00111010
Ones complement of 3A = 11000101
+1 = 00000001

—————

11000 1 10 = Nonzero result, set Zt0 0 .

NoCarrv.mCmo:ﬂ
SetSto 1 \

0v0=0;30t 0100

The NEG instruction also offers two memory addressing options:

1) Extendec
2) Indexed



Act s z0C
cer ] XX IxXTx]

A

B
INX
Sp
PC
IR

DATA
MEMORY

1YY ]Ppaqtcc

PROGRAM
P p qq MEMORY
mm mm
011x 0000 011x0000 ] mmmm
(X4 mmmm + )
mmmm + 2
NEG mmmm + 3
- [expr]
[expr.X]

A W

7 6 5 4 3 2

1

)

(Extended Only)

of 11 ]xJoJoJo]o]
00t ddressing (2 object bytes)

01 Extended addressing (3 object bytes)

Suppose the contents of the Index register are 010046, cc = 1D, and memory location 011D,

contains AA,. After the instruction:
$1D.X

NEG

is executed, memory location 011D,¢ will be altered to 56,6.

CCR

INX
SP
PC

IR

Ones complement of AA

No Carry, set C to 0
SetSto 0

10101010
01010101

+1
——

now

O¥0 =03t 0to 0

NOP — NO OPERATION DATA
MEMORY
AC 1 $20C
PROGRAM
MEMORY
mm mm
01 01
NOP
~——
01

J ’Ol1010110~<—-Nonmresult,sotZt00

mmmm
mmmm 4]



This is a one-byte instruction which performs no operation except that the Program Counter is in-
cremented. This instruction is present for two reasons:

1) The NOP instruction allows you to give a label to an object program byte:
HERE  NOP
2) To fine tune delay times. Each NOP instruction adds two cycles to a delay.

NOP is not a very useful or frequently used instruction.

ORA — OR ACCUMULATOR WITH MEMORY

This instruction ORs the contents of Accumulator A or B with the contents of the selected
memory byte. This instruction offers the same memory addressing options as the ADC instruc-
tion, and will be illustrated using extended addressing; consult the ADC instruction for examples
of the other addressing modes./

DATA
MEMORY
. Acl § 270C vy _Jepaq
ccr L] Ix]xjo] |
A X X ] 0
B Accumulstor Aor 8 PROGRAM
INX containg xx MEMORY

SP
PC mm mm
IR 1xxx1010 1xxx]1010§ mmmm

pp mmmm 4 )
q9 mmmm 4 2
{Extended Only)

S Lexpr]

< Tepr.X1
) / [ #expr]
7

[

X

4 0 selects A lator A

1 selects Accumulator B

004 di ing (2 object bytes)
01 Direct Addressing (2 object bytes)

10 Indexed addressing (2 object bytes)
11 Extended addressing {3 object bytes)

OR the contents of the specified Accumulator with the contents of the selected memory location,
treating both operands as simple binary data.

Suppose that pp = 16,6 Gq = 2346, xx = E3,¢ and yy = AB,e. After the instruction:
ORA A  $1623
has executed, Accumulator A wilt contain EBye.
E3 = 11100011
AB = 10101011
1711010 1 )eguens Nonzero result, set Z to 0

Sets Sto 1
O is clearsd
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This is a |ogioél instruction; it is often used to turn bits “on"”. For example, the instruction:
ORA A #3$80
will unconditionally set the high order bit in Accumulator A to 1.

PSH — PUSH ACCUMULATOR ONTO STACK

DATA
MEMORY

Act sZ0C [ITR |
Accumulator A or B /

contains xx

A X X }/

8 PROGRAM
SP ss 5 s )
PC mm mm @

IRFOO110711x 0011011} mmmm

mmmm + |

7 65 4 3210
Ojoji1jijolija

0 selects Accumulator A
1 selects Accumulator B

Push the contents of the selected Accumulator onto the top of the stack. The Stack Pointer is
then decremented by 1. No other registers or statuses are affected.

Suppose Accumulator A contains 3A,¢ and the Stack Pointer contains 2AF7,¢. After the instruc-
tion:

PSH A .

has executed. 3Ag will have been stored into location 2AF7, and the Stack Pointer will be
altered to 2AF6,.

The PSH instruction is most frequently used to save Accumulator contents, for example, before
servicing an interrupt.
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PUL — PULL DATA FROM STACK

DATA
MEMORY

Acl s z0C ssss
A }xxhnomdin
8 Accumulator A or B PROGRAM

INX MEMORY

SP s s ss ’
PC mm mm
IRJ0011001) x 0011001 x | mmmm

mmmm + ]

A
P B
——

N

76 543210

0 selects Accumulator A
1 selects Accumuiator B

Increment the Stack Pointer, then pull the top stack byte into the selected Accumulator. No other
registers or statuses are affected.

Suppose the Stack Pointer contains 2AF6,s and location 2AF7,¢ contains CE,g. After the instruc-
tion:

PUL B ’
has executed, Accumulator B will contain CE,g and the Stack Pointer will contain 2AF7,6.

The PUL instruction is most frequently used to restore Accumulator contents that have been
saved on the stack, for example, after servicing an interrupt.
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ROL — ROTATE ACCUMULATOR OR MEMORY LEFT
THROUGH CARRY

This instruction rotates the specified Accumulator or the selected memory byte one bit to the left
through the Carry.

First, consider rotating an Accumulator:

DATA
MEMORY
PROGRAM
MEMORY
PC mm . mm —
{R 1010 x 1001 010x100)
mmmm + |
A
ROL B8
y
5 43 210
1 o

0 selects A ) A
1 selects Accumulator B

Rotate the selected Accumulator's contents left one bit through the Carry status.
Suppose Accumulator A contains 1A and the Carry status is set to 1. After the:
ROL A
instruction is executed, Accumulator A will contain F5,6 and the Carry status will be reset to 0.

Accumuiator A Cany
01t11010
11110101

1
0
‘/ \,Nonzemmuk.setzmo
SetStot L <\
1¥0=13s6t0to
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The ROL instruction provides two kinds of memory addressing:

1) Extended
2) Indexed

A
B PROGRAM
INX MEMORY
SP
PC mm mm
IR [011x1001 M 011x1001) mmmm
D PP mmmm + }
qq9 mmmm + 2
a3 | (Exnded Ot

\ {expr}
[expr,X]

765 43210
ofj1J1]x]1]0]0

= 0 Indexed ing (2 object bytes)
1'Extended addressing (3 object bytes}

Rotate the selected memory byte left one bit through the Carry status.

Suppose pp = 14,6, qq = 0346, the contents of memory location 1403, are 2E,q and the Carry
status is 0. After executing a:

ROL $1403
instruction, memory location 1403,¢'s contents will be 5C,¢.

1405 Carrv
01110
11100

Nonzero result, set Z to 0
SelStoO
0¥0=0,38t0t00



ROR — ROTATE ACCUMULATOR OR MEMORY RIGHT
THROUGH CARRY

This instruction rotates a specified Accumulator ora selected memory byte one bit to the right
through the Carry.

First, consider rotating an Accumulator:

DATA
MEMORY
Acl szoC
CCR
N }_\
8 Accumulator A or B PROGRAM
INX MEMORY
sP
PC mm mm .
iIR]010x 0110 010x0110§ mmmm
mmmm 4+ |

A

..

0 1 X 1 0

4 0 selects A A
1 selects Accumuletor B

Rotate the selected Accumulator's contents right one bit through the Carry status.
Suppose Accumulator B contains 7A,¢ and the Carry status is set to 1. Execution of the:

ROR B

instruction will produce these results: Accumulator B will contain BD,g and the Carry status will
be 0.

Accumulator B Carry »
01111010 1
10111101 0
Suno1‘/ \ Nonzero result, set.Z to 0

O¥1=1;setOto 1



The ROR instruction provides two kinds of memory addressing:

1) Extended
2) Indexed

A
8
INX pe ad MEMORY
SP
PC mm mm
IRjO11 x 0110 ) @ 011x0110] mmmm
cc mmmm + 1
mmmm 4+ 2
RoR {Extended Only)
——

\ Lexpr)
[expr.X]
76 54 3210

o] ]xJof ] o] ’
o ing (2 object bytes)

1 Extended addressing {3 object bytes)

Suppose that cc = 14,, the contents of the index register are 01004¢. the contents of memory
location 0114, are ED,g and the Carry status is 1. After executing a:

ROR $14.X
instruction, the Carry will be 1 and memory location 0114, will contain F6e.

o114, Camy
11101101 1
11110110 /l

Ssetto 1 \Nonmmmh,Zissenoo

141 =0,0issettc 0
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RTI — RETURN FROM INTERRUPT

DATA
MEMORY
XXXX
aa xxxx + 1
bb XXXX + 2
cc xxxx + 3
dd XXxx + 4
ee xxxx + 5
ff Xxxx + 6
g9 xxxx + 7

A ddee
B PROGRAM
INX MEMORY
SP X X X X
PC mm mm ffag
R3¢ 38 __jmmmm
RTI
——
3B

The Condition Code register, the Accumulators, the Index register and the Program Counter all
have data values puiled into them off the stack. The registers and the corresponding locations on
the stack which are pulled into the registers are as follows:

. Memory Location

{SP is xxxx at instruction execution start) - Register
0 + 1 {bits 6 - 0) Condition Code register
XXXX + 2 Accumulator B
XXxx + 3 Accumulator A
XXxx + 4 High byte of index register
X0 + 5 Low byte of Index register
XXxx + 6 High byte of Program Counter
XXxX¢ + 7 Low byte of Program Counter

Execution continues from the address pulled into the Program Counter.
Suppose the Stack Pointer contains 100F,, aa = CBis. bb =145 cc =004 dd =01,
ee =00,¢ ff = 09,5 and qq = A2,¢. After the instruction:

RT}
has executed, Accumulator A will be 00,5, Accumulator B will contain 14,6, the Index register
contents will equal 0100,¢. the Stack Pointer will contain 1016, and the Program Counter con-

tents will be 09A2, {this is the address from which instruction execution will proceed). In addi-
tion, the Condition Code register will appear as follows:

Acl'sz0¢C

cs=11oJoj1]ol]]



Note that the Interrupt Mask bit will be set or reset depending on its value at the time the CCR
was pushed.

RTS — RETURN FROM SUBROUTINE

DATA
MEMORY
XXX X
Acil sz20C PP XXXX+ 1
cex (LLLIT] u C MOS
A
B PROGRAM
INX MEMORY
SP X X X X
PC mm mm ppdq
IR 39 39 __jmmmm
RTS
———
39

Move the contents of the top two stack bytes to the Program Counter; these two bytes provide
the address of the next instruction to be executed. Previous Program Counter contents are lost.
Increment the Stack Pointer by 2 to address the new top of stack.

Every subroutine must contain at least one Retum instruction; this is the last instruction executed
within the subroutine and causes execution to return to the calling program.

For an illustrated description of the RTS instruction’s execution see Chapter 5.

SBA — SUBTRACT ACCUMULATORS

DATA
MEMORY
Acl s 20C
cer L IXIXIX]X]
XX—YyY
A X X
B Yy PROGRAM
INX MEMORY
sp
PC mm mm
\ IR o 10 mmmm
SBA
——
10



Subtract the contents of Accumulator B from the contents of Accumulator A.
Suppose xx = 3A;g and yy = 7C,s. After the instruction:
SBA

has executed, Accumulator A will contain BE,s and Accumulator B will contain 7Cye.

3A = 00111010
Twos complement of 7C = 10000100

1011 1 1 1 O ~stf=e Nonzero result, set Z to 0

NoCarry
Carryissetto1

1sets Sto1 0¥o 0,56t 000

Note that the resulting Carry is complemented.

SBC — SUBTRACT MEMORY FROM ACCUMULATOR
WITH BORROW

Subtract the contents of the selected memory byte from the specified Accumulator. This instruc-
tion offers the same memory addressing options as the ADC instruction, and will be illustrated
using immediate addressing; consult the ADC instruction for examples of the other available
modes.

DATA
MEMORY
Ac | z20C
cer { L IxIxx]x]
A
8 W, Accumulator A or B PROGRAM
INX containg xx MEMORY

1.4

PCl mm mm

IR [Ixxx0010 1xxx0010] mmmm
~

Yy mmmm <+ |

SBC : mmmm 4 2
—— Lexpr] ({Extended Only)
I~ Pr
\ [expr.X]
: [ #exprl
7 6 5 43 210
IllxlxlxlOlOIllO'

0 selects Accumulator A

1 selects Accumulator B

001 i ing (2 object bytes)
01 Direct addressing (2 object bytes)

10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

’

Subtract the contents of the selected memory byte, and the Carry status, from the 'specified Ac-
cumulator, treating all register contents as simple binary data.
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Suppose xx = 14,4, yy = 34, and C = 1. After executing a:

SBC B  #%34

instruction, the contents of Accumulator B would be altered to DF .

14
Twos complement of 34
Twos complement of 1

Carry is set to 0
SetSto 1

Note that the resulting Carry is complemented.

00010100

11001

11+11
11011

100
111

11 1 ~almem Nonzero resuit, set Z 10 0

- 141 =0, set 0 to 0

The SBC instruction is frequently used in multibyte subtraction, after the low order byte has been

processed using the SUB instruction.

SEC — SET CARRY

Acl 5 20C
CCR

INX

k14

PC mm

mm

IR 0D

SEC

-

[¢»]

DATA
MEMORY

PROGRAM

MEMORY

0D

mmmm
mmmm + |

When the SEC instruction is executed, the Carry status is set to 1, regardless of its previous value.
No other statuses or register contents are affected.
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SEl — SET INTERRUPT MASK

DATA
MEMORY
Act $720C
CCR
A
B PROGRAM
INX MEMORY
SP
PC mm mm
iR OF OF mmmm
SEl
N
oF

After this instruction has been executed, the microprocessor is inhibited from servicing an inter-
rupt and will continue to execute instructions without responding to interrupts until the interrupt
status is cleared. Non-maskable interrupts will be serviced regardless of the state of the Interrupt

Mask bit.
With the exception of the Interrupt Mask bit in the CCR, no other registers or statuses are aitered.

SEV — SET OVERFLOW STATUS .

DATA
MEMORY
Acl s Z0OC
CCR
A
8 PROGRAM
INX MEMORY -
SP
PC mm mm
IR 0B 0B mmmm
SEV
——
08

When the SEV instruction is executed, the Overflow status is set to 1, regardless of its previous
value. This instruction does not affect any other statuses or register contents.
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STA — STORE ACCUMULATOR IN MEMORY

Store the contents of the setected Accumulator into the specified memory location. This instruc-
tion offers the same memory addressing modes as the ADC instruction, with the exception that
an immediate addressing mode is not available. This instruction will be illustrated using extended
addressing; consult the ADC instruction for a discussion and example of indexed and direct ad-
dressing.

DATA
MEMORY
Acl szoC PPaAq
cer L] IXIx]Jo[ ]
A }Accmmutor»AorB
8 xx contains xx PROGRAM
INX MEMORY

sp
PC mm mm
IR Pxxx0111 Ixxx0111] mmmm

pPp mmmm 4 }

A 99 mmmm + 2
STA B {Extended Only)
[extpr] .
[exer]
7 6 5 4 3 2 'I
Ti{xfx{x]Of1]1]1

0 selects Accumulator A
| 1'selects Accumulator B

01 Direct addressing (2-object bytes)
10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

Store the specified Accumulator into memory.
Suppose xx = 63,5 pp = 05,6 qq:= 3A,s. After the instruction:
STA B $053A

is executed, the contents of memory location 053A, will be 63,6.

63 011000 1 1 <gue Nonzero result, set Z to 0

=
"

Set S 0.0 Overflow is cleared
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STS — STORE STACK POINTER

Store the contents of the Stack Pointer into two contiguous memory locations. Like the STA in-
struction, this instruction offers direct, indexed and extended addressing modes. This instruction
will be illustrated using direct addressing. Consult the ADC instruction for a discussion of indexed
and extended addressing modes.

DATA
MEMORY
Acl 5§ 20C X X 00rr
cer ] EXIxJo] ] YY Jo0rr41
A
8 PROGRAM

INX‘ F{_“: MEMORY
SP

XX Yy
PC mm mm
iR [T0xx1111 10 1111 § mmmm

rr mmmm 4 1
mmmm 4 2
§TS Lexpr] {Extended Only)
\ [expr.X]

01 Direct addressing (2 object bytes)
10 indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes)

Store the high byte of the Stack Pointer into the selected memory byte. Store the low byte of the
Stack Pointer into the memory byte immediately following the selected memory location.
Suppose the contents of the Stack Pointer are 28FF,; and 11 = 80,¢. After executing the:

STS

instruction, memory location 0080, will contain 2846 and memory location 81, will contain FF 6.

001010001111111 | enggemNonzero result, Z is set to 0
Sissetto 0 '
Overflow is cleared
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STX — STORE INDEX REGISTER

Store the contents of the Index register into two contiguous memory locations. Like the STA in-
struction, this instruction does not offer immediate addressing, but it does offer the other three
memory access methods: Direct, Indexed and Extended. This instruction will be illustrated using
extended addressing; consult the ADC instruction for a discussion of direct and indexed address-

ing.

DATA
MEMORY
Ac1 s z20C X X pPP9q
cer L1 IxIxjo] | yv ppqq+1
A
B PROGRAM
INX x X Yy MEMORY

sp
PC mm mm
IR xx1111 11 xx 1111} mmmm

PP mmmm + |
99 mmmm + 2
{[expr] (Extended Only)

01 Divect addressing (2 object bytes)
10 Indexed addressing (2 object bytes)
11 Extended addressing (3 object bytes) -

Store the high byte of the Index register into the selected memory byte. Store the low byte of the
Index register into the memory byte immediately following the selected memory location.
Suppose the contents of the Index register are 01006, pp = 1446, and qq = 30,¢. After the:
STX
instruction has executed, memory location 1430, will contain 01,6, and 1431, will contain 00,6.
0600000 100000000 ~=maNonzero result, set Z to 0
Sissetto 0 Overflow is cleared
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SUB — SUBTRACT MEMORY FROM ACCUMULATOR

Subtract the contents of the selected. memory byte from the contents of Accumulator A or B,
This instruction offers the same memory addressing options as the ADC instruction, and will be il-
lustrated using direct addressing; consult the description of the ADC instruction for examples of
the other addressing modes.

DATA
MEMORY
Acl szo0C VY _ 100
ccr L IXIXIX]X]
A t
8 x X :
INX containg xx MEMORY
sP , .
PC mm mm : A
IR } 1xxx0000)~ : 1Xxx0000f mmmm
. ST mmmm 4
A mmmm + 2
sus B {[“p,] (Extended Only)
At At 2 d
— [expr. X1
//f‘:s [ #exprl
7 65 43210
[ x]x]xfoJoJo]o]
0 selects A i A
l 1 selects Accumulator B
oo iate addressing (2 object bytes)
01 Direct addressing (2 object bytes)
10 indexed addressing (2 object bytes)

11 Extended addressing (3 object bytes)

Subtract the contents of the selected memory byte from the contents of the specified Accumula-
tor, treating both operands as simple binary. data.

Suppose xx =E3,5, yy = AOyg, and 1r = 31 16- After executing the instruction:
suB B $31
the contents of Accumulator B will be 43,

E3 11100011t
Twos complement of AQ 01100000

1 10000 1 1< Nonzero result, set Z to 0
Set Carry t0 O

SetSto 0 ‘
1%1=0,3et0to 0

The SUB instruction is used to perform single byte subtractions. or for the low order byte in
multibyte subtractions.
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SWI — SOFTWARE INTERRUPT

DATA
MEMORY
MACI1SZOC] xx xx- 6
bb XXxXx-5
aa XX XX~ 4
<< XXX X~ 3
dd XX X X= 2
Acl s z0C mm XX XX ]
. 4
A aa
B bb PROGRAM
INX cc dd MEMORY
SP X X % X
PC mm mm
1R 3F 3F mmmm
mmmm + ]

SWI
———
3F

The Program Counter is incremented by one, then the Program Counter, Index register, Ac-
cumulators A and B, and the Condition Code register are all pushed onto the stack. The registers
and the corresponding memory locations into which they are pushed are shown below:

Memory Location

(SP is xxxx at start of instruction execution) Register
XXXX Low byte of Program Counter
x000x- 1 - High byte of Program Counter
X002 Low byte of Index register
XXXX-3 High byte of index register
XxXxx-4 Accumulator A
XXxX-5 Accumulator B
XX-6 Condition Code register

The Interrupt Mask bit is then set to 1. This disables the MC6800’s interrupt service ability, i.e.,
the processor will not respond to an interrupt from a peripheral device. The contents of the SWV
{the Software Interrupt Pointer) are then loaded into the Program Counter.

The SWI instruction can be used for a variety of functions. The address of the entry point for a
group of system subroutines or the address of the entry point for a disk operating system or the
address of any software package could be inserted in the Software Interrupt Pointer. By executing
an SWI instruction, any of these various software systems could be entered. For further informa-
tion on the SWI instruction, consuit Chapter 6 of “An Introduction To Microcomputers: Volume
Il -— Some Real Products”.
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TAB — MOVE FROM ACCUMULATOR A TO ACCUMULATOR B

DATA
MEMORY
Act 5 Z20C
cer ] IxIxjo] |
XX
A X X
8 PROGRAM
INX MEMORY
sP
PC mm mm .
IR 16 16 mmmm
TAB
~——

16

Move the contents of Accumulator A to Accumulator B. Set the Sign and Zero statuses accor-
dingly. Clear the Overflow status.

Suppose xx = 00,5. After executing the:
TAB
instruction, Accumulators A and B will contain O.
00000000 ~== Zero result, set Z to 1

Carry is not affected

SetSto 0 Overflow is cleared to O
TAP — MOVE FROM ACCUMULATOR A TO CCR
DATA
MEMORY

ARTIENILT
8 PROGRAM
INX MEMORY

SP

PC mm mm

IR 06 06 mmmm

mmmm + 1

TAP
——
06
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Move bits 0 - 5 in Accumulator A into the Condition Code register.
Suppose Accumulator A contains CA,q. After executing the:
TAP

instruction, the CCR will be set as follows:

Acl s ZoOoC
ccrjofofrjofrfo]
cA = 11 001010

These bits are ignored ~ W/
TBA — MOVE FROM ACCUMULATOR B TO ACCUMULATOR A

DATA
MEMORY
Acl s 20C
cCrR] IxIxjo] ]
A
B X X PROGRAM
INX MEMORY
SP
PC mm mm
IR 77 17_Jmmmm
TBA
ey

17
Move the contents of Accumulator B to Accumulator A. Set the Sign and Zero statuses accor-
dingly. Clear the Overflow status.
Suppose xx = C3,¢. After executing the:
TBA
instruction, Accumulators A and B will contain C3,6.
110000 1 1 == Nonzero result, set Z to 0

Carry is not affected
SetSto 1 : Overfiow is cleared to O
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TPA — MOVE CCR TO ACCUMULATOR A

DATA
MEMORY
Acl s z0C
CCR
AN
B8 PROGRAM
INX ) MEMORY
SP
PC mm mm
IR 07 07 _|mmmm
TPA
——
07

Move the contents of the CCR into Accumulator A, bits O - 5. Set Bits 6 and 7 of Accurhulator A
to 1.

Suppose the CCR was in the following state:

Sand C are 1.
Ac. 1. Zand O are 0.

After executing the:
TPA

instruction, Accumulator A will contain C9,¢.

Act s z20C
ccrojofijojof]

11 00171 00 1 Accumulator A
——

1

Accumulator A is the only register affected. No statuses are altered.
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TST —TEST THE CONTENTS OF ACCUMULATOR
OR MEMORY

Set the Sign and Zero flags depending on the contents of the specified Accumulator or the
selected memory byte.

First, consider testing an Accumuiator:

DATA
MEMORY
d PROGRAM
INX contains xx MEMORY
sP
PC mm mm
IR {010x1701 @ 010x1101}mmmm
- Tmmmm 4
A
TST B
wv\/w

0 selects A A
1 selects Accumulator B

Set the Sign and Zero flags depending on.the result of subtracting 00,4 from Accumulator A or B.
Clear the Overflow and Carry flags.

Suppose xx = 31,4. After executing a:
TST B
instruction, the Sign, Zero, Overflow and Carry statuses are 0.
0011000 1 ~as—==Nonzero value, set Z to 0
Carry is cleared
SetSto 0 Overflow is cleared

TST offers two memory access methods: indexed and extended.
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MEMORY
Acl §s20C xx lppagq+cc
cer ] IX]x]Jo]o]
<D
A
8 PROGRAM
INX P P 99 MEMORY
SP
PC mm mm
IRFO11x1101 011 x 1101 ] mmmm
cc mmmm + 1
mmmm + 2
TST (Extended Only)
—— [expr]
\ [expr.X]
765 43210
ol ffxjurfr]oln]
’ 0 selects ing (2 object bytes)

1 selects Extended addressing (3 object bytes)

Test the selected memory byte by subtracting 00, from its contents. Set the Sign and Zero flags
accordingly, and clear the Overflow and Carry statuses.

Suppose the Index register contains 0100, cc = 0246, and the contents of memory location
0102, are 00. Executing a:

TST 2.X

instruction would set the Sign. Overflow and Carry flags to O and set the Zero flag to 1.

00000000 ~ugg— Zero result, set Z to 1

Carry is cleared
OsetsSto 0 Overflow is cleared
TSX — MOVE FROM STACK POINTER TO INDEX REGISTER
DATA
MEMORY
Acl s 270C
CCR
Ppqq+l
A
8 PROGRAM
INX MEMORY
SP PP qq
PC mm mm
iR 30 30 mmmm
TSX
——
30
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Move the contents of the Stack Pointer to the Index register and increment by one:
Suppose ppqq is 2AF7,¢. After the execution of the:

TSX '
instruction, the Index register wilt contain 2AF8,4.

The reason the Index register is loaded with the contents of the Stack Pointer plus one is to allow
the Index register to point directly at the bottom of the stack. Recall that the MC6800 empiloys a
decrement after write, increment before read stack implementation scheme.

No other registers or statuses are affected.

TXS — MOVE FROM INDEX REGISTER TO STACK

POINTER
DATA
MEMORY
Acl s zOC
cee CITLLL]
A
8 PROGRAM
INX pp 99 MEMORY
spP
PC mm mm
IR 35 | 35 mmmm
TXS
——
35

Move the contents of the Index register to the Stack Pointer and decrement by one.
Suppose ppaq = 2AF8,e. After:

TXS
has executed, the Stack Pointer will contain 2AF7 6.

No other registers or statuses are affected.

6-89



WAI — WAIT FOR INTERRUPT

DATA
MEMORY
ML )
b b XHXX-5
aa Xxx-4
xxxx-3
R ) XXXX-2
Acl sz20C XXX~ 1
ccx (ITTTT] e
B b b g
INX cc dd
SP X X X X p
PC mm mm @
mmmm + |
WAI
——
3E

The Program Counter is incremented by one, then the Program Counter, Index register, Ac-
cumulators A and B, and the Condition Code register are all pushed onto the stack. The registers
and the corresponding memory locations into which they are pushed are shown below:

Memory Location

(SP is xxxx at start of instruction execution) Register
XXXX Low byte of Program Counter
Xxxx- 1 High byte of Program Counter
XXXX-2 Low byte of Index register
XxXxx-3 High byte of Index register
xXxxx-4 Accumulator A
x0x-5 Accumulator B
XXXX-6 Condition Code register

After the status of the system has been saved on the stack, execution is halted until a peripheral
«device requests an interrupt. When an interrupt is requested, the interrupt mask bit.is set to 1 and
a jump is made to the address contained in the normal External Interrupt Vector. Consuit Chapter
6 of “An Introduction To Microcomputers: Volume | — Some Real Products” -for further infor-
mation on the WA instruction.
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Chapter 7
SOME COMMONLY
USED SUBROUTINES

There are a nhumber of operations which occur in many microcomputer programs,
irrespective of the application. This chapter will provide a number of frequently
used instruction sequences. : :

To make the most effective use of this chapter, you should study each subroutine until you know
it well enough to modify it. As a simple exercise, you should attempt to rewrite the subroutine, so
that it does the same job using fewer execution cycles, or fewer instructions, or both. Next
rewrite the programs to implement variations. For example, binary multiplication of 16-bit num-
bers is illustrated; how about a routine to multiply 32-bit numbers? Look upon each example as a
typical, illustrative instruction sequence, which you will likely modify to meet your immediate
needs.

Simple programs at the level covered in this chapter fall into one of four catego-
ries:

1) Memory addressing

2) Data movement

3) Arithmetic

4) Program execution sequence logic

We will describe programs in the above category sequence.

MEMORY ADDRESSING

The MC6800 has an unusually large variety of memory referencing instructions; direct, indexed
and implied {(where implied addressing is a special case of indexed addressing) addressing are ali
available on the MC6800. Other addressing modes may be implemented through simole instruc-
tion sequences.

We are going to show auto increment, auto decrement, indirect addressing and indirect address-
ing with post-indexing; all of these modes are described and illustrated in “"An Introduction To
Microcomputers: Volume | — Basic Concepts”.

AUTO INCREMENT AND AUTO DECREMENT

One of the weaknesses of the MC6800 instruction set, as compared to those of some
other microcomputers, is the lack of auto incrementing and auto decrementing im-
plied addressing; the data move routines described later in this chapter illustrate the gratuitous
need to constantly increment/decrement addresses when handling data buffers — or any blocks
of contiguous data memory bytes.
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Under some circumstances, you can use the Stack Pointer to im- | STACK
piement implied memory addressing with auto increment or | POINTER
auto decrement. However, you must live with some program- | MEMORY
ming restrictions: ADDRESSING

1

You must use the Push instruction in lieu of a write-to-memory and
the Pop instruction in lieu of a read-from-memory. This restricts you to auto decrementing
when writing and auto incrementing when reading.

2) The previous Stack Pointer contents address the current stack top, so it must be saved while
using the Stack Pointer as a memory address register. This, of course, means you cannot use
subroutines, or access the stack, until you have restored the Stack Pointer.

3} Ingeneral, it would be unwise to use the Stack Pointer in an interrupt-driven system. When
an interrupt is serviced, the system status is pushed onto the stack; if the Stack Pointer is
pointing into a data table at the time of the interrupt, the system status will replace a portion
of the data table.

To save the Stack Pointer contents, two approaches may be used: SAVING

1) The Stack Pointer may be saved in memory using. the THE

1 STACK
st e POINTER
[expr.X]
instruction. This instruction stores the contents of the Stack Pointer in
the memory locations specified by expr or at the locations specified
using the contents of the Index register and expr to form an address. This requires reserving
two bytes of random access memory.
2) If the Index register is not of significance, i.e.. its contents may be destroyed, the Stack

Restoring the Stack Pointer contents is performed using instructions that | RESTORING

Pointer may be saved in the Index register using the
TSX

instruction, which stores [SP] + 1-into the Index register. Note that the Index register must
not be altered until the Stack Pointer contents have been restored.

complement the method used to save the Stack Pointer: THE STACK
1) if the Stack Pointer has been saved in memory, the POINTER
[expr]
LS [expr.X]

2)

Once the address of the stack has been saved, the address of the memory | LOADING
locations to be accessed can be ioaded using the LDS instruction ADDRESS
[ #expr] INTO
: STACK
LDS [expr] POINTER
[expr.X]

instruction is used to restore the Stack Pointer.
If the Stack Pointer contents were saved in the Index register, the
XS

instruction stores [1X]-1 into the Stack Pointer. Note that this instruction restores the original
Stack Pointer contents when used in conjunction with the TSX instruction described above.

The LDS #expr form loads an immediate address into the Stack Pointer. This could be used in an
environment where a buffer, e.g.. a CRT input buffer, has a dedicated address. The other two
forms of the LDS instruction could be used where more than one buffer or memory location is to
be referenced:; in this case, the address is saved in two bytes of read/write memory.
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INDIRECT ADDRESSING
Indirect addressing specifies that the memory address you require is stored in two memory bytes:
Arbitrary

DATA  memory
MEMORY  addresses

0800
0801

0 A} 0802 ~ug— INDA
{ oacs

3|
-l

In the illustration above, memory bytes 0802, and 0803, hold the required memory ad-
dress: 0A2146.

These instructions simulate indirect addressing:

LDX INDA
LDA A 0OX

The LDX instruction moves the address, 0A21,e. into the Index register. The LDA A instruction
demonstrates how to access memory location 0A2146.

INDIRECT POST-INDEXED ADDRESSING

in some applications, it is necessary or certainly preferable to perform indirect post-indexed
addressing. Using MCB800 indexed addressing, post-indexing can be performed in the
following manner: :

STX TEMP STORE INDEX IN MEMORY
LDX #INDA PUT BASE ADDRESS IN INDEX REGISTER
LDA A 11X LOAD LOW ORDER BYTE OF INDIRECT ADDRESS

ADD A TEMP+1 ADD LOW ORDER BYTE OF INDEX
STA°A TEMP+1 STORE RESULT IN'MEMORY

LDA A 0OX LOAD HIGH ORDER BYTE OF INDIRECT ADDRESS

ADC A TEMP ADDHIGH ORDER BYTE OF INDEX, WITH CARRY

STA A TEMP STORE RESULT IN MEMORY

LDX TEMP LOAD INDEXED INDIRECT ADDRESS INTO INDEX
REGISTER

Al the beginning of this instruction sequence, we assume that the index is in the Index register.
Next. the index is stored in memory so that the indirect address may be accessed via the Index
register. The index is then added to the indirect address, and the result is placed in the Index
register; any memory operation can now be performed using the Index register as the address.
Note that this sequence points up a flaw in the MC6800 instruction set; that is, the Ac-
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cumulators may not be added/stored/operated on with the Index register. Note how
much simpler ife would be if one could execute this sequence:

STX TEMP

LDX #INDA -
LDA A 0X

LDA B 1.X

LDX TEMP

AAX

where the AAX instruction would be used to add the contents of Accumulators A and B to the
Index register.

DATA MOVEMENT

We will now examine some instruction sequences that locate and rﬁove con-
tiguous blocks of data bytes — data buffers of any length.

MOVING SIMPLE DATA BLOCKS

Beginning with a very simple program, consider moving the contents of a con-
tiguous block of data memory bytes from one area of memory to another. The
following memory map illustrates the data movement operation:

DaTA  /ubitrary
memoRy  Memory
Addresses
‘ os0 \SRCE r
Move data 0801
via Accumulator A r 0802
0803
Count down buffer H
length in Accumulator B

xw>

3 [}
- Addvmsouros(nmds1lnd3)} ' (]
and destinat oST
0A80
Address source (method 2) 0A81
0A82




There are three basic approaches to this program:

1} Use the Index register to perform all necessary addressing. Since there are two
addresses involved (the byte’s original location and its destination), this requires saving one
address when using the other. That is, the program must save the source address while fill-

. ing the destination, and must save the destination address while-a byte is taken from the
source. This is the most general method; i.e.. no matter what the system is like or where in
memory the buffers are. the following -method will move the data. Here is the required se-

quence: -

LDA B CNT LOAD BYTE COUNT INTO ACCUMULATOR B
LDX #SRCE LOAD SOURCE ADDRESS INTQ INDEX REGISTER
STX SRCE1 SAVE SOURCE ADDRESS IN MEMORY
LDX #DST LOAD DESTINATION ADDRESS INTO INDEX REGISTER

LooP  STX DST1 SAVE DESTINATION ADDRESS IN MEMORY
LDX SRCE1 LOAD SOURCE. BUFFER POINTER
LDA A 0X LOAD SOURCE DATA INTO ACCUMULATOR A
INX INCREMENT SOURCE ADDRESS
STX SRCE1 SAVE INCREMENTED SOURCE ADDRESS
LDX DST1 LOAD DESTINATION BUFFER POINTER
STA A 0X STORE SOURCE DATA INTO DESTINATION
INX INCREMENT DESTINATION ADDRESS
DEC B DECREMENT BUFFER LENGTH
BNE LOOP RETURN FOR MORE IF BUFFER NOT EMPTY

Note that buffer length is:limited to 256 bytes. This sequence also requires four extra.RAM
bytes: two for SRCE1 and two. for DEST1.

2) Use the Index register for one buffer address and the Stack Pointer for the
other buffer address. Recall the restriction on the use of the Stack Pointer for memory
addressing; if you are in an interrupt-driven system, data can be lost if the Stack Pointer is in
the middle of a table when an interrupt. occurs. Here is the instruction sequence for this

method:

STS OLDSTK SAVE STACK POINTER

LDS #SRCE-1  LOAD SOURCE ADDRESS INTO STACK POINTER

LDA B CNT LOAD BYTE COUNT INTO ACCUMULATOR B

LDX #DST LOAD DESTINATION ADDRESS INTO INDEX REGISTER
LOOP PUL A INCREMENT STACK POINTER, THEN PULL SOURCE BYTE

STA A 0X STORE IN DESTINATION®

INX INCREMENT DESTINATION ADDRESS

DEC B DECREMENT BUFFER LENGTH

BNE LooP RETURN FOR MORE IF BUFFER NOT EMPTY

LDS OLDSTK RESTORE STACK POINTER

This routine requires two RAM memory bytes for OLDSTK.

3) Use indexing to generate both addresses. This method may be used if we can
guarantee that the SRCE buffer is within 256 ,, bytes of the DEST buffer. (Note that this is not
the case in the example shown above.) The Index register points directly to the SRCE butfer,
and, by indexing using the displacement DST-SRCE, points to the DST buffer. This instruc-
tion sequence will perform the data move:

LDX #SRCE LOAD ADDRESS OF SOURCE'BUFFER
LDA B CNT LOAD BUFFER LENGTH
LOOP (DA A 0X LOAD SOURCE BYTE
STA A DST-SRCEX STORE IN DESTINATION
INX INCREMENT BOTH POINTERS
DEC B DECREMENT BYTE COUNT
BNE LOOP GO BACK FOR MORE IF NOT EMPTY
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Suppose the SRCE buffer is located at 0800, and the DST buffer is located at 08F0;¢. In this
example, DST-SRCE would have the value FQ,q.
MULTIPLE TABLE LOOKUPS

Next consider a multiple table lookup. This is a more complex variation of the data move
which we just described.

An indefinite number of data tables have their starting addresses stored in an Index Table. The in-
dex Table’s starting address is given by the label TABX:

MEMORY
TABX Base of Table 1
TABX +2 Base address of Table 2
TABX +4 j Base addruss of Tabie 3
TABX + 6 Base address of Table 4
etc etc etc

A number of data bytes are in temporary storage, starting at a memory location identified by the
label CBASE. The actual number of data bytes can be found in a memory location identified by
the label CNT. This source buffer is equivalent to the source buffer in the data move program we
have just described.

The destination for the block of data is one of the Data Tables. The table number is identified by
the symbol TBNO, which is loaded as immediate data. The first two bytes of every tabie identify
the displacement to the first free byte of the table; in other words, we assume that every table is
partially filled and the block of data is to be moved into the unoccupied end of the selected table.
The required data movement may be illustrated as follows:

‘Memory
Address

CBASE

CNT bytes, CNT/2 words

Memory  1able TBNO
Address

XXXX BYNO }

CNT bytes




Here is the appropriate instruction sequence:

STS OLDSTK SAVE CURRENT STACK POINTER
LDS #CBASE-1 LOAD SOURCE TABLE ADDRESS IN STACK POINTER
LDA B  CNT LOAD BUFFER LENGTH IN ACCUMULATOR B

THE NEXT SECTION OF CODE WILL MANEUVER THE DESTINATION ADDRESS INTO
THE INDEX REGISTER

-LDX #TABX + TBNO LOAD ADDRESS OF TARGET TABLE ADDRESS

~ LDX 0.X LOAD TARGET TABLE ADDRESS
LDA A 0OX LOAD NUMBER OF DISPLACEMENT BYTES {BYNO}
STX NDX STORE INDEX REGISTER IN MEMORY ’
ADD A NDX+1 ADD DISPLACEMENT TO TABLE ADDRESS
STA A NDX+1 RESTORE NEW TABLE ADDRESS TO MEMORY
BCC DOWN WAS THERE A CARRY?
INC NDX YES. INCREMENT HIGH ORDER WORD

DOWN LDX NDX LOAD DESTINATION ADDRESS

THE STACK POINTER HOLDS THE SOURCE ADDRESS AND THE INDEX
REGISTER HOLDS THE DESTINATION ADDRESS. NOW MOVE THE BUFFER

LOOP PUL A LOAD SOURCE BYTE
STA A 0X STORE IN DESTINATION
INX UPDATE DESTINATION ADDRESS
DEC B DECREMENT THE COUNT
BNE LOOP RETURN FOR MORE IF NECESSARY
LDS OLDSTK RESTORE STACK POINTER

This routine requires four extra RAM bytes: two for NDX and two for OLDSTK. Note that this pro-
cess should not be used in an interrupt-driven system, as the Stack Pointer is accessing table
data. Also, note that this code emphasizes a major problem with the MCB800 instruction set.
There are no instructions which allow any form of data manipulation between the contents of the
Index register and the contents of sither Accumulator.

SORTING DATA

Both of the programming examples we have described thus far simply move a block of data from
one location to another. Reorganizing data is also very important, therefore we will illustrate a
sort routine.

The sort, as illustrated, takes-a sequence-of signed binary numbers, stored in contiguous memory
locations and.reorganizes them in ascending order, so that.the smallest. oumber. comes first and.. .
the largest number comes last.

The sort routine we are going to program uses a bubble-up-algorithm. Consider a se-
quence of numbers, where the label LIST identifies the address of the first number’s storage loca-
tion in memory. These are the necessary sort routing program steps:

1) Start a pass at the beginning of the LIST, initialize a flag to indicate a SORTING
“no swap” condition. DATA

2) Compare a consecutive pair of numbers; if the first number is smaller
than the second number, do nothing; otherwise exchange the two numbers and set the flag
to indicate “‘swap made”.

3) Compare the address of the second number to the end of list address. identified by the label
ENDL. If not at the end, increment so that the second number of the current pair becomes
the first number of the next pair and return to step 2.

4) At the end of the list, check the “‘swap’ flag. if any swap was made during the pass, return to
step 1 to make another pass.

5} If a pass is made with no swaps, all numbers are in order. Exit.
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As an example, consider the case where the numbers 1 through 10 are in reverse order. Nine ex-
changes will be made during the first-pass, at the end of which the largest number will have been
"bubbled up” 1o the top:

START AFTER 1 PASS
LISt 10 9
9 8
8 7
7 6
6 5
5 4
4 3
3 2
2 1
ENDL 1 10

Another eight passes will be needed to get all numbers.in order, then a tenth pass is needed to
get a "'no swap” exit condition.

SORT is implemented as a subroutine-which is passed parameters in locations following the
subroutine call. Two parameters are specified.

LIST  the beginning address of the data buffer containing numbers to be sorted
ENDL the ending address of the data buffer containing numbers to be sorted

Here is the sort program:

JSR SORT
FDB LisT
FDB ENDL
SORT - TSX MOVE STACK POINTER TO INDEX REGISTER
LDX 0.X LOAD ADDRESS OF FIRST ARGUMENT
LDX 0.X LOAD LIST ADDRESS INTQO INDEX REGISTER |
STX TOP STORE IN TEMPORARY RAM LOCATION
TSX PUT SECOND PARAMETER
LDX 0.X IN INDEX REGISTER
LDX 2X
STX LAST STORE IN TEMPORARY RAM LOCATION
LOOP1 LDX TOP RESTORE ‘LIST' TO INDEX REGISTER
CLR SWITCH CLEAR ‘NO SWAP' INDICATOR
LOOP2 LDA A 0X LOAD ELEMENT OF LIST
CMP A 11X . COMPARE WITH FOLLOWING ELEMENT
BLE AD3 IS IT LESS THAN OR EQUAL?
LDA B 1.X NO — LOAD SO WE CAN SWAP
STAB 0OX STORE SMALLER VALUE
STA A 1X STORE LARGER VALUE .
LDA B #1 MAKE SWITCH VALUE NONZERO
STA B ~ SWITCH
AD3 INX INCREMENT INDEX REGISTER
CPX LAST COMPARE WITH ENDL - ADDRESS
BNE LOOP2 DONE WITH THIS PASS?”
TST SWITCH YES. TEST 'NO SWAP' FLAG
BNE LOOP1 DiD WE SWAP? .



NO SWAP ON LAST PASS. PREPARE TO RETURN

TSX SAVE STACK POINTER IN INDEX REGISTER
LDS 0.X LOAD RETURN ADDRESS TO STACK POINTER
INS INCREMENT PAST PARAMETERS TO
INS THE NEXT INSTRUCTION
INS
INS
STS 0.X PUT NEW RETURN ADDRESS IN STACK
TXS RESTORE STACK POINTER
RTS RETURN
ARITHMETIC

Addition, subtraction, multiplication and division will be described under this
group. Transcendental functions are complex enough to require entire text books devoted to
them, so we will not even broach the subject.

Even within the simple bounds of addition, subtraction, multiplication and division, there is a
degree of latitude that exceeds the scope of material we can cover. Significantly different
algorithms are required depending upon the magnitude of the number. Binary and decimal
arithmetic aiso require different algorithms. Therefore, for addition and subtraction, we will
consider large or small binary or decimal numbers. For multiplication and division
we consider small binary numbers only.

BINARY ADDITION
First consider multibyte, binary addition.

Two positive, integer numbers, each CNT bytes long, are to be added. The number buffer starting
addresses are given by BUF 1 and BUF2. The answer is to be stored in a buffer starting at BUF3.



The multibyte addition may be illustrated as follows:

DATA
MEMORY

BUFA  ~atffe—— Low order digit
BUFA +1
BUFA +2

[Eop——

BUFB  ~sf——= Low order digit
BUFB + 1
BUFB + 2

-

BUFC <——-—Loworderdtgﬂ
BUFC +1
BUFC +2

CNT = Buffer longth stored here

Like the data movement programs illustrated previously, there are three basic op-
tions available:

1) The Index register does all addressing. This is a general purpose method which oc-
cupies copious amounts of memary.

2) The Index register and the Stack Pointer perform the requured addressing. This
is @ more efficient method than 1), but it should not be used in an interrupt-driven system.

3) The Index register does all addressing. but the buffers are arranged so that they are
within 256 memory locations of each other, allowing indexed addressing with dis-
placement. This is the preferred method. The requisite instruction sequence is presented

below:
LDX #BUFA LOAD INDEX REGISTER WITH BUFFER ADDRESS
LDA 8  CNT LOAD BUFFER LENGTH INTO ACCUMULATOR B
CLC CLEAR CARRY
LOOP LDA A 0OX LOAD NEXT BUFA BYTE

ADC A BUFB-BUFAX ADD NEXT BUFB BYTE
STA A BUFC-BUFAX SAVE IN NEXT ANSWER BUFFER BYTE

INX . INCREMENT BUFFER ADDRESS
DEC B ~DECREMENT COUNTER
BNE Loor RETURN FOR MORE BYTES
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BINARY SUBTRACTION

Because the MC6800 has special subtraction instructions, binary subtraction is
almost identical to binary addition. In either subroutine, simply replace the ADC instruction
with the SBC instruction and accurate binary subtraction will result.

DECIMAL ADDITION

The presence of a DAA instruction makes decimal addition very easy using the MCB800
microcomputer. Simply insert a DAA instruction to follow the ADC in any binary addi-
tion program and you have decimal addition.

LOOP LDA A 0X LOAD NEXT BUFA BYTE
ADC A  BUFB-BUFAX ADD NEXT BUFB BYTE
DAA DECIMAL ADJUST RESULT

STA A BUFC-BUFAX SAVE IN ANSWER BUFFER

One cautionary note, however: the decimal addition routine created by including
a DAA instruction in the binary addition routine assumes that valid binary-coded-
decimal (BCD) data is stored in the source buffers. If, by mistake, you have invalid data in
either source buffer, you will generate a meaningless answer — and not know it.

if your program is one which cannot guarantee that data in source buffers is valid binary-coded-
decimal, then you must write a routine to check buffer contents and ensure that no high or low
4-bit unit within any byte contains a binary code of A through F.

DECIMAL SUBTRACTION

Decimal subtraction is complicated somewhat by the fact that you cannot use the
MC6800 subtract instructions; these instructions only work for binary data, since they au-
tomatically generate the twos complement of the subtrahend. As described in ““An Introduction
To Microcomputers”. Volume |, binary-coded-decimal subtraction requires that you take the tens
complement of the subtrahend.



Let us return to the binary addition program and create, in its place, a decimal
subtraction equivalent; here is the appropriate memory map:

DATA
MEMORY

MINU st | ow order digit
MINU + 1
MINU + 2

( SBTRA  ~i—— Low order digit
SBTRA + 1
SBTRA +2

RSLT e | oW Ordler digit
RSLT + 1
RSLT +2

CNT e Buffer longth stored here

Here is the required instruction sequence:

LDX #MINU LOAD ADDRESS OF MINUEND BUFFER
LDA B  CNT LOAD BUFFER LENGTH INTO ACCUMULATOR B
LDA A #8380 SET (CARRY) INDICATING NO BORROW
LOOP ROL A RESTORE CARRY FROM ACCUMULATOR A
LDA A #899 LOAD $99 INTO ACCUMULATOR A
ADC A © ADD ZERO WITH CARRY
SUB A~ SBTRA-MINU.X PRODUCE NINES COMPLEMENT OF SUBTRAHEND
ADD A 0X ADD MINUEND
DAA DECIMAL ADJUST RESULT
STA A RSLT-MINUX  STORE RESULT
ROR A SAVE CARRY FROM DECIMAL ADJUST
INX * INCREMENT ADDRESS
DEC B DECREMENT BYTE COUNT
BNE Loop GO BACK FOR NEXT TWO DIGITS



MULTIPLICATION AND DIVISION

Multiplication and division must be approached with an element of caution within
microcomputer systems. These are operations which are unsuited to the organization of a
microcomputer: any nontrivial multiplication or division can take so long to execute that it will
severely degrade overall performance. If your microcomputer application is going to
make extensive use of multiplication, division or transcendental functions, you
should seriously consider using one of the many calculator/arithmetic chips that
are now commercially available. Transferring complex arithmetic to such. a chip can make
the difference between a microcomputer system being viable or nonviable in your application.

You can implement simple multiplication and division in microcomputer systems that do not
make extensive, or time-consuming use of these routines; therefore we wnll describe some sim-
ple program sequences.

8-BIT BINARY MULTIPLICATION

Consider the multiplication of two unsigned, 8-bit data values, to.generate a 16-
bit product. The simplest way of performing this multiplication is to add the muiltiplier to O the
number of times given by the multiplicand. For example, you can multiply 4 by 3 if you add
4 to 0 three times.

Suppose memory location MULT contains the multiplicand and memory location ARG contains
the muitiplier. The following routine performs the operation, returning the 16-bit result in Ac-
cumulator A (high order) and B {low order):

CLR A CLEAR ACCUMULATORS A AND B
CLR B TO INITIALIZE RESULT
TST ARG TEST FOR O IN ARG
BEQ LEAVE RETURN IF ZERO
NEXT ADDB MULT ADD MULTIPLICAND TO LOW ORDER BYTE"
BCC DOWN DID WE GET A CARRY?
INC A YES. INCREMENT HIGH ORDER BYTE
DOWN DEC ARG DECREMENT MULTIPLIER
BNE NEXT ADD AGAIN IF NOT FINISHED
LEAVE RTS RETURN WHEN MULTIPLIER IS ZERO

This routine could be a very fast one (if ARG is O, only five instructions will execute) or a very slow
one — if ARG is 255, then this - routine could take up to 1280 instruction executions.

In general, there is a faster way of executing muitiplications. We can use the fact
that a binary digit is limited to having values of 0 or 1; this means that at the
single digit level, multiplication degenerates to addition or no addition.

Let us explain this concept; using common decimal notation, consider the following
multiplication:
142 Multiplicand
x307 Multiplier

42600
0000 Partial Product
994

435694 Product

142 Multiplier
307 = Multiphicand

Add 7 x Multiplier to product

Shift Multiplier two digits left, then
multiply by 3 and add to product
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Each partial product equals the multiplicand being multiplied by one digit of the multiplier. The
-partial product is shifted to the left by tacking on Os to the right. The number of Os tacked on to
the right is equal to the number of digits to the right of the current multiplier digit:

142
3xx
42600

Two Os tacked on since there are two digits
to the right of 3

142 x 3

We can extend this same concept 1o binary arithmetic, in which case the problem becomes very
simple, since no binary digit can have a value other than O or 1. This being the case, you have
only two choices: wherever a multiplier digit is 0, you do not add the shifted muitiplicand to the
answer: but if the muttiplier digit is 1 you do add the shifted muttiplicand to the answer. Here is an
example:

10110101 = Multiplicand (M)
01101101 Multiplier

| LAdd M to product
Shift M two digits left and add

Shift M three digits left and add
Shift M five digits left and add
. Shift M six digits left and add  =fe,

fl

Product = 10110101
1011010100

1110001001
10110101000

100100110001
1011010100000

1111111010001
10110101000000

100110100010001
N ettt i, e
4 D 1 1

10110101x01101101=0100110100010001
i R N N

Using the “‘shift-and-add"’ technique, the following steps will multiply a one-byte
multiplicand by a one-byte multiplier to produce the correct two-byte result:

a) Test the least significant bit of the multiplier. If zero, go 1o Step b..if one, add the muitiplicand
to the most significant byte of the result.

b) Shift the entire two-byte result right one bit position.
c) Repeat Steps a and b until all 8 bits of the multiplier have been tested.
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Consider B5 * 6D, the binary multiplication we just illustrated:

Multiplier = 01101101
Multiplicand = 10110101
RESULT
HIGH ORDER LOW ORDER
BYTE BYTE
Start: 00000000 00000000
0110110;% Step 1{a) 10110101 00000000
1{b) 01011010 10000000
Step 2 (a.b) 00101101 01000000
Step 3(a) 10110101
11100010 01000000
3(b) 01110001 00100000
Step 4{a) 10110101
¢c—100100110 00100000
4(b) 10010011 00010000
Step 5(a.b) 01001001 10001000
Step 6(a) 10110101
11111110 10001000
6 (b) 01111111 01000100
0§§10‘|101 Step 7 {a) 10110101
¢c—100110100 01000100
7_(b) 10011010 00100010
§§1101101 Step 8(a.b) 01001101 00010001
4 D T

We will now write a program to implement this mulitiplication algorithm.

The 16-bit right shift of the result is performed by two rotate-right-through-carry instructions as
follows:

Rotate Accumulator A:

A Cany B

[—r L 1

Then rotate Accumulator B 10 complete the shift:

r JE{}——FJ—l




As in the previous example, memory location MULT contains the multiplicand and memory loca-
tion ARG contains the multiplier. The following routine will perform the operation, returning the
16-bit result in Accumulators A (high order) and B (low order):

LDA A #8 INITIALIZE BIT COUNT

STA A CNT

CLR A CLEAR HIGH ORDER RESULT REGISTER
MULT1 ASR ARG ROTATE LEAST SIGNIFICANT BIT OF

BCC MULT2 MULTIPLIER TO CARRY AND TEST

ADD A MULT BIT IS 1. ADD TO HIGH ORDER BYTE
MULT2 ROR A ROTATE HIGH ORDER BYTE

ROR B ROTATE LOW ORDER BYTE

DEC CNT DECREMENT BIT COUNT

BNE MULT1 REPEAT iF NOT FINISHED

RTS RETURN WHEN BIT COUNT IS ZERO

8-BIT BINARY DIVISION

An analogous procedure is used to divide an unsigned 16-bit number by an unsigned 8-bit num-
ber. Here, the process involves subtraction rather than addition, and rotate-left in-
structions instead of rotate-right instructions.

For the program below, the dividend is in memory locations DIVD (high order byte) and DIVD + 1.
The divisor is in memory location DIVS. The 8-bit quotient is returned in-Accumulator B, and the
remainder is returned in Accumulator A.

DIv LDA A - #8 INITIALIZE BIT COUNT
STA A CNT
LDA A DIVD LOAD DIVIDEND INTO
LDA B DIVD +1  ACCUMULATORS A AND B
ASL B SHIFT MSB OF LOW BYTE INTO CARRY
ITERATE ROL A ROTATE CARRY INTO LSB OF REMAINING DIVIDEND
SUB A DIVS SUBTRACT DIVISOR. IF LESS THAN HIGH BYTE
BCC NEXT OF REMAINING DIVIDEND, GO TO NEXT .
ADD A DIVS OTHERWISE. ADD IT BACK AND SET CARRY
NEXT ROL B ROTATE CARRY TO QUOTIENT: MSB TO CARRY
DEC CNT DECREMENT BIT COUNT
BNE ITERATE ITERATE LOOP iF NOT ZERO
COMB COMPLEMENT THE QUOTIENT
RTS LEAVE THIS ROUTINE

16-BIT BINARY MULTIPLICATION

Now consider the multiplication of two 16-bit numbers, yielding a 32-bit result.
The algorithm used is a simple extension of 8-bit multiplication:

1} Shift the multiplier right into the Carry.

2) If Carry is O go to Step 4.

3) Add the multiplicand to the two high bytes of the resuit.

4)  Shift the result right one bit,

5) Done? If not, go to Step 1.
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In this case, MULT is the 16-bit multiplicand, ARG is the 16-bit multiplier and this is the re-
quired instruction sequence:

CLR RSLT CLEAR FOUR MEMORY LOCATIONS TO
CLR RSLT +1 HOLD THE RESULT
CLR RSLT +2
CLR RSLT +3
LDA A #16 INITIALIZE THE COUNTER
STA A CNT
up ROR ARG ROTATE LSB OF MULTIPLIER INTO
ROR ARG + 1 THE CARRY
BCC NEXT WAS CARRY SET TO 17

LDA A MULT+1 YES. ADD MULTIPLICAND
ADD A RSLT+1 ADD LOW ORDER BYTE OF MULTIPLICAND
STA'A  RSLT+1 TO THE RESULT

LDA A MULT ADD THE HIGH ORDER BYTE OF
ADC A RSLT THE MULTIPLICAND
STA A RSLT
NEXT  ROR RSLT ROTATE THE RESULT
ROR RSLT + 1 ONE BIT TO THE RIGHT
ROR RSLT +2
ROR RSLT +3
DEC CNT DECREMENT THE COUNT
BNE up REPEAT IF NOT FINISHED

Note that almost all the instructions in this sequence are three-byte memory reference instruc-
tions. The number of bytes of object code used for this routine can be shortened
considerably if locations ARG, MULT and RSLT are contiguous. In this case, the Index register
can be made to point to the first location, and all references to memory can be made
through the Index register, thereby saving 15 bytes of code. Consider the following exam-
ple; :

MULT




This would be the ary sequ e:

LDX H#ARG LOAD INDEX REGISTER WITH TABLE ADDRESS
CLR 4.X CLEAR RESULT LOCATION
CLR 5.X
CLR 6.X
CLR 7.X
LDA A #16 INITIALIZE COUNT
STA A CNT
upP ROR 0X ROTATE MULTIPLIER RIGHT INTO CARRY
ROR 1.X
BCC NEXT CARRY SET? .
LDA A 3X YES — ADD MULTIPLICAND TO RESULT
ADD A 5BX
STA A 56X
LDA A 2X
ADC A 4X
STA A 4X
NEXT  ROR 4.X ROTATE RESULT RIGHT
ROR 5X
ROR 6.X
ROR 7.X
DEC CNT DECREMENT COUNT
BNE uP REPEAT {IF COUNT NOT ZERO

Note that it might be possible to load the data onto the stack. In this case, instead of executing a
LDX #ARG instruction, a TSX instruction would point the Index register at the top of the stack.
However, this method is slower than the first method: direct or extended memory reference is al-
ways faster than indexed memory addressing.

BINARY DIVISION .
Consider simple 8-bit division. B3, divided by 15,, may be illustrated as follows:

100 O ~=e—=Quotient
DiVISOr e 1 0 101 )10 1100 1 | ~a=mesDividend
10101
1011

The result is 8,5 with a remainder of B,

The division algorithm works by shifting the dividend into a register that is in-
itially cleared. Whenever the dividend shift buffer contents exceed the divisor,
the divisor is subtracted from the shift buffer contents and a binary 1 digit is in-
serted into the appropriate quotient bit position.

Consider the following register and memory assignments:

Accumulators A Dividend buffer
B Quotient
DIVS [~ Divisor
Memory Locations DivD s Dividend
BITCNT ~Pmee Bit Counter
Initially 10000000



Initially, DIVD holds the dividend and DIVS holds the divisor. The quotient will be generated in Ac-
cumulator B; the remainder will be left in Accumulator A. This is the division program which
results: ’

LDA A #880 INITIALIZE BIT COUNTER
STA A BITCNT
CLR A CLEAR ACCUMULATORS A AND B AND
CLR B THE CARRY BIT
LOOP  ROL DIVD SHIFT DIVD AND ACCUMULATOR A
ROL A AS A 16-BIT UNIT
CMP A DIVS COMPARE DIVISOR WITH DIVIDEND BUFFER
BLT NEXT IS DIVISOR SMALLER?
SUB A DIVS YES. SUBTRACT DIVISOR AND OR
ORA B BITCNT THE CORRECT BIT INTO QUOTIENT REGISTER
NEXT  LSR BITCNT NO. SHIFT BITCNT RIGHT

BCC IF CARRY NOT SET, RETURN FOR NEXT BIT

PROGRAM EXECUTION SEQUENCE LOGIC

THE JUMP TABLE

There is really only one program sequence that needs to be described under this
heading: it is the Jump Table.

Remember that the MC6800 instruction set is rich in conditional instructions. The
Branch instruction has fourteen conditional variations, which means that special routines are not
required when your logic can go one of two ways only.

When you have three or more options, the Jump Table becomes an effective pro-
gramming tool.

At the heart of a Jump Table there will be a sequence of 16-bit addresses stored in pairs of con-
tiguous memory bytes:

DATA
MEMORY

JTBL =it

addresses for different
programs which the
microcomputer may execute

!
}
promsz [ 1oy o exscutn
|
|
}

We will presume that these contiguous memory addresses represent the starting addresses for a
number of different programs. Assuming that the required program is identified by a program
number in Accumulator A, the following instruction sequence causes execution to
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branch to the program whose number is stored in Accumulator A:

TEMP

LDX
STX
ASL A
ADD A
STA A
LDA A
ADC A
STA A
LDX
LDX
JMP
RMB

HJTBL
TEMP

TEMP + 1
TEMP + 1
TEMP
#0
TEMP
TEMP
0X

0.X

2

LOAD TABLE BASE ADDRESS IN MEMORY

MULTIPLY ACCUMULATOR A BY TWO
ADD TO LOW ORDER ADDRESS BYTE

ADD CARRY, IF ANY, TO HIGH ORDER
ADDRESS BYTE

INDEX REGISTER ADDRESSES REQUIRED ADDRESS
LOAD REQUIRED ADDRESS IN INDEX REGISTER
JUMP TO START OF PROGRAM

RESERVE TWO BYTES FOR "TEMP
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