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Preface

In the past few years, we have experienced a revolution in elec-
tronic computer technology that began with the introduction of the
first microprocessor in 1971. This revolution was made possible by
an integrated-circuit technology called large scale integration (LSI),
which is the ability to pack thousands of transistor devices within a
small silicon “chip.” As a result of this technology, we have seen cir-
cuit complexity and capability double each year with this pace ex-
pected to continue for the foreseeable future by the introduction of
circuits utilizing very-large scale integration (VLSI) and super-
large scale integration (SLSI). These new integration technologies
have not only increased circuit capabilities, but have surprisingly
and dramatically reduced circuit costs. Products such as appliances,
instrumentation, toys, games, etc., which could never possess a com-
puter “intelligence” because the cost was prohibitive, are now being
marketed with microcomputer control at minimum cost. One of the
first microprocessor applications was the electronic calculator indus-
try. In the past years, we have seen calculator capabilities go up and
cost come down. Not only are microprocessors finding widespread
use in these products, but they have also spawned a hobby computer
market. Full computer systems are now available for less than half
the price of a new automobile—something unheard of 10 years ago.

After the introduction of the first microprocessor chip by the Intel
Corporation, many semiconductor companies introduced their own
microprocessors. Three leading chips emerged: the Motorola 6800,
Intel 8080, and Zilog Z-80. Each of these is an 8-bit central processing
unit (CPU) that requires external memory and i/o circuitry to func-
tion as a microcomputer. However, we are now witnessing a surge
of “computer-on-a-chip” devices that contain all the logic, memory,
and i/o capability for a small microcomputer in one integrated cir-
cuit package.

Motorola, at the time of this writing, is the only company that has
developed these new chips around its standard 6800 architecture.



The 6800 “family” now ranges from an advanced microprocessor,
the 6809, to a complete single-chip microcomputer, the 6801. This
broad range of software compatibility, which is not currently avail-
able within the 8080 and Z-80 chip families, is highly desirable since
it permits one to meet a wide variety of application requirements.
This was one of the important reasons for the decision by General
Motors and the Ford Motor Co. to incorporate the 6800 family of
microprocessors/ microcomputers into their new cars.

In this book, we will provide you with an introduction to the
world of microprocessors/microcomputers via the Motorola 6800. It
begins with microprocessor/microcomputer concepts and, therefore,
assumes the reader has a basic understanding of number systems and
digital electronic concepts. However, this prerequisite material is
presented in Appendix A and Appendix B for the reader who might
need some “brushing-up” or is not familiar with these concepts. The
first chapters of the book discuss the 6800 internal structure, instruc-
tion set, and programming techniques. The final chapters are de-
voted to the 6800 hardware and interfacing techniques.

The book is meant to be a tutorial type of text for an introduction
to the 6800 or microprocessors/microcomputers in general. Review
questions and answers are provided after each chapter. In addition,
there are over 30 “hands-on” experiments provided throughout the
text that demonstrate “real-world” applications. The experiments are
written around the Heath ET3400 microcomputer learning system
and the Motorola MEK6800D2 evaluation kit. Applications are
stressed throughout the text and are especially evident in the chap-
ters on interfacing where the reader learns how to construct a
minimum workable 6800 system and interface that system to
switches, keyboards, displays, digital-to-analog converters, and ana-
log-to-digital converters.

Finally, I would like to express my appreciation to Dave Larsen of
Virginia Polytechnic Institute and State University whose encourage-
ment to write on the Motorola chip line led to this book and to Jon
Titus of Tychon, Inc., whose many suggestions have contributed to
the final product. In addition, I must thank my wife, Janet, for her
talent with a typewriter and to one of my students, Sandy Trentini,
whose talent at the drawing board is evident in most of the text
illustrations.

ANDREW C. STAUGAARD, JR.

To my wife Jan, she believes in me.
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CHAPTER 1

Fundamental Microprocessor
Concepts

INTRODUCTION

In this chapter we will begin by discussing the fundamental dif-
ferences between a microprocessor chip, a microcomputer chip, and
a microcomputer system. This will then lead to a discussion of chip
families, specifically the Motorola 6800 family. Once the decision to
purchase a particular microprocessor or microcomputer chip is made,
the purchaser is really committed to a chip family. The family will
consist of all the external support chips required to make a workable
system. Such support chips include read/write memory, read-only
memory, peripheral interface chips, peripheral controllers, etc. If a
manufacturer maintains family compatibility for future chip design,
even the newer-generation microprocessors and microcomputer chips
can be part of the same basic family. This is the case with the Moto-
rola 6800 chip line. All of the newer-generation chips such as the
6802, 6809, and 6801 are software, and to some extent hardware,
compatible with the 6800. Therefore, we include them as part of the
6800 family.

We will then take a closer look at the 6800 chip which can be
divided into three functional regions: address, data, and control. We
will discuss the internal registers that make up each functional
region. This will be the beginning 6800 structure (architecture)
which will be completed in Chapter 3. You will become familiar
with the 6800 instruction format. A simple program will then be



written to add two numbers and the program execution will be
traced through the internal structure of the 6800.

Finally, in order to understand digital computers, it is necessary
to know the binary number system. Since the learning systems used
with the experiments employ the hexadecimal (hex) number system
and all of the programs will be written in hex, it is especially impor-
tant to understand this number system as well as how to convert
between hex and other number systems such as binary and decimal.
It might be helpful to review number systems in Appendix B prior
to reading this chapter.

OBJECTIVES
At the end of this chapter you will be able to do the following:

e Understand the difference between a microprocessor and micro-
computer.

e Know some microprocessor chip families and microcomputer
systems and their applications.

¢ Distinguish between read/write and read-only memory.

o Understand the basic internal structure of the 6800.

o Distinguish between microcomputer instructions written in bi-

nary code, hexadecimal code, or mnemonic code.

Understand and trace a simple program through the 6800 chip.

MICROPROCESSOR/MICROCOMPUTER BASICS

Let us start by making a distinction between the terms micropro-
cessor and microcomputer. A microprocessor is usually only a single
integrated circuit, or “chip,” and it is generally thought of as a
Central Processing Unit (CPU ). It does not contain any permanent
memory or convenient input/output (i/o) features. Many of these
chips do not include a clock for the timing of operations and none of
them include a power supply. The first- and second-generation chips
such as the Motorola 6800 and 6802; the Intel 8008, 8080, and 8085;
and the Zilog Z-80 are truly microprocessors. They are the result
of Large Scale Integration (LSI) which can integrate 500 to 10,000
transistors and associated components on a 100-mil X 100-mil silicon
chip. These chips are not “stand-alone” computers and may require
anywhere from 3 to 300 additional digital chips and i/o devices to
achieve a workable system, depending on the application. However,
these microprocessor chips sell for under $20.00 and represent as
much computing power as many of the larger computers of the
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mid-1960s. Present applications of these devices are calculators, tv
games, “smart” toys, appliances, home and small-business computing
systems, industrial process controls, and automobiles. The largest
future applications are seen to be in homes, automobiles, appliances,
and industrial controls. Because of the low cost of these devices, al-
most any mechanical or electrical product has the potential of utiliz-
ing a programmed intelligence.

A microcomputer, on the other hand, is virtually a total computer
system. It can be as large or small as the application requires. The
microcomputer can be broken down into two categories: the micro-
computer chip and microcomputer system. The microcomputer chip
is a result of third-generation technology that utilizes VLSI (Very-
Large Scale Integration) which integrates from 10,000 to 50,000
transistors and associated components per chip. This 40-pin chip will
typically contain a small amount of read-only and read/write mem-
ory, a clock, possibly a serial communications interface capability or
an internal analog-to-digital converter, and other i/o features. The
Motorola 6801 and Intel 8748 are products of this technology. These
chips are “stand-alone” computers for many small applications, such
as appliances and industrial controls. They will be used for future
applications essentially in the same manner as the microprocessor
chip. The Motorola 6801 microcomputer chip layout is shown in
Fig. 1-1,

cPU 2Kx8
(6800)

Fig. 1-1. Motorola 6801

microcomputer chip layout. W RAM
28xe

The second category of microcomputers is the microcomputer sys-
tem. This system is built around the microprocessor or microcom-
puter chip. Such systems usually contain the following, external to
the chip itself,

1. Read-Only Memory (ROM) for operation control.

2. Read/Write (R/W) memory for data storage.

3. CRT and keyboard for convenient user input/output.
4. Floppy disk or cassette recorder for mass data storage.

11
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(RAM)

Mass Microprocessor

Storage o 1/o
Device : : b \ : Davice

Chip

(ROM)

Fig. 1-2. Microcomputer system block diagram.

Examples of such systems are the Radio Shack TRS-80, Heathkit
H-8, IMSAI 8080, Altair 8800, and Cromemco Z-2. These systems are
relatively inexpensive and rival many minicomputers in their capa-
bilities. They can be used for industrial process control, data acqui-
sition, and personal and small business computing. They are also a
very popular hobby item. A microcomputer system block diagram
is shown in Fig. 1-2. Note that the microprocessor/microcomputer
chip is at the “heart” of the system.

Before we begin with a detailed discussion of the 6800 chip, let
us look at some microprocessor and microcomputer chip families.

Manufacturers of microprocessor chips, such as Motorola, Intel,
Zilog, and RCA, have each marketed a complete series of external
chips that can be used with their microprocessor. Remember, the
beauty of a microcomputer system is that it can be as large or as
small as the application requires. Therefore, once a particular micro-
processor is purchased, almost any number of chips within the fam-
ily of that microprocessor can be added to obtain the desired system.
All chips within a family are compatible, which means that they typi-
cally use the same supply voltages, have the same size data words,
etc. The 6801 we referred to earlier is considered part of the 6800

12



chip family since it uses the 6800 as its Central Processing Unit
(CPU). See Fig. 1-1. The same is true of the Motorola 6802, 6803,
and 6809 microcomputer chips. We intend to study the 6800 in de-
tail because it is the basic hardware and software model for almost
all of Motorola’s chip line. All of the Motorola microcomputer chips,
such as the 6801, 6802, 6803, and 6809, utilize the 6800 as their CPU
and many future Motorola chips will be software and hardware com-
patible with the 6800. Fig. 1-3 shows the 6800 chip family. There are
many chips within the family other than the ones indicated in Fig.
1-3. For a complete listing and description of all the 6800 family,
consult The Complete Motorola Microcomputer Data Library, avail-
able from Motorola Semiconductor Products, Inc., Box 20912, Phoe-
nix, Arizona 85036. We will cover some of these chips in more detail
when we discuss interfacing.

BASIC 6800 CHIP STRUCTURE

We will begin with a description of only those functional parts of
the 6800 that will permit us to program simple operations. Then,

MEMORIES

WCM 68304,

680
Y
e

27
]
WC 680/
MPY
MC 6800

€09 oW

MC 6809

now

Fig. 1-3, Motorola 6800 chip family.
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later on, we will complete the 6800 architecture with the addition of
some special functions to make the 6800 a very powerful processing
unit. Fig. 1-4 represents the beginning of our 6800 structure.

First, note that the chip is divided into two distinct sections,
address and data/control. On the surface it would seem that these
sections are unconnected and unrelated. However, both sections are
connected to an external memory. The address section is used to

ADDRESS SECTION

DATA /CONTROL  SECTION

MAR

16-bit Addresses @-bit Dato
$ Weiructions

L—._/—/_‘\-—-/L\'/J

Fig. 1-4. 6800 functional chip structure.

fetch program instructions and data from memory and the data/con-
trol section is used to interpret these instructions and execute the
program commands. Therefore, the sections are related and interact
with each other via an external memory.

Second, note that broad arrows connect the various blocks. These
are internal buses (conductor paths) that transmit binary informa-
tion from one area to another. The arrow indicates the direction of
information flow. Note that some of the buses are bidirectional. The
number within the bus indicates the size of the bus in binary bits.
Therefore, by observation, the address section utilizes 16-bit buses
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while the data/control section uses 8-bit buses. Now let us look at
each functional block in more detail.

Program Counter

The Program Counter (PC) is simply a 16-bit binary counter. The
PC is capable of counting from 0000 0000 0000 0000, to 1111 1111
1111 1111, or 0000, to FFFF;;. When the counter is clocked by
CON, it will be incremented by one binary digit. The count in the
PC will represent an address in memory. In fact, it is always the
memory address of the next program instruction to be performed.

Memory Address Register

The Memory Address Register (MAR) is a 16-bit storage register.
It receives a 16-bit memory address from the PC. It will then pass
the address to the external memory to “fetch” the next program in-
struction to be performed.

External Memory

This memory is external to the 6800 chip. It is a Random-Access
Memory (RAM). A RAM can be thought of as a Read/Write
(R/W) memory, i.e., information can be read from the memory and
information can also be written into the memory. Each location in
memory contains an 8-bit word; therefore, all information in the
memory is ordered in 8-bit blocks, or bytes, as shown in Fig. 1-4.
This is why the 6800 data bus in Fig. 1-4 is an 8-bit bus.

Each byte of information must have an address so that it can be
located. The address is a 16-bit (2-byte) word and this is the reason
that the 6800 address bus is a 16-bit bus. Since our address is a 16-bit
word, there are 2% possible addresses. Therefore, we say that the
6800 is capable of addressing 65,536 locations in memory. More will
be said about memory later.

Data Register

The Data Register (DR) is an 8-bit temporary storage register
which receives 8-bit information from memory. If the 8-bit memory
information is a program instruction, the DR will pass it to the in-
struction decoder. If the information is to be processed, rather than
used to indicate an operation, the DR will pass it to one of the ac-
cumulators or the Arithmetic Logic Unit (alu), depending upon
the previous program instruction command. The DR directs the in-
formation and is, therefore, sometimes referred to as a Data Direc-
tion Register (DDR).

15



Instruction Decoder

The Instruction Decoder (ID) is exactly what the name implies.
It decodes, or interprets, 8-bit instructions received from memory.
It will then direct the chip to “execute” the instructions through the
controller/sequencer.

Controller/Sequencer

The CONtroller/Sequencer (CON) receives the decoded instruc-
tions from the instruction decoder and enables and disables the other
parts of the chip to carry out these instructions. Therefore, it controls
and sequences all of the operations within the chip.

Accumulators

The 6800 contains two accumulators, ACCumulator A and ACCu-
mulator B (ACCA and ACCB). These are 8-bit storage registers that
are used to hold operands before they are used in an operation and
are also used to hold the results of operations after they have been
performed. Operands are data to be used as part of an operation.

Example 1-1: Use of Instructions and Operands

ADD ——> Instruction
2 —— Operand

The operand is the number used in the operation. In this case, we are add-
ing two. ADD is the instruction, while 2 is the operand.

Arithmetic Logic Unit

The alu is the heart of the 6800 microprocessor chip. It performs
all of the arithmetic and logic operations. The results of these opera-
tions are stored in one of the accumulators. Typical operations are
adding, subtracting, ANDing, ORing, or XORing.

6800 FETCH AND EXECUTE

Before we trace a simple operation through the chip, let us look
at a typical instruction format. Instructions in the 6800 can be one,
two, or three bytes in length. As shown in Example 1-2, the first byte
is always the command. The second byte can be a memory address
or data. The third byte is always part of a memory address or a sec-
ond data byte. Some commands require a second or third byte while
others do not.

In writing a series of instructions, the mnemonic of the command
is listed then the second and third bytes in hex are shown, if they
are required. Since hexadecimal is used as a standard number sys-

16



Example 1-2: 6800 Instruction Format

1st byte 8-bit command

2nd byte address or data

3rd byte optional address
or data

NotE: Since our command byte is eight bits, there are 2°, or 256, different
commands possible with an 8-bit chip such as the 6800,

tem, all numbers in the program listings will be hex unless otherwise
indicated with a subscript.

A mnemonic is simply a representation for a command that is
easily understood and remembered by the programmer. An op code
is the 8-bit binary or 2-digit hex representation for the mnemonic
which resides in memory.

Now let us look at the following program listing.

Example 1-3: 6800 Sample Program Listing
LDAA

05
mnemonics ADD> operands
0A

WAI

The first command is to LoaD Accumulator A with 5. The second com-
mand tells the computer to ADD 0A to the contents of accumulator A.
The third instruction tells the computer to WAIt or halt its operation.

The second bytes of the first two instructions are operands and not ad-
dresses; neither of the instructions require a third byte. In fact, the WAI
instruction does not require a second or third byte.

Note that in the preceding description of the program, we have
capitalized each letter that forms the mnemonic of the instruction.
This will be done throughout the text when new instruction mne-
monics are introduced.

Once the program is loaded into memory, it is ready to go. The
memory structure for this program is represented by Fig. 1-5 which
is the actual binary memory structure. However, for ease of diagram-
ming, hexadecimal is used to represent memory addresses and in-
formation as shown in Fig. 1-6. Note that the LDDA, ADDA and
WAL instructions are represented by their respective op codes.

Now, we will trace the program through the 6800 chip and exter-
nal memory. Our explanation will use Figs. 1-7 through 1-11.

Figure 1-7
The first instruction (LDAA) is fetched and decoded.
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DATA / CONTROL SECTION

ADDRESS SECTION 6800 CHIP

EXTERNAL MEMORY

0000 0000 0000 0000 5 oo 0"02

0000 0000 0000 0001, Q000 0I0!,

0000 0000 0000 0010, 1000 101

0000 0000 0000 00l 2 0000 |0|02

0000 0000 0000 0l002 oon lII02

8-bit Dato
¢ Instructions

SN

Fig. 1-5. Binary representation of “ADD” program in memory.

16-bit Addresses

Explanation
Since the LDAA instruction is located at address 0000, this address
must appear on the address bus for LDAA to be fetched. The PC is

ADDRESS SECTION DATA/CONTROL SECTION

6800 CHIP
i
— — — — — -
16 8
EXTERNAL MEMORY
0000¢ 864
000l ¢ 05,
16 [
0002
16 B
0003,¢ 04
0004 ¢ 3E,¢
16-bit Addresses 8-bit Doto
§ Instructions
L~ ]

Fig. 1-6. Hexadecimal representation of “ADD” program in memory.
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set to the beginning address of our program, 0000 in this case. Since
program execution begins at address 0000, the 6800 expects to find
an instruction op code there and not data. If data is stored there, it is
treated as an instruction op code. The CON (controller/sequencer)
section of the 6800 then enables the PC to transfer its count to the
MAR (memory address register). Immediately after the transfer, the
PC is clocked and its count is incremented by one. The MAR is then

ADDRESS  SECTION DATA / CONTROL SECTION To All Registers

6600 CHIP

Eaternat Memory

0000
[
000¢ " OSIG
0002 6 BBIS
A
0003 6 [} 6
0004 I SEIG
Address !nl'mcﬂon:/
Data
———e e

Fig. 1-7. LDA fetched and decoded.

enabled to transfer 0000 to the external memory. When memory lo-
cation 0000 is accessed, its contents (86) are placed onto the data
bus. This information is received by the DR (data register) then
transferred to the ID (instruction decoder) for interpretation (de-
coding). Once the instruction is decoded, the CON provides the
proper signals to execute the instruction. Observe the present regis-
ter contents of the address section (Fig. 1-7). The PC contains 0001,
which is the next memory location to be accessed. The MAR contains
0000, which is the address of the present memory location being
accessed.
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Figure 18

The operand (05) for the first instruction is fetched and loaded
into accumulator A.

Explanation

The program count (0001) is transferred to the MAR and the PCs
count is incremented. The MAR then places 0001 onto the address

ADDRESS SECTION ‘ DATA CONTROL SECTION

800 CHIP !
e800 To All Registers

Ay

External Memory

0000 ¢ 86,5

K)()()lls osls 05's
000z o8,

4)003ls OAIB

0004.6 3:)5
Address Inurucﬂom/

Data
o

Fig. 1-8. LDA execution.

bus to be transferred to external memory. Memory location 0001 is
accessed and its contents are placed on the data bus. The DR re-
ceives 05 and loads it into accumulator A,

How did the DR know that its incoming information was an oper-
and and not another instruction to be decoded?
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After the LDA instruction was decoded, the CON signaled the
other registers that the byte of information in the next memory lo-
cation was an operand to be loaded into accumulator A.

Figure 19
The ADDA instruction is fetched and decoded.

ADDRESS SECTION | DATA / CONTROL  SECTION

To All Registers

6800 CHIP

l ACCB

External Memory

0000 I BSIG
00°l|6 05|s
0002 13 ) 00°2|S BBIG
; 0003Is OAIG
OOOAIG 3E|6
Address Innruc!ions/
Data
V_\/\/J\/

Fig 1-9. ADDA fetched and decoded.

Explanation

Address 0002 is placed on the address bus and the PC is incre-
mented as before. The op code 8B is then accessed and placed on
the data bus. The DR receives the instruction and passes it to the
ID for decoding. The CON section then signals the other registers
that the next byte in memory is an operand to be added to the con-
tents of accumulator A and the sum is to be stored back into accumu-
lator A.
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Figure 1-10
The value 0A is added to 05 with the results being placed in ac-
cumulator A.
|

1
ADDRESS SECTION DATA/CONTROL SECTION

To All Registers

€800 CHIP

0003 A
03, 0003, 0A g 0a

Fig. 1-10. ADDA execution.

Explanation

Address 0003 is placed on the address bus as before and the oper-
and OA is accessed and placed on the data bus. The DR sends 0A to
the alu. At about the same time, the CON section indicates to accu-
mulator A that it is to send its contents to the alu. The alu then adds
the two operands and places the result (OF) back in accumulator A.
We will see later that once the result of an operation is in one of the
accumulators, it can then be stored in memory, used in another oper-
ation, or transferred to an i/o device.

Figure 1-11
The WAIt instruction is fetched and executed.



ADDRESS SECTION DATA /CONTRDL SECTION

To All Registers

6800 CHIP

External Memory
OQ(JOIs SGIS
0001 6 OSIS
OOOZIs BB|S
0003Is OAIS
0004|6 OOO‘ls SE‘S 3E 16
f/\\q_a\_/\

Fig. 1-11. WAl fetched and executed.

Explanation

The instruction is accessed and decoded as before. The CON sec-
tion indicates to the other registers that they are to wait or halt oper-
ation until further notice. Note that the result of the addition, OF,
remains in accumulator A (ACCA).

REVIEW QUESTIONS

1. What is a digital computer?

2. What number system does a digital computer utilize?
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3. What is meant by base 10, base 2, base 16?

4. Define the following terms:
a. bit

b. byte
c. word

5. Which of the following is a byte?
a. 1101

b. 1101111
c. 11011111
d. 1000101011100111

6. State the difference between a microprocessor and microcomputer.

7. What is meant by the term LSI?

8. Identify the following instructions as to whether they are binary code, hex-
adecimal code, or mnemonic code.
a. WAI

b. 11010011,
c. 1101,

d. LDA

e. 1101,

f. OFC9.

9. State the difference between RAM and ROM.



10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

s

2.

Which of the following is a microcomputer system?
a. 6800

b. TRS-80
c. 8080
d. Z-80

What is meant by a chip family?

The 6800 usesa ___.___ . -bit data bus.
The PCisa___. _____ -bit counter.
The MARisa___________ register.

The . performs all arithmetic and logic operations.
The 6800 contains how many accumulators? What are they named?

Instructionscanbe ________.__ bytes in length (how many?).
The 6800 is capable of addressing__. . memory locations.

The results of an arithmetic or logic operation are always placed in the

With reference to the instruction being executed, the PC always contains
the addressofthe,___________ program instruction.

A synonym for decoding is

ANSWERS

A computer that utilizes on/off states (binary) to represent numbers and
make decisions.

Binary, base 2.
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. Base 10 means decimal number system.

Base 2 means binary number system.
Base 16 means hexadecimal number system.

A binary digit (1 or 0).
. 8 bits.
. Any number of bits, depending on how it’s used.

oo

. C.

6. A microcomputer is a fully operational digital computer that is based on a

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

26

microprocessor.

. Large Scale Integration—500-20,000 transistors and associated components

per chip.

mnemonic

. binary
hexadecimal
. mnemonic
binary
hexadecimal

™o Lo T

. RAM is random access memory ( ROM is read-only memory ).
10.
11.

TRS-80

Generally, a group of chips designed to be compatible with a specific micro-
processor chip.

8

16

storage or buffer, 16-bit
arithmetic logic unit (alu)
Two—ACCA and ACCB.
one, two or three

65,5361 (64K)
accumulator

next

interpret



CHAPTER 2

Heath ET3400 and Motorola
MEK6800D2 Microcomputer

Learning Systems

INTRODUCTION

In the chapters that follow, the Heath ET3400 or Motorola MEK-
6800D2 learning systems will be used to demonstrate the concepts
of microcomputer programming and interfacing. This chapter will
familiarize you with the layout of each system and prepare us to use
them properly to perform the experiments. It is assumed that the
microcomputer system that will be used has already been properly
assembled and tested and is in satisfactory working order. The pro-
gramming experiments are designed to be used on either system.
However, the interfacing experiments in Chapters 6 through 9 are
only designed for the Heath ET3400 system. The interfacing experi-
ments cannot be easily performed on the Motorola MEK6800D2 sys-
tem since the data, address, and control signals are not made con-
veniently available and no solderless breadboarding region is
supplied.

In order to complete all of the interfacing experiments, the follow-
ing parts must be available in addition to the basic ET3400 training
system:

One 7400 digital IC (2-bit NAND—Heath #443-1
One 74LS30 digital IC (8-bit nanD)—Heath #443-732
One 741,527 digital IC (3-bit Nor )—Heath #443-800
One 7475 digital IC (DAlip-flop)
27



One 6820 or 6821 PIA—Heath #483-843

Two 2112 256 X 4 R/W memory chips—Heath #443-721

Une TIL-312 7-segment display—Heath #411-831

One solderless connector block—Heath #432-875

Four push-button switches—Heath #64-724, 64-725, 64-726, 64-727
One Motorola MCM6810 128 X8 R/W memory chip

Two 74154 one-of -sixteen decoders

Five 1000-chm Y4-watt resistors '

No. 20—No. 22 wire cut to 37, 6”7, and 9” lengths (approximately

25 of each length)

OBJECTIVES

At the end of this chapter you will be able to do the following:

Describe the characteristics of each major functional area of the
learning system.

Identify the input/output parts of the system.

For the ET3400, demonstrate the operation of the eight binary
switches and LED:s.

For the ET3400, demonstrate the operation of the DO, EXAM,
FWD, AUTO, BACK, CHAN, SS, ACCA, ACCB, and PC keys
on the keyboard.

For the MEK6800D2, demonstrate the operation of the N, V, M,
E, R, anid G keys on the keyboard.

Load and execute a simple microcomputer program on each
system.

Trace a program through the 6800 chip with each system.

HEATH ET3400 MICROCOMPUTER LEARNING SYSTEM

The ET3400 is truly a student-oriented learning system. It is well
designed to provide the student with an efficient learning experience
in microcomputer architecture, programming, and interfacing. And
yet, it is a powerful and versatile microcomputer. The system can be
purchased from Heath in kit form for under $200.

A composite pictorial view of the learning system is shown in Fig.
2-1. This system can be broken down into two major areas as follows:

1.
2.

Those regions used for actual computation, memory, and i/o
(Fig. 2-2).
Those regions which allow us to access different parts of the

system and to breadboard external circuits to the system (Fig.
2-3).
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Fig. 2-1. Pictorial view of Heath ET3400 Microcomputer Learning System.



Functional Operating Regions

Refer to Figs. 2-1 and 2-2 which use numbered references. An
explanation of each number reference follows.

1. RAM—Random Access or read/write Memory. This is the region
where information can be stored and retrieved. It consists of 2
pairs of RAM chips. Each pair consists of two 256 by 4-bit

r————
L — ———
power
) |IEE| HEATHKIT microcomputer leorning system
standby on
RAM LED HEX Disploy
Q ®
MC 6800 CPU ROM
@ @®

HEX
KEYBOARD

®

Fig. 2-2. Functional operating regions of Heath ET3400 Microcomputer
Learning System.

(256%4) chips, which means that 256 4-bit words per chip or
256 8-bit words for each pair of chips can be stored. Since we
have 2 pairs, the system is capable of storing 512 8-bit words in
RAM. One pair comprises memory locations 0000, through
00FF 4 (256 locations) and the other pair starts at memory loca-
tion 0100, and ends with 01FF,¢ (256 locations) for a total of
512 8-bit read/write memory locations.



Fig.

| e —— | [
—_—— —
—— —_——
e | e e—
power
@ ||Em| HEATHKIT microcomputer learning system
standby on

Date
Access

®

CPU Control Access Address

@ Access

®
Independent

Binary

i a1
av independent

-l2v Bregdboard Console
+ 5V

4
Display
@

2-3. Access and breadboarding regions of Heath ET3400 Microcomputer
Learning System.

. LED Hex Display—This is an output display that consists of six

7-segment LED displays. The system will display information on
these displays in hexadecimal as directed by the microprocessor.

. MC6800 CPU—The microprocessor chip which performs all com-

putation and control functions.

. ROM—Read-Only Memory is a memory chip that has been pre-

programmed to make the system much more convenient to use.
It contains a program which allows the use of hex rather than bi-
nary. It also permits you to do many other convenient things
that will become valuable as the experiments are performed.
This chip contains 1024 8-bit memory locations which begin at
address FC00,6. This area of memory cannot be used for your
program.

. Hex Keyboard—Allows you to enter data or commands in hexa-

decimal. Each key except for 0 and RESET is a dual-function
key. The functions of each key are described in Fig. 2-4.
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KEY NAMES/FUNCTIONS

READOUT LED's

D-DO: Enter letter D" or do - -
program at sddress to be end == ———" ————— = [EEXAM: Enter letter 'E." or re-
tered. | I’ quest address to be examined.

F-FWD: Enter letter “F," or in-
crement displaed memary ad-
dress.

B-Back: Enter letter “B,” or de-
crement displayed memary ad-
dress.

A-Auto: Enter Jetter "A.” or en-:
able automatic program load-
ing.

7-RT1: Enter numeral 7, or re-

SUme user's program.

5-CC: Enter numeral 5" or |
display condition code register.

4 INDEX; Enter numeral "4, o
display index register.
1-ACCA: Enter numeral "1.” o
display A

RESET: Reset system for new
operation.
©: Enter numeral “0," {zerol. TACCD: Entor momeral <2 or
displays Accumulator B.

Courtesy Heath Co.

Fig. 2-4. Keyboard layout and key functions of Heath ET3400 Microcomputer
Learning System.

C-CHAN: Enter letter “C.."" or re-
quest change of address or data

: 8-SS: Enter numeral "8, or
single step vser's program
4-BR: Enter numeral “9." or

5 | permit entry of break points.

EYIR N 6-5P: Enter numeral 6. or dis-

—.7 S play stack pointer.

- NE D 3
[ 2 5 T 3-PC: Enter numeral “3.” or dis-

play program counter.

Access and Breadboarding Regions

Refer to Figs. 2-1 and 2-3 using the numbered references.

6. Data Access—At the top of this region is a connector block for
data i/o control. At the bottom of the region are eight dual-inline
solderless breadboard sockets for access to each of the eight data
bus lines (D0-D7).

7. CPU Access—The three solderless connector blocks in this region
provide a direct connection to the various control pins on the
6800. More will be said about these later.

8. Address Access—This area consists of 16 dual-inline solderless
breadboard sockets for access to each of the 16 address bus lines
(A0-A15).

9. Binary Switches and Displays—This section is independent from
the other regions of the system. It consists of eight microswitches
(0-7) to provide logic ones and zeros to the dual-inline eight-pin
connectors located just above the switches. It also consists of
eight LED display indicators (0-7) to monitor logic status,
which are connected through the dual-inline eight-pin connec-
tors located just below the LEDs.

10. Breadboard Console—The breadboard is also independent from
the other regions of the system. It is designed to accommodate
the many experiments that will be performed in subsequent
chapters. Integrated-circuit chips, resistors, capacitors, and wires
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can all be connected in the solderless breadboard sockets. Do
not use wires or leads larger than AWG#20 (.032”).

MOTOROLA MEK6800D2 EVALUATION KIT

The MEK6800D2 evaluation kit, marketed by Motorola, is a 6800-
based system very much like the Heath ET3400 system. It is de-
signed for the engineer, technician, or experimenter who wants to
familiarize himself with the 6800 CPU. The system is not as well
documented as the Heath ET3400 and the individual is more or less
left “hanging” as how to program and interface it. By following this
and subsequent sections, you should become much more familiar
with the use of the MEK6800D2 system. The kit is available from
Motorola for less than $200 with a student discount.

The MEK-6800D2 consists of two main printed-circuit boards con-
nected by a flex cable as shown in Fig. 2-5. A functional layout of
each board with numbered references is provided in Figs. 2-6 and
2-8. An explanation of each number reference follows.

Keyboard/Display Module

1. Hex Keyboard—This allows the operator to enter data in hexa-
decimal (white keys) and system commands (blue keys). All of
the keys are single function and are described in Fig. 2-7.

2. LED Hex Display—This is an output display which consists of
six 7-segment LED displays. The system will display information
on these displays in hexadecimal as directed by the micro-
processor.

Microcomputer Module

3. MC6800 CPU—The microprocessor chip which performs all com-
putation and control functions.

4. Clock—A square-wave generator that provides synchronization
pulses for the 6800 CPU.

5. JBUG ROM—Read-Only Memory that has been preprogrammed
by Motorola to make the system much more convenient to use.
For one, it contains a program which allows the use of hexadeci-
mal rather than binary. It also allows you to enter and examine
programs more conveniently, You will realize the value of JBUG
as the experiments are performed.

6. Optional ROM—These two sockets are provided so that you may
expand the system to add your own programmed ROMs. These
can be Programmable ROMS (PROMS), Electrically Alterable
ROMS (EAROMS), or Erasable PROMS (EPROMS).
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LED HEX DISPLAY

®

HEXADECIMAL
KEYBOARD

0]

Fig. 2-6. Keyboard/display module of Motorola MEK8800D2 Evaluation Kit.

7. RAM—Random-Access or read/write Memory. This is the region

where information can be stored and retrieved. The basic kit
consists of three RAM chips. Each chip is a 128 by 8-bit (128x8)
chip; which means that 128 8-bit words can be stored per chip.
Two of the chips are available to the user, with the third chip
being reserved for use by the JBUG ROM program. Therefore,
with the two chips provided for the user, 256 8-bit words can be
stored in RAM.

. Optional RAM—These two sockets are provided so that the “on-
board” RAM capability may be expanded to 512 bytes.

. ACIA—Asynchronous Communications Interface Adapter. The
basic function of ACIA is to provide serial/parallel data conver-
sions. It will take parallel data bus information and convert it to
serial data to be transmitted to some i/o device. It will also ac-
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10.

cept serial data from an i/o device and convert it to parallel data
to be used by the CPU. The main applications of the ACIA
would be in interfacing the MEK6800D2 system to some serial
device such as a cassette, teletype, printer, or telephone line
(modem).

PIA—Peripheral Interface Adapter. This is a programmable de-
vice which is used to provide basic input and output interface

Load: Load memory

from magnetic tape

Single step user's

s
Punch: Punch data program storting
at first breakpoint
from memory to

11.
12,

magnetic tape
Breok points inserted
\ / at cddress entered
z Memory Exomine § Change:
P L N v o
(D Examine oddress entered
@ Enter new data to change
7 8 s 4 " Escape: Press to
exit from any operation
Hexadecimat 4 5 6 8 E

Oata Register Disploy: Press

to disploy PG,
then press, G sequentially

Entry
Keys

to display IR, ACCA, ACCB,

CCR,SP after program run

Go: Do program

at oddress entered

TR

and singia step to

enter program

Fig. 2-7. Keyboard layout and key functions for Motorola MEK6800D2
Evaluation Kit.

for 8 bits of parallel data. Each PIA contains two 8-bit channels
(ports) which can be used for either input or output. The PIA
in the upper right corner of Fig. 2-8 is used by the MEK6800D2
system to interface the keyboard/display module to the micro-
computer module. The PIA below this one is available for par-
allel interfacing. More information about this device is contained
in Chapters 8 and 9.

RESET—Reset system for new operation.

The large open area in the lower right-hand corner of Fig. 2-8 is
provided for user-designed circuitry to be added to the system.



Optional
RAM
@ ACIA P1A

® ©
Optional Optional
RAM oM
e ®
RAM PiA
@
]
RAM Optional ['
ROM
@ ©
RAM @
2}
JBUG EJ
now —
®
o
MC 6800 Clock
% ®

Fig. 2-8. Microcomputer module of Motorola MEK6800D2 Evaluation Kit.

EXPERIMENT INSTleCTIONS AND FORMAT

The instructions for each experiment are presented in the format
described below.

Purpose

The material under this category states the intended purpose of
the experiment. Keep this purpose in mind as you conduct the ex-
periment.

Equipment

This category will list the equipment required to complete the
experiment including any external integrated circuits, transistors, re-
sistors, capacitors, etc. There will be two listings: one of the equip-
ment required for the Heath ET3400 trainer and the other of the
equipment required for the Motorola MEK6800D2 system.
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Schematic Diagram

A schematic diagram of the completed circuit to be used in the
experiment is provided. The user should make an effort to follow the
diagram and understand the circuit before doing the experiment.

Program

The hexadecimal microcomputer program to be loaded into RAM
at the indicated memory addresses will be provided.

Procedure

A sequential step-by-step procedure for completing the experiment
will be provided. In some cases, the procedure will be divided into
two sections, one for the ET3400 trainer and the other for the MEX-
6800D2 trainer.
Conclusions

Space will be given at the end of each experiment to form conclu-
sions. Questions will be asked in an attempt to guide your thinking.
Try to sincerely answer these questions. Ask yourself: What concepts
are being demonstrated?

EXPERIMENT 2-1

Purpose
To provide power to the microcomputer system and prepare the
system for operation.
Equipment
ET3400 MEK6800D2
5-volt dc power supply

Procedure

Step 1

Plug in the system and turn the power switch to “on.”

Step 2

Press the RESET button on the keyboard and the hex display should
indicate “CPU UP.”



Step 3

Answer the questions at the end of this experiment and draw your
conclusions.

| MEKesooD2 |

Step 1

Apply +5 volts dc to point A of the J1 connector located on the mi-
crocomputer module,

Step 2

Apply ground ( + ) to point C of the J1 connector located on the
microcomputer module.

Step 3

Press the RESET button (S1) located on the microcomputer mod-

ule. The hex display should show a dash “-” on the first 7-segment
LED (U1l). All the other displays should be blank.

Step 4
Answer the questions at the end of this experiment and draw your
conclusions.

Conclusions
Was the proper display achieved? If not, why?

If the proper display was not achieved, repeat the procedure. If
it fails again, test and troubleshoot the system until this experiment
can be successfully completed.

For the Heath ET3400, what caused the display to show “CPU
UP” after the RESET button was pressed?

For the Motorola MEK6800D2, what caused the display to show
e ” after the RESET button was depressed?
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What is the function of the RESET?

EXPERIMENT 2-2

Purpose
To demonstrate the method of program entry into RAM.
Equipment
ET3400 MEK6800D2
+5-volt dc power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 86 LDA
0001 05 05 05 — ACCA
0002 8B ADDA
0003 0A 0A (05 + 0A) — ACCA
0004 3E WAI Stop
Procedure
ET3400
Step 1

Press RESET then AUTO. The display should show “----Ad.”

Step 2

Press 0000 for the first address then 86 for the first op code. The dis-
play should now indicate “0001 ~.” Note that it has automatically
incremented to the next address.

Step 3

Enter the operand—05.

Step 4

Continue to enter the rest of the program.

Step 5

Press RESET. The program is now entered in RAM and the display
should indicate “CPU UP.”
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Step 6

Answer the questions at the end of this experiment and draw your
conclusions.

| MEK6800D2 |

Step 1

Press the RESET button on the microcomputer module board. The
display should show “_

Step 2
Enter 0000 for the first address then press M.

Step 3

Enter 86 for the first op code. The display should now show “0000
86.”

Step 4

Press G and enter 05 for the operand. The display should now show
“0001 05.” Note that the address incremented by one when the G key
was pressed.

Step 5

Press G and enter the next op code and continue until the entire pro-
gram is loaded.

Step 6

Press E. The program is now entered in RAM and the display should
indicate “~

Step 7

Answer the questions at the end of this experiment and draw your
conclusions.

Conclusions

Why did you have to enter the first address and none of the other
addresses?

What caused the address to automatically increment?

41



Why did you have to RESET the system after program entry?

EXPERIMENT 2-3
Purpose

To examine RAM contents, specifically the program entered in
Experiment 2-2. Also, to change the contents of a memory location.

Equipment
ET3400 MEK6800D2
+5-volt dc power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 86 LDA
0001 05 05 05— ACCA
0002 8B ADDA
0003 0A 0A (05 + 0A) — ACCA
0004 3E WAI Stop
Procedure
ET3400
Step 1

Enter the above program into RAM. Press RESET and then EXAM.
The display should show “----Ad.”

Step 2

Press 0000 for the first address of your program. The display should
show the contents of memory location 0000 which should be 86.
Step 3

Press FWD and the display should show the contents of memory
location 0001.

Step 4

Continue to press FWD to examine each subsequent memory loca-
tion. Verify that your program entry was correct.
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Step 5

Now suppose we wish to change memory location 0003 from 0A to
0B. Press EXAM and then the address to be changed which is 0003.

Step 6
Press CHAN and then the new contents, 0B.

Step 7
Re-examine the program to verify the change has been made.

NoTtEs:

1. You may examine any specific location by pressing
EXAM and then the address.

2. While examining a program, a change may be made at
any time by pressing CHAN and then entering the new
contents.

3. You may also backstep through the program with the
“BACK” key.

Step 8

Answer the questions at the end of this experiment and draw your
conclusions.

MEK®6800D2

Step 1

Enter the program into RAM. Press the E key and then 0000 for the
first address in your program.

Step 2

Press M and the display should show the contents of address 0000
which should be 86.

Step 3

Press G and the display should show the contents of memory location
0001.

Step 4

Continue to press G to examine each subsequent memory location.
Verify your program entry was correct.
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Step 5

Now suppose we wish to change memory location 0003 from 0A to
OB. Press E and then the address to be changed which is 0003.

Step 6
Press M and then the new contents—0B.

Step 7
Re-examine the program to verify the change has been made
NorTes:
1. You may examine any specific memory location by press-
ing E and then the address followed by M.

2. While examining a program, a change my be made at
any time by simply entering the new contents.

Step 8

Answer the questions at the end of this experiment and draw your
conclusions.

Conclusions
When should a program be examined?

With the Heath ET3400 system, what are the relationships be-
tween the EXAM and FWD keys?

With the Motorola MEK6800D2 system, what are the relationships
between the M and G key?

With the Heath ET3400, what is the function of the BACK key?



EXPERIMENT 2-4
Purpose

To execute a simple program and verify its results. Also, to exam-
ine the program counter and accumulator contents at each step of
a program.

Equipment
ET3400 MEK6800D2
-+5-volt de power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 86 LDA
0001 05 05 05 — ACCA
0002 8B ADDA
6003 0A 0A (05 + 0A )— ACCA
0004 3E WAI Stop
Procedure
ET3400
Step 1

Enter and examine the above program for proper entry. Always ex-
amine your program after entry.

Step 2
Press RESET and then DO. The display should show “----do.”

Step 3

Enter the starting address of your program (0000). The display
should go blank, indicating that your program has been executed.

Step 4

The program adds 05 + OA and stores the results (OF) into ACCA.
Press RESET then ACCA and observe the results. The display
should indicate “Acca OF.” If it does not, re-examine your program,
make any required changes, re-execute and verify the proper results
in ACCA.



Step 5 .

Now you will step through the program, observing the contents of
PC and ACCA at each step.

Step 6

Press PC and change its contents to 0000 by using the CHAN key.
This tells the computer to start single stepping at 0000.

Step 7

Press SS. The display should show the next command instruction
which is 8B located at address 0002.

Step 8

Press ACCA and observe its contents. It should be 05 since to this
point you have only executed the first instruction which loads 05
into accumulator A.

Step 9

Press PC and observe its contents. It should be 0002 which is the
address of the next instruction to be executed.

Step 10

Press SS. This display should indicate “0004 3E” which is the next
command instruction to be executed. You have just executed the
ADDA instruction.

Step 11

Press ACCA and observe its contents. This should be OF since 0A
has been added to 05, with the sum (OF) stored in accumulator. A.
Step 12

Press PC and note that it contains the address of the next instruction
to be performed (0004).

Step 13

Press SS and note that the display does not change. This is because
the next instruction was a stop command and control of the system
by the SS key is stopped at this point.

Step 14

Change memory location 0003 to OB and repeat the above procedure.
This time, the result in accumulator A should be 10.
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Step 15

Answer the questions at the end of this experiment and draw your
conclusion.

| MEKss00D2 |

Step 1

Enter and examine the program for proper entry. Always examine
your program after entry.

Step 2
Press E and then enter the starting address of your program (0000).

Step 3

Press G. The display should go blank, indicating that your program
has been executed.

Step 4

The above program adds 05 + 0A and stores the result (OF ) into
ACCA. To observe the contents of ACCA, press E then R, and then
press the G key twice and observe the display. The display should
show “OF .” If it does not, re-examine your program, make any re-
quired changes, re-execute, and verify the proper results in ACCA.

Step 5

Now we will step through the program, observing the PC and ACCA
contents at each step. Press E to reset the system.

Step 6

Enter the starting address of your program followed by V. This en-
ters a “breakpoint” at address 0000, which allows you to start single
stepping through the program at this point.

Step 7

Press G. The program will Go to the first breakpoint and then stop.
By pressing the G key two more times, you can display the contents
of ACCA. It should be a random number since no data has been
loaded into the accumulator at this point.
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Step 8

Now press the N key. This will single step the program and cause the
first instruction to be executed. The display should show 0002 8B.
The contents of the PC is 0002, which is the address of the next in-
struction to be performed.

Step 9
Press the G key twice and observe the accumulator contents. It

should be 05, since at this point we have only executed the first in-
struction which loads 05 into accumulator A.

Step 10 :

Press N. This will single step the program again and cause the sec-
ond instruction to be executed. The display should show 0004 3E.
The contents of the PC is 0004, which is the address of the next in-
struction to be performed. '

Step 11

Press the G key twice and observe the accumulator contents. It
should be OF since OA has been added to 05 with the sum stored in
accumulator A. The N key can now be used to single step as many
instructions as desired.

Norte: If the E key is pressed at any time, the breakpoint will
be removed. The breakpoint must be re-installed if it is desired.

Step 12

Change memory location 0003 to OB and repeat the above procedure.
This time, the result in accumulator A should be 10.

-

Step 13

Answer the questions at the end of this experiment and draw your
conclusions.

Conclusions

In what part of the 6800 did the addition take place?
Where was the sum stored?

Why would it not be advisable to use the accumulator as a per-
manent storage register? Where might it be better to
store an operation result?



Why does the PC always indicate the address of the next instruc-
tion to be performed?
What controls the single-step routine of your trainer?

EXPERIMENT 2-5
Purpose
To store an operation result in memory.

Equipment
ET3400 MEK6800D2
+5-volt de power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0020 C6 LDB
0021 05 05 05 — ACCB
0022 CB ADDB
0023 0A 0A (05 + 0A) — ACCB
0024 D7 STAB
0025 50 50 ACCB + — Mso
0026 : 3E WA1 Stop

The above program loads ACCB with 05 then adds 0A to 05. The
sum is placed in ACCB then the STAB stores the sum into memory
location 50. (STAB means STore Accumulator B at the specified
memory location. )

Procedure

Step 1
Enter the above program into memory beginning with address 0020.

Step 2
Examine the program and make any required changes.

Step 3

Execute the program. (Remember, the program begins at address
0020.)
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Step 4

Observe the contents of ACCA. It should be some random number
or the result of the last experiment, since this program uses ACCB.
Step 5

Observe the contents of ACCB by using the ACCB key. The display
should be “ACCB OF,” indicating the sum of 05 + 0A.

Step 6

The program should have stored this sum in memory location 50.
Examine this memory location. The display should show “0050 OF.”
Step 7

Step through the program and observe the PC and ACCB contents
at each instruction step. (Reference Experiment 2-4.)

Step 8

Change the program to add 44;, + 48;, and store the results at mem-
ory location 252,.

Step 9

Execute the program and verify your results.

| MEKe800D2

Step 1
Enter the above program into memory beginning with address 0020.

Step 2
Examine the program and make any required changes.

Step 3

Execute the program. (Remember, the program begins at address
0020.)

Step 4

Observe the contents of ACCA by pressing E, R, and then the G key
twice. The display should indicate some random number since this
program uses ACCB.
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Step 5

Observe the contents of ACCB by pressing the G key one more time.
The display should be “OF ,” indicating the sum of 05 + OA.

NotE: After pressing E and then R, the display will show the
PC contents. Then, sequencing G twice will show ACCA con-
tents. Sequencing G three times will show ACCB contents.

Step 6

The program should have also put this sum at memory location 50
Examine this memory location. The display should show “OF

Step 7

Step through the program and observe the contents of the PC and
ACCB at each instruction step. ( Reference Experiment 2-4.)

Step 8

Change the program to add 44,, + 4810 and store the results at mem-
ory location 252;.

Step 9
Execute the program and verify the results.

Conclusions

Why would you want to store the results of an operation in mem-
ory?

What would be the highest memory location available for storage
with your system?

Was there any noticeable difference in using ACCB rather than
ACCA? If so, what?

Can you think of a case where you might want to use both ACCA
and ACCB in the same program? ( Explain.)
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CHAPTER 3

6800 Arithmetic, Logic, and
Data-Handling Instructions

INTRODUCTION

Now we are ready to begin studying the 72 fundamental instruc-
tions utilized by the 6800 microprocessor. These instructions, along
with their various addressing modes, make up the total 6800 instruc-
tion set of 197 instructions. With this instruction set you will form
programs that make the 6800 a very powerful microprocessor. These
programs make up the software part of a microcomputer system.
Software is what makes the system so flexible, since it takes the place
of digital logic gates. Given a specific application involving a deci-
sion-making problem, a conventional digital design approach could
be used. This design might consist of anywhere from one to one
thousand digital logic gates. However, with a microprocessor-based
design the logic gates are replaced with software instructions. Now
suppose that you wish to change the application. In most cases, the
conventional design would require a complete redesigning and re-
building of the system. However, with the microprocessor-based
design only the program needs to be changed to change the appli-
cation. This flexibility at minimal cost is what has made the micro-
processor so valuable.

The 6800 instruction set can be broken down into seven general
categories as follows:



. arithmetic

logic

. data handling

. data test

. condition code

. index register and stack pointer
. jump and branch.

O YU GO PO

In this chapter we intend to discuss the first three categories in
part. Since the 6800 chip uses binary data internally and the arith-
metic instructions involve binary arithmetic, it might be helpful to
review Digital Computer Arithmetic in Appendix B, prior to reading
this chapter.

OBJECTIVES
At the end of this chapter you will be able to do the following:

e Write a simple arithmetic or logic program for the 6800.

¢ Define Inherent, Immediate, Direct, and Extended Addressing.

e Know when to use or when not to use a particular addressing
mode.

¢ Add, subtract, and perform logic operations on binary numbers
the way the 6800 does.

¢ Interpret simple 6800 arithmetic and logic instruction mnemonic
and op-code listings.

¢ Represent negative numbers using the twos-complement num-
ber code.

¢ Define a status byte and a mask byte.

e Explain how logical instructions can be used to determine the
status of an external device.

e Explain how logical instructions can be used to determine any
change in the state of an external device.

6800 DATA TRANSFER
Load Accumulators (LDAA, LDAB)

As discussed in Chapter 1, the 6800 has two 8-bit accumulators,
A and B. These accumulators are used as temporary storage registers
for operands and operation results. The LDAA (LoaD Accumulator
A) and LDAB (LoaD Accumulator B) instructions allow you to
load data into either accumulator immediately from the byte that
immediately follows the instruction or directly from a memory loca-
tion. The experiments in Chapter 2 used this instruction to load data
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immediately; that is, the data to be loaded followed the instruction
as an operand. This is referred to as immediate addressing. Another
way to load data into the accumulator is from a memory location.
When this method of loading the accumulator is desired, the address
of the memory location that contains the operand must be specified.
In this case, the byte or bytes that follow the LDA instruction will
represent an address rather than the actual data that is to be used
in the operation. This mode is referred to as direct addressing. When
an address is specified following an instruction, it can be either one
or two bytes depending upon the type of addressing that is to be
used. A one-byte address may be used to specify any address from
location 00,6 to FFy¢ or a two-byte address may be used to specify
an address from locations 0000,¢ to FFFF,s. When two address bytes

IMMEDIATE

INHERENT
INSTRUCTION OF ~COOE
[ INSTRUCTION OP-CODE —I- I Byte - 2 Bytes
OPERAND
(A) Inherent address. (B) immediate address.
EXTENDED
OIRECT
INSTRUCTION OP-CODE
INSTRUCTION OP-CODE OPERAND ADDRESS
-2 Bytes (W BYTE) -3 DBytes
OPERAND ADDRESS OPERAND ADDRESS
(L0 BYTE)
(C) Direct address. (D) Extended address.

Fig. 3-1. Addressing modes.

are used following an instruction, the mode is referred to as extended
addressing. When extended addressing is used, the first byte is
called the high address byte, representing the upper eight bits of an
address, and the second byte is referred to as the low address byte,
representing the lower eight bits of an address. The instruction for-
mats for the above addressing modes are shown in Fig. 3-1.

Question
How does the 6800 know which type of addressing is being used?

Answer

There are three separate op codes for the load accumulator in-
struction to designate either the immediate, direct, or extended mode
of addressing. For example, the LDAA instruction utilizes the fol-
lowing op codes:
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LDAA (LoaD Accumulator A) M, — ACCA

Immediate The byte immediately following the op code is
86 the operand to be loaded into ACCA.

DATA

Direct The byte following the op code is the address of
96 the operand to be loaded into ACCA (No HI
LO ADDR ADDR)

Extended The next two bytes is the address of the operand
B6 to be loaded into ACCA.

HI ADDR

LO ADDR

The same is true for the LDAB instruction.

LDAB (LoaD Accumulator B) M, —» ACCB

Immediate The byte immediately following the op code is
Cé6 the operand to be loaded into ACCB.

DATA

Direct The byte following the op code is the address
D6 of the operand to be loaded into ACCB. (No HI
LO ADDR ADDR)

Extended The next two bytes is the address of the operand
F6 to be loaded into ACCB.

HI ADDR

LO ADDR

When either of the preceding instructions are used, the previous
contents of the accumulator are lost but the contents of the memory
location (if any ) that was addressed are not affected. Also, note the
operation symbols used. For example, ACCA->M, is the notation
we will use to indicate that Accumulator A is being stored to mem-
ory location x (M, ). We will use similar operation symbols through-
out the text and their meaning should be an obvious result of the
operation involved.

Question

When data is to be loaded from a memory location, why not use
the extended mode all the time?
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Answer

The extended mode utilizes three instruction bytes which occupies
more memory space and it takes more time to process than would
the two-byte instructions. Time is critical in a computer system.
Therefore, always use direct addressing if the operand is located at
an address of 00FF or below.

Store Accumulators (STAA, STAB)

The accumulators are only temporary storage registers, so their
contents must be stored in memory if a result is to be permanently
saved and the accumulators used for other purposes. This is the func-
tion of the store-accumulator instructions. Since the destination of
the data is always an address in memory, these instructions utilize
direct and extended addressing but not immediate addressing. The
contents of the accumulator are not affected by the store-accumula-
tor instruction but are “copied” into the memory location. The pre-
vious content of the memory location is “lost.”

STAA (STore Accumulator A) ACCA - M,

Direct Store the contents of ACCA at the memory loca-
97 tion specified by the next byte. (No HI ADDR)
LO ADDR

Extended Store the contents of ACCA at the memory loca-
B7 tion specified by the next two bytes,

HI ADDR

LO ADDR

STAB (STore Accumulator B) ACCB — M,

Direct Store the contents of ACCB at the memory loca-
D7 tion specified by the next byte. (No HI ADDR)
LO ADDR

Extended Store the contents of ACCB at the memory loca-
F7 tion specified by the next two bytes.

HI ADDR

LO ADDR

Again, to save computer time, use the direct addressing mode when
possible.

Transfer Accumulators (TAB, TBA)

There are situations when it is desirable to transfer the contents
of one accumulator into the other. These instructions do not require



an operand or an address since no data is involved in the instruction
itself. Therefore, they are simple one-byte instructions. One-byte in-
structions that require no subsequent operand or address bytes are
referred to as inherent or implied instructions, since the instruction
can perform only one type of operation upon a known address, reg-
ister, or piece of information. Thus, the data or address is an inherent
part of the op code. '

TAB (Transfer from accumulator A to accumulator B)
ACCA - ACCB

Inherent Moves the contents of ACCA to ACCB.
16

Note: The former contents of ACCB are lost but the present
contents of ACCA are not affected.

TBA (Transfer from accumulator B to accumulator A)
ACCB — ACCA

Inherent Moves the contents of ACCB to ACCA.
17

Note: The former contents of ACCA are lost but the present
contents of ACCB are not affected.

Clear Accumulator and Memory (CLRA, CLRB, CLR)

We may clear either accumulator with a one-byte instruction (in-
herent addressing). Clearing a memory location requires three bytes,
the clear instruction op code plus a two-byte address (extended ad-
dressing). When a register is cleared, its contents are replaced with
Zeros.

CLRA (CLeaR accumulator A) 00 - ACCA

Inherent Replace the contents of ACCA with zeros.
4F
CLRB (CLeaR accumulator B) 00 — ACCB
Inherent Replace the contents of ACCB with zeros.
5F
CLR (CLeaR the specified memory location) 00 — M,
Extended Replace the contents of the specified memory
7F location with zeros.
HI ADDR
LO ADDR
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Wait (WAI)

This inherent instruction tells the 6800 to stop until further notice.
It will usually be used at the end of your program.

WAI (WAR)

Inherent Stop
3E

Since we are using different addressing modes, we will distinguish
one from the other in the mnemonic listing as follows:

mnemonic followed by # — immediate addressing
mnemonic followed by $ — direct addressing
mnemonic followed by $$ — extended addressing
mnemonic followed by nothing ~ inherent addressing

o TR

Example 3-1: Swapping Accumulator Data

The following program can be used to “swap” the accumulator contents.

Hex Hex Mnemonics/
Address Contents Contents Operation
0000 97 STAA $
0001 5B 5B ACCB — Mss
0002 17 TBA
ACCB — ACCA
0003 D6 LDAB $
0004 58 58" Mss —ACCB
0005 3E WAI STOP

First; store the contents of accumulator A at any available location using
direct addressing. We chose to use memory location 5B. Then, transfer the
contents of accumulator B to accumulator A with an inherent instruction
(TBA). Next load accumulator B direct with the contents of accumulator
A which were stored at memory location 5B. Finally, stop the program
execution with the WAI instruction. Why wouldn’t the following program
accomplish the transfer?

TBA
TAB
WAI

Because the contents of accumulator A would be lost during the first trans-
fer. When you write into a register, its previous contents are always lost;
therefore, you must store the register contents into memory prior to the:
operation if you wish to save the data. Reading from a register will not
destroy the contents of that register.



Example 3-2: Clearing Accumulators A and B
The following program can be used to clear accumulators A and B.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 4F CLRA 00 — ACCA
0001 16 TAB ACCA —ACCB
0002 3E WAI STOP

This is a very simple program utilizing inherent instructions that can be
used to clear both accumulators. Simply clear accumulator A, which will
place all zeros in that accumulator. Then transfer these zeros to accumula-
tor B. The zeros in A will not be lost in this transfer since you are reading
from the accumulator. The program is terminated with the WAI instruction.

Can you think of any different programs that would accomplish
this same task?

6800 ARITHMETIC INSTRUCTIONS

Add (ADDA, ADDB)

These instructions are used to add an operand to one of the accu-
mulators using immediate addressing or to add the contents of a
specified memory location to one of the accumulators using direct
or extended addressing. The sum always remains in the accumulator
that you are working with. The former contents of the accumulator
are lost,

ADDA (ADD to accumulator A) ACCA + M, - ACCA

Immediate Adds the byte immediately following the op
8B code to the contents of ACCA and places the
DATA sum in ACCA.

Direct Adds the contents of the memory location speci-
9B fied by the next byte to ACCA and leaves the
LO ADDR sum in ACCA. (NO HI ADDR)

Extended Adds the contents of the memory location speci-
BB fied by the next two bytes to ACCA and leaves
HI ADDR the sum in ACCA.

LO ADDR



ADDB (ADD to accumulator B) ACCB + M, —» ACCB

Immediate Adds the byte immediately following the op
CB code to the contents of ACCB and places the
DATA sum in ACCB.

Direct Adds the contents of the memory location speci-
DB fied by the next byte to ACCB and places the
LO ADDR sum in ACCB. (No HI ADDR)

Extended Adds the contents of the memory location speci-
FB fied by the next two bytes to ACCB and places
HI ADDR the sum in ACCB.

LO ADDR

Add Accumulators (ABA)

This is an inherent instruction that adds together the contents of
the A and B accumulators and places the sum in ACCA. The pre-
vious contents of ACCA are lost but the contents of ACCB are not
affected.

ABA (Add accumulator B to accumulator A)
ACCA + ACCB — ACCA

Inherent Adds ACCB to ACCA and places the sum in
1By ACCA.

Subtract (SUBA, SUBB)

These instructions are used to subtract an operand from one of the
accumulators using immediate addressing, or to subtract the contents
of a specified memory location from one of the accumulators using
direct or extended addressing. The difference is always placed in the
accumulator that you are working with. The former contents of the
accumulator are lost.

Note: The 6800 microprocessor utilizes twos-complement arith-
metic to perform this operation.

SUBA (SUBtract from accumulator A) ACCA — M; - ACCA

Immediate Subtracts the byte immediately following the op
80 code from the contents of ACCA and places the
DATA difference in ACCA.

Direct Subtracts the contents of the memory location
90 specified by the next byte from ACCA and
LLO ADDR places the difference in ACCA. (No HI ADDR)



Extended Subtracts the contents of the memory location

BO specified by the next two bytes from ACCA and
HI ADDR places the difference in ACCA.
L.O ADDR

SUBB (SUBtract from accumulator B) ACCB — M, - ACCB
Immediate Subtracts the byte immediately following the op
CO code from the contents of ACCB and places the
DATA difference in ACCB.
Direct Subtracts the contents of the memory location
DO specified by the next byte from the contents of
LO ADDR ACCB and places the difference in ACCB. (No

HI ADDR)

Extended Subtracts the contents of the memory location
FO specified by the next two bytes from the con-
HI ADDR tents of ACCB and places the difference in

LO ADDR ACCB.

Subtract Accumulators (SBA)

Similar to the ABA instruction, this is an inherent instruction that
subtracts the contents of ACCB from ACCA and places the differ-
ence in ACCA. The previous contents of ACCA are lost, but ACCB
is not affected.

SBA (Subtract accumulator B from accumulator A)
ACCA — ACCB - ACCA

Inherent Subtracts ACCB from ACCA and places the dif-
1044 ference in ACCA.

Increment (INC, INCA, INCB)

These instructions will increment (add 1) to a specified memory
location or to either accumulator.

INC (INCrement the specified memory location) M, + 1 — M,

Extended Add one to the memory location specified by the
7C next two bytes.
HI ADDR
LO ADDR
INCA (INCrement accumulator A) ACCA + 1— ACCA
Inherent
4C Add one to ACCA.
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INCB (/INCrement accumulator B) ACCB + 1 —> ACCB

Inherent
5C Add one to ACCB.

Decrement (DEC, DECA, DECB)

These instructions will decrement (subtract 1) from a specified
memory location or either accumulator.

DEC (DECrement the specified memory location) M; — 1 — M,

Extended
7A Subtract 1 from the memory location specified
HI ADDR by the next two bytes.
LO ADDR

DECA (DECrement accumulator A) ACCA — 1 —> ACCA
Inherent
4A Subtract 1 from ACCA.

DECB (DECrement accumulator B) ACCB — 1 —» ACCB
Inherent
5A Subtract 1 from ACCB.

Example 3-3: Adding Numbers Immediately
This program uses the immediate addressing mode for adding numbers.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 86 LDAA #
0001 01 01 01—~ ACCA
0002 8B ADDA #
0003 02 02 ACCA+02 — ACCA
0004 8B ADDA #
0005 03 03 ACCA+H03 —ACCA
0006 8B ADDA #
0007 04 04 ACCA+04 —ACCA
0008 B7 STAA $$
0009 50 50 ACCA — Ms5000
000A 00 00
000B 3E WAI STOP
5000 — - RESULT

This program adds four numbers (01, 02, 03, 04) using the immediate
addressing mode. Recall that when a number is added to the accumulator,
the result is placed in the accumulator. Usually, when the operation is
completed, you will want to save your result and free the accumulator to
perform other operations. Therefore, in this example we have stored the



final result of the addition in memory location 5000 using extended ad-
dressing. How would this program change if these numbers were located
in memory?

located in external memory.

Hex
Address

0000
0001
0002
0003
0004
0005
0006
0050
0051
0052

Example 3-4: Subtracting Numbers from Memory
This program uses the direct addressing mode since the operands are

Hex
Contents

96
50
90
51
97
52
3E
05
03

Mnemonics/
Contents Operation
LDAA S
50 Mso— ACCA
SUBA $
51 ACCA-Ms1— ACCA
STAA $
52 ACCA—Ms2
WAI STOP
05 Data
03 Data

- Result

The above program subtracts three from five and stores the result in mem-
ory location 52. The direct addressing mode must be used since the oper-
ands (05 and 03) are located in memory. First the ACCA is loaded with
the first operand (05) located in memory location 50 and then the second
operand (03) located in memory location 51 is subtracted. Finally the
result is stored in memory location 52 and the program stops. Rewrite the
above program using immediate addressing. How would this program
change if the operands were located in high memory (above location

O0FF)?

Example 3-5: Subtracting Numbers from Memory

The following program would accomplish the same result as in Example

3-4.
Hex
Address

0000
0001
0002
0003
0004
0005
0006
0007
0050
0051
0052

Hex
Contents

96
50
D6
51
10
97
52
3E
05
03

Mnemonics/
Contents Operation
LDAA $
50 Mso— ACCA
LDAB $
51 Ms1 — ACCB
SBA ACCA-ACCB— ACCA
STAA S
52 ACCA — Ms2
WAI STOP
05 Data
03 Data

- Result

Here, each accumulator is loaded with an operand and then the accumu-
lators are subtracted with the inherent instruction SBA. Again, the result
is stored in memory location 52.
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Example 3-6: Decrementing to Zero
This program can be used to decrement an accumulator to zero.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 Cc6 LDAB #
0001 05 05 05— ACCB
0002 5A DECB ACCB-1— ACCB
0003 5A DECB ACCB-1— ACCB
0004 5A DECB ACCB-1— ACCB
0005 5A DECB ACCB-1— ACCB
0006 5A DECB ACCB-1— ACCB
0007 3E WAI STOP

The above program loads accumulator B with 05 and then decrements it
down to zero. Many times, during microcomputer programming and inter-
facing, it becomes necessary to create time delays within the system. Since
each decrement instruction requires a precise amount of time to be exe-
cuted, the total time delay will be a function of the size of the number to
be decremented to zero. Naturally, more delay requires more decrement
instructions. A more efficient time-delay method, called looping, will be
presented in Chapter 5.

Could the same result be obtained using the increment instruction? How?

6800 LOGIC INSTRUCTIONS
Ones Complement (COM, COMA, COMB)

With these instructions you generate the ones complement of any
specified memory location or either of the accumulators.

COM (COMplement the specified memory location) M > M,
Extended

73 Complement the contents of the memory loca-
HI ADDR tion specified by the next two bytes.
LO ADDR

COMA (COMplement accumulator A) ACCA — ACCA

Inherent
43 Complement ACCA.

COMB (COMplement accumulator B) ACCB — ACCB

Inherent
53 Complement ACCB.
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Twos Complement (NEG, NEGA, NEGB)

Remember that the 6800 microprocessor uses a twos-complement
representation for positive and negative. Therefore, these instruc-
tions will be used to make a positive number negative or, conversely,
to make a negative number positive. We can negate the contents of
a specified memory location or the contents of either accumulator.

NEG (NEGate the specified memory location) 00 — M; —» M,

Extended
70 Take the twos complement of the memory loca-
HI ADDR tion specified by the next two bytes.
LO ADDR
NEGA (NEGate accumulator A) 00 — ACCA —» ACCA
Inherent
40 Take the twos complement of ACCA.
NEGB (NEGate accumulator B) 00 — ACCB — ACCB
Inherent
50 Take the twos complement of ACCB.

AND (ANDA, ANDB)

These instructions will perform a logical AnDp operation between
the contents of either accumulator and an operand immediately fol-
lowing the instruction or an operand in a specified memory location.
The result of the operation is left in the respective accumulator.

ANDA (AND accumulator A) ACCA - M, - ACCA

Immediate

84 AND the operand immediately following the op
DATA code with ACCA and place the results in ACCA.
Direct AND ACCA with the contents of the memory lo-
94 cation specified by the next byte and place the
LO ADDR results in ACCA. (No HI ADDR)

Extended AND ACCA with the contents of the memory lo-
B4 cation specified by the next two bytes and place
HI ADDR the results in ACCA.

LO ADDR



ANDB (AND accumulator B) ACCB - M; — ACCB

Immediate
C4

DATA

Direct
D4
LO ADDR

Extended
F4

HI ADDR
LO ADDR

AND the operand immediately following the op
code with ACCB and place the results in ACCB.

AND ACCB with the contents of the memory lo-
cation specified by the next byte and place the
results in ACCB. (No HI ADDR)

AND ACCB with the contents of the memory lo-
cation specified by the next two bytes and place
the results in ACCB.

OR (ORAA, ORAB)

The or instructions will perform a logical or operation between
the contents of either accumulator and an operand immediately fol-
lowing the instruction or the contents of a specified memory location.
The result is always left in the respective accumulator.

ORAA (OR Accumulator A) ACCA + M; - ACCA

Immediate
8A
DATA

Direct
9A
LO ADDR

Extended
BA

HI ADDR
LO ADDR

oRr the operand immediately following the op
code with ACCA and place the results in ACCA.

or ACCA with the contents of the memory loca-
tion specified by the next byte and place the re-
sults in ACCA. (No HI ADDR)

or ACCA with the contents of the memory loca-
tion specified by the next two bytes and place
the results in ACCA.

ORAB (OR Accumulator B) ACCB + M, — ACCB

Immediate
CA
DATA

Direct
DA
LO ADDR

or the operand immediately following the op
code with ACCB and place the results in ACCB.

or ACCB with the contents of the memory loca-
tion specified by the next byte and place the re-
sults in ACCB. (No HI ADDR)



Extended or ACCB with the contents of the memory loca-

FA tion specified by the next two bytes and place
HI ADDR the results in ACCB.
LO ADDR

XOR (EORA, EORB)

The xor instructions allow you to perform a logical xor operation
between either accumulator and an operand immediately following
the instruction or the contents of a specified memory location. Again,
the result is always placed in the respective accumulator.

EORA (Exclusive OR accumulator A) ACCA () M, — ACCA
Immediate

88 xoR the operand immediately following the op
DATA code with ACCA and place the results in ACCA.
Direct xorR ACCA with the contents of the memory lo-
98 cation specified by the next byte and place the
LO ADDR results in ACCA. (No HI ADDR)

Extended xor ACCA with the contents of the memory lo-
B8 cation specified by the next two bytes and place
HI ADDR the results in ACCA.

LO ADDR

EORB (Exclusive OR accomulator B) ACCB (1) M; —> ACCB
Immediate

C8 xoR the operand immediately following the op
DATA code with ACCB and place the results in ACCB.
Direct x0R ACCB with the contents of the memory lo-
D8 cation specified by the next byte and place the
LO ADDR results in ACCB.

Extended xor ACCB with the contents of the memory lo-
F8 cation specified by the next two bytes and place
HI ADDR the results in ACCB.

LO ADDR

Logic instructions allow you to determine if external devices are
on or off. You can also determine if specific events have occurred or
not with the use of these instructions. When performing logical op-
erations, you will logically compare a mask byte to a status byte. The
status byte represents the unknown condition of the external device.
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For example, suppose that you have eight external devices that
will exhibit either an off or on state. You can let a “1” represent an
on state and “0” represent an off state. Thus, you can represent all
of the device states with an 8-bit status byte. The mask byte repre-
sents a known condition. Masking is a logical technique in which
certain bits of a multibit word are blanked out. A mask in a com-
puter operation covers some or most of the bits in a status byte, leav-
ing only those bits which are important to the operation. Axping the
status and mask bytes can determine device conditions.

Example 3-7: Determining Device Condition

Suppose that you have eight external devices (device 0 through device
7) represented by status byte bits D, through D.. Given the following status
byte, you conclude that devices 1, 2, 4, 5, and 7 are on while devices 0, 3,
and 6 are off.

Status byte—1011 0110

Now, suppose that you were only interested in the status of device 2. Then,
to determine its status, you would form a mask byte as follows:

Mask byte—0000 0100

Note that each device bit is “masked-out” with a zero except device 2.
If you now perform an ANDing operation between the status and mask
bytes, the result will indicate the device 2 status:

1011 0110-—status
0000 0100—mask

0000 0100—shows device 2 is on

To determine if a device has changed state, i.e., on to off or off to on, you
will use an xOR routine.

Example 3-8: Determining Device Change of State

Suppose that a device status byte of 1011 0110 was previously read into
the computer. Now the computer reads a current device status byte of 0101
0101. Which devices have changed state from the previous to the current
1t_;orlldiifion? The answer may be found by xoring the two bytes as shown

elow:

1011 0110—previous status byte
x0rR 0101 010l—current status byte

1110 0011
You conclude that devices 0, 1, 5, 6, and 7 have changed state.

REVIEW QUESTIONS

1. Define each of the following:
a. Inherent Addressing



Table 3-1. Alphabetical Mnemonic Listing of
Instructions Presented in This Chapter

Addressing Modes

Mnemonic | Immediate | Direct | Extended | Inherent Operation
ABA - - - 1B A+B—A
ADDA 8B 9B BB - A+M—A
ADDB CB DB FB - B+M—B
ANDA 84 94 B4 - A-M—A
ANDB C4 D4 F4 - B-M—B
CLR - - 7F - 00—M
CLRA - - - 4F 00—A
CLRB - - - 5F 00—B
COM - - 73 - M—-M
COMA - - - 43 A—A
coMB - - - 53 B—B
DEC - - 7A - M-1-M
DECA - - - 4A A-1—A
DECB - - - 5A B-1—+B
EORA 88 98 B8 - A(DM—A
EORB c8 D8 F8 - B{HM—B
INC - - 7C - M+1-M
INCA - - - 4C A+1—A
INCB - - - 5C B+1—+B
LDAA 86 96 B6 - M—A
LDAB Cé6 Dé F6 - M-B
NEG - - 70 - 00—-M—M
NEGA - - - 40 00—-A—A
NEGB - - - 50 00-B—B
ORAA 8A 9A BA - A+M—A
ORAB CA DA FA - B+M—B
STAA - 97 B7 - A—-M
STAB - D7 F7 - B—M
SBA - - - 10 A-B—A
SUBA 80 90 BO - A-M—A
SUBB co Do FO - B-M-B
TAB - - - 16 A—B
TBA - - - 17 B—A
WAI - - - 3E STOP

b. Immediate Addressing

c. Direct Addressing

d. Extended Addressing




2.

70

When would you use direct rather than extended addressing?

. Explain what each of the following instructions do.

a. 7C

d. DA

10

e. BB

20

. Perform the indicated logic operation.

a. 01101011 + 10110001
b. 01001000 - 10011110

c. 10111111 @ 11001010

. What would be the 8-bit binary and corresponding hexadecimal representa-

tion of the following decimal numbers?
a. —10

b. —125

c. ~77

. Using twos-complement numbers, what decimal number would the 6800 in-

terpret the following to be?
a. 1000 1010,



b.

C.

d.

€.

1011 0010,
0101 1011.
0111 1111,

1000 0000,

. Given: A status byte of 1010 1101 and a mask byte of 1111 1111. What
would the anping of the two bytes show?

. Given: A previous status of 0111 0101 and a current status of 1011 0001.
What would the xoring of the two bytes show?

o ot e

ANSWERS

. A one-byte (self-contained) instruction.

. A two-byte instruction where the second byte is the operand.

. A two-byte instruction where the second byte is the address of the operand.
. A three-byte instruction where the second and third bytes form the address

of the operand.

. For addresses below 00FF.

-V )

o

oe

[

o oup T

. Increment memory location 50,

. Increment memory location C550.

. Subtract ACCB from ACCA and place the results in ACCA.
. or ACCB with the contents of memory location 10.

This is an invalid instruction since BB is the op code to add the contents
of a specified memory location using extended addressing. Only one byte
of address is provided and extended addressing requires two bytes.

. 1111 1011
. 0000 1000
. 0111 0101

. 1111 0110, =F6
. 1000 0011, = 83
. 1011 0011. = B3

. —118s

—78
+9L,
+1275
—128,,

A



7. If in the unknown status byte a one implied a device was on and a zero im-
plied a device was off, the ANping operation would show which devices were
on and which were off.

8. This operation would show which devices have changed state (on to off or
off to on) from the previous status. A one would indicate a device changed
state while a zero would indicate a device has not changed state.

EXPERIMENT 3-1
Purpose

To add three numbers from memory and demonstrate the use of
the direct addressing mode.

Equipment
ET3400 MEK6800D2
' +5-volt dec power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 96 LDAA $
0001 50 50 Mso— ACCA
0002 D6 LDAB $
0003 51 51 Ms1i— ACCB
- 0004 1B ABA ACCA + ACCB— ACCA
0005 9B ADDA $
0006 52 52 ACCA + Ms2— ACCA
0007 97 STAA S
0008 53 53 ACCA — Ms3
0009 4F CLRA 0016 — ACCA
C00A 7F CLR $$
0008 00 00 0016 —Ms0
000C 50 50
000D 7F CLR $$
000E 00 00 0016 — Ms1
000F 51 51
0010 7F CLR$$
0011 00 00 0016 — Ms2
0012 52 52
0013 3E WAI Stop
0050 01 01 Data
0051 02 02 Data
0052 03 - 03 Data
0053 - - Resuits

This program adds three numbers from memory by first loading
the two accumulators with the first two operands. Then the two
accumulators are added with the result stored in ACCA. Then, the
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third operand is added to ACCA. Following this operation, the re-
sult is finally stored in memory location M;; and the contents of
ACCA and memory locations Mso, M5, and Mjs are cleared.

Procedure

[ MEKe800D2 |

Step 1

Load and execute the program. Do not forget to load the three oper-
ands in memory locations Mso, M5, and Ms2, respectively.

Step 2
Examine the contents of ACCA and ACCB.

ACCA=__ _ ACCB=__ . ‘
You should observe that ACCA is cleared and the second operand
(02) is in ACCB. ,

Step 3

Examine the contents of Mso, Ms;, M52, and M;s.
Myg=_ M;: =

Myp=___ Mg=

You should observe that memory locations 0050, 0051, and 0052 are
cleared with the result (06) in memory location 0053.

Step 4

Revise the program to add five numbers from memory. Load the pro-
gram and execute it. Then, verify the results of the program.

Conclusions
Which of the instructions uses direct addressing?

Which of the instructions uses extended addressing?
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Why couldn’t direct addressing be used instead of extended in the

CLR memory instructions for this program?

Explain the final contents of ACCB.

Purpose

EXPERIMENT 3-2

To demonstrate the use of the DECA, NEGATE, and SUBA in-
structions. To demonstrate the addition of signed numbers.

Equipment
ET3400

Program

Hex
Address

0000
0001

0002
0003
0004
0005
0006
0007
0008
0009
000A
0050
0051

Hex
Contents

96
50
4A
4A
4A
4A
4A
4A
9B
51

3E.

03
05

MEK6800D2
+5-volt dc power supply
Mnemonics/

Contents Operation
LDAA $
50- Mso-— ACCA
DECA ACCA - 1— ACCA
DECA ACCA - 1— ACCA
DECA ACCA - 1 — ACCA
DECA ACCA - 1— ACCA
DECA ACCA - 1 — ACCA
DECA ACCA - 1— ACCA
ADDA $
51 ACCA + Ms1 — ACCA
WAI Stop
03 Data
05 Data

This program will decrement +3,6 to —31¢ and then add 5+
(—3)16 which should result in 02,6 being in ACCA.

Procedure
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Step 1

Load the above program and single step through it, observing the
contents of ACCA at each step. Verify that these contents are correct
by referring to the operation listing provided with the program.
Remember that negative numbers are represented using twos-com-
plement code.

Step 2

Revise the program by replacing the six DECA instructions with one
NEGA instruction.

Step 3

Single step the program and examine ACCA at each step. Is the final
result the same as obtained in Step 1°?

Step 4

Revise the program to perform the same operation (subtract three
from five) using the SUBA instruction. Load and execute the new
program. The result in ACCA should be the same (02).

Conclusion

Three methods were used to subtract three from five. Discuss the
advantages and disadvantages of each.

Where might the program using the DECA routine be advan-
tageous?

EXPERIMENT 3-3
Purpose

The purpose of this experiment is to determine which of the fol-
lowing eight devices are on. A logic one will indicate a device is on,
and a logic 0 will indicate that device is off. The input of an 8-bit
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status byte representing the device states will be simulated by the
L.DAA immediate instruction.

" Bit 0: frequency measuring device
Bit 1: temperature measuring device
Bit 2: flow measuring device
Bit 3: voltage measuring device
Bit 4: current measuring device
Bit 5: velocity measuring device

_ Bit 8: pressure measuring device
Bit 7: thickness measuring device

Equipment
ET3400 MEK6800D2
+5-volt dc power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 86 LDAA #
0001 55 55 5516 — ACCA
(load status byte)
0002 84 ANDA #
0003 FF FF 55-FF — ACCA
(AND status
and mask bytes)
0004 97 STAA S
0005 50 50 ACCA — Mso
(store result)
0006 3E WAI Stop

The status byte in this program is 55 = 0101 0101,. The mask byte
is FF = 1111 1111,. The status and mask bytes are ANDed together
with the result being stored in memory location 50.

Procedure

MEK6800D2

Step 1
Load and execute the program.

Step 2

Examine memory location 50. Which of the simulated devices are
on?
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We conclude that the frequency, flow, current, and pressure measur-
ing devices were on; all other devices were off.
Step 3

Substitute the status byte 3F and execute the program. Now what
devices are on?

Step 4

Substitute the status byte 04 and execute the program. Now, what
devices are on?

Conclusion

Given an 8-bit status byte representing eight external devices, how
could we check status of just four of the devices?

How could we check status of just one device?

EXPERIMENT 3-4
Purpose

The purpose of this experiment is to determine if a particular de-
vice is on or off. The status word will represent the same devices as
in Experiment 3-3.

Equipment
ET3400 MEK®6800D2
+5-volt dc power supply
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Program

Hex Hex Mnemonics/
Address Contents Contents Operation
0000 cé LDAB #
0001 5A 5A 5A — ACCB
(load status byte)
0002 C4 ANDB #
0003 02 02 5A-02 — ACCB
(AND status
and mask bytes)
0004 D7 STAB $
0005 50 50 ACCB — Mso
(store result)
0006 3E WAI Stop

This program loads the status byte into ACCB. You want to know
if the temperature measurement device is on or off. Therefore, you
will mask 02 = 0000 0010, with the status byte since this device uses
position Bit 1. If the operation produces 02, then you know the tem-
perature device is on. If it produces 00, it must be off. The results of
the operation are being stored in memory location 50.

Procedure

[ MEK6800D2

Step 1
Load and execute the above program.

Step 2

Examine memory location 50. Is the temperature measuring device
on or off?

Step 3

Using the same status byte, revise the program to check the status
of the frequency measuring device.

Step 4
Repeat step 3 for each of the measuring devices.
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Conclusion
Explain the procedure for checking status of a particular device.

How do you think you might determine if a device has changed
status from the last time its on/off status was checked?

EXPERIMENT 3-5
Purpose

To determine if an external device changed state from the last
time its on/off status was checked. The status word will represent
the same devices as in Experiment 3-3.

Equipment
ET3400 MEK6800D2
+5-volt de power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 C6 LDAB #
0001 5A 5A 5A — ACCB
(load old
status byte)
0002 D7 STAB $
0003 20 20 ACCB — M20
(store oid
status byte)
0004 86 LDAA #
0005 42 42 42 — ACCA
(load new status byte)
0006 98 EORA §
0007 20 20 ACCA@®M20— ACCA
(xor old and
new status bytes)
0008 97 STAA S
0009 50 50 ACCA — Mso
000A 3E WAI Stop
0020 - - Old Status Byte
0050 - - Result
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Given two status bytes, one previous (5A) and one current (42),
this program stores the previous byte in My,. It then xors the current
byte with the previous byte and places the result in Ms,. XoRing will
show which devices have changed state. A “1” in the result will indi-
cate a change of state while a “0” indicates the device did not change
state.

Procedure

[ MEKe800D2

Step 1
Load and execute the program.

Step 2
Examine memory location 50. Which devices have changed state?

We conclude the voltage and current measuring devices have
changed state.

NotE: 5A(P42 = (0101 1010,)F (0100 0010,)
= 0001_] 000
current bit-Lvoltage bit

Step 3

Suppose a new status byte of AB is transmitted to the 6800. Revise
the program to determine which devices have changed state with
this new byte and the previous byte.

Step 4
Which devices have changed state?

We conclude that the frequency, voltage, velocity, pressure, and
thickness devices have changed.

Conclusion

Explain the procedure for keeping track of new and old status and
determining which devices have changed status.



EXPERIMENT 3-6

Purpose

To determine, once a device has changed state, whether it has
changed from off to on or on to off. The status word will represent
the same devices as in Experiment 3-3.

Equipment
ET3400 MEK6800D2
+5-volt dc power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 Cc6 LDAB #
0001 5A 5A 5A — ACCB
(load old
status byte)
0002 D7 STAB $
0003 20 20 ACCB — M2o
(store old _
status byte)
0004 86 LDAA #
0005 c7 Cc7 C7 — ACCA
(load new status byte)
0006 97 STAA S
0007 30 30 ACCA — Mao
(store new status byte)
0008 98 EORA $
0009 20 20 ACCA@®M20— ACCA
(xor old and new
status bytes)
000A 97 STAA $
000B 40 40 ACCA — M40 ,
(store result)
000C 94 ANDA $ )
000D 20 20 ACCA-M20 — ACCA
(AND result with old
status byte to get on
to off result)
000E 97 STAA S
000F 50 50 ACCA — Mso
(store on to
off result)
0010 43 COMA ACCA — ACCA
(complement
accumulator A)
0011 94 ANDA $
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0012 40 40 ACCA-Mao— ACCA
(AND Maso with ACCA to

get off to

on result)
0013 97 STAA S
0014 51 51 ACCA — Ms1

(store off

to on result)

0015 3E WAI Stop
0020 - - Old status byte
0030 - - New status byte
0050 - - Result
0051 - - Result

The results of this operation are found in memory locations 50 and
51. Memory location 50 will determine on to off changes while 51
will determine off to on changes. They can be summarized as
follows:

Memory Location 50 (on to off changes)

® a “0” will indicate a device did not go from on to off.
¢ a “1” will indicate a device changed from on to off.

Memory Location 51 (off to on changes)

® a “0” will indicate a device did not go from off to on.
® a “1” will indicate a device changed from off to on.

Procedure

| MEK6800D2

Step 1
Load and execute the program.

Step 2

Examine memory location 0050 to determine which devices have
changed from on to off.

We conclude that the voltage and current measuring devices
changed from on to off.

Step 3

Examine memory location 0051 to determine which devices have
changed from off to on.
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We conclude that the frequency, flow, and thickness measuring de-
vices have changed from off to on.

Step 4
Revise the program using two different status bytes and repeat.

Conclusion

Explain the procedure for determining if a status bit has changed.
Has it changed from 0 to 1 or 1 to 0?

Can this procedure be accomplished another way?



CHAPTER 4

Condition Code Register and
Data ShiftingIComparingITesi'ing

INTRODUCTION

In the last chapter, we dealt with the 6800 arithmetic, logic,
and data-handling instructions. In performing these operations, we
can generate conditions or results in the accumulators that the
6800 should be capable of detecting. To keep track of such condi-
tions, the 6800 contains an internal register called the Condition
Code Register (CCR). The CCR actually consists of six flag bits.
These flag bits are used to represent operation-result conditions.
When a flag is set, the flag bit is at logic 1; when a flag is reset or
cleared, the flag is at logic 0. The flag bits are

Carry
Overflow
Zero
Negative
Interrupt
Half Carry

The ability to make decisions is the main reason for the “intelli-
gence” of a microprocessor. However, decisions must be made based
on given conditions. Such conditions exist in the microprocessor as
the result of arithmetic and logic operations, and are represented
by the condition code flags. For example, decisions could be made
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to alter the program execution if an operation result is zero, positive,
negative, etc.

Data bytes or bits may also be tested and the CCR used to repre-
sent the results of the test. For example, suppose that you wish
to compare two bytes of data. Using a compare instruction, you
will see that the zero flag will be set if the bytes are identical and
the flag will be cleared if they are not identical. The 6800 can
then make a decision based on the zero flag status. Instructions such
as the compare instruction are called data test instructions and will
be discussed in detail in this chapter. Each CCR flag will be dis-
cussed in detail along with the condition code instructions which
allow the flags to be manipulated.

OBJECTIVES
At the end of this chapter you will be able to do the following:

® Define the functions of the H, I, N, Z, V, and C flags in the
condition code register.

¢ Be familiar with the condition code register instructions.

* Be familiar with all the 6800 data shifting, rotating, comparing,
and testing instructions.

¢ Define twos-complement overflow.

® Write a program to “pack” bed numbers.

¢ Define multiple-precision arithmetic and explain how to add
and subtract multiple-byte numbers using the instruction set
for the 6800.

¢ Explain the difference between data testing and comparing
instructions and standard arithmetic and logic instructions.

¢ Utilize instructions directly related to the 6800 condition code
register.

® Write a program to add bed numbers and to obtain a result in
bed format.

¢ Multiply or divide a number by two.

CONDITION CODE REGISTER

The condition code register is an 8-bit storage register which is
internal to the 6800 microprocessor chip. This register is structured
as shown in Fig. 4-1. The bits within the register are sometimes
referred to as flags. These flags indicate that a certain condition has
resulted from an arithmetic or logical operation in the computer
program or from a data transfer to one of the accumulators. We
will see that the flags become a very important part of the decision-
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Bit Position

7 (3 5 4 3 2 1 ]

1 1 H 1 N z v c

“— CARRY

2's COMPLEMENT OVERFLOW

L . 2FRo

NEGATIVE

INTERRUPT

HALF CARRY

Fig. 4-1. Condition code register.

making ability of the 6800. For example, we might want to test
for a result being zero, positive, or negative. Then, depending on
the test, the 6800 could make a decision to branch or not to branch
to another part of the program.

Carry Flag (Bit 0)

The carry flag is set (1) whenever there is a “last” carry gen-
erated by the eighth bit column in an arithmetic operation, or, as
we will see later, whenever data is “moved” or rotated within the
accumulators. The carry bit can sometimes be thought of as a
“ninth bit” on the accumulator.

Example 4-1: Generating a Last Carry

+(PLUS) =D6

= ';I 00110101} =35
C Flag Set

Accumulator
Indicating a last carry Results

Overflow (V) Flag (Bit 1)

The V flag is set whenever a twos-complement overflow occurs.
This condition is a result of twos-complement arithmetic. If you
add two positive numbers, you would expect to obtain a positive
result. If you add two negative numbers, you would expect to ob-
tain a negative result. Bit 7 in twos-complement arithmetic indicates
the sign of the number. If a twos-complement overflow occurs, then
a carry from the D6 column was generated into the D7 column,



causing the overflow, resulting in a sign error.

Example 4-2: Generating a Twos-Complement Overflow (Case No. 1)

01011011 | = positive number

+ 01101100

= positive number

[T]

V Flag Set
Indicating Overflow

11000111 | = negative number

4

Accumulator

C Flag Clear
Indicating No Last Carry

Results

Example 4-3: Generating a Twos-Complement Overflow (Case No. 2)

10110101 | = negative number
+ 10011100 | = negative number
{1 |1 | [o1010001 | = positive number
V Flag Set J
Indicating Overflow Accumulator
C Flag Set Results

Indicating a Last Carry

Zero Flag (Bit 2)

The Z flag is set (1) whenever the accumulator becomes zero
as the result of an operation or a data transfer. It can also be used
to reflect the equal or nonequal condition between two data bytes
that are being compared. If the bytes are identical, the Z flag will

set.

Example 4-4: Setting the Z Flag as the Result of an Arithmetic Operation

01101001 | = 4 105
7 Flag Set | + 10010111 | = — 105,
Indicating Result [1]o]1] [o0000000] = 0.
of Operation = 0 | Accumulator
V Flag Clear Results
Indicating No Overflow
C Flag Set

Indicating Last Carry
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Example 4-5: Setting the Z Fiag as the Result of a Compare Operation

COMPARE
[1]v]c] [oo101001]

Z Flag Set
Indicating Bytes are Identical

Negative Register (Bit 3)

The N flag is used to indicate a negative result and is connected
directly to bit 7 of the result. A one indicates a negative result and
a zero indicates a positive result. Therefore, bit 7 of the accumulator
can be tested very easily for one or zero status. It is the only bit of
the accumulator that has its status reflected directly in the condi-
tion code register. This idea will be used later when we need to
check the status of i/o devices.

Example 4-6: Generating a Negative Result

3
+ - .

[iToJolo] [1r01111] =17
N Flag Set o] Accumulator
Indicating Negative Result Contents
Z Flag Cleared
Indicating Nonzero Result
V Flag Cleared
Indicating No Overflow
C Flag Cleared

Indicating No Carry

Interrupt Flag (Bit 4)

This flag is used in conjunction with external i/o device inter-
facing and it will be discussed in detail later. Briefly, when this flag
is set, it will not allow the 6800 to be interrupted by an external
device.

Half-Carry Flag (Bit 5)

The half-carry flag is used to indicate a carry from bit 3 to bit 4
in the accumulator. It will be set if a carry from the bit-3 column to
the bit-4 column took place during an arithmetic operation. The 6800



uses this flag to implement the decimal-adjust instruction that allows
it to operate on bed values. (This operation will be discussed sub-
sequently.) Bits 6 and 7 of the condition code register are not used
and are permanently set to logic one.

Condition Code Register Operations

Now, with the following set of inherent instructions, we can clear
or set the C, V, and I flags. We may also transfer the contents of
accumulator A to the condition code register or vice versa.

CLC (CLear Carry) 0> C

Inherent Clears the C Flag
oC
SEC (SEt Carry) 1 - C
Inherent Sets the C Flag
0D
CLV (CLear oVerflow) 0 —» V
Inherent Clears the V Flag
0A
SEV (SEt oVerflow) 1> V
Inherent Sets the V Flag
0B
CLI (CLear Interrupt) 0 — |
Inherent Clears the I Flag
O0E
SEI (SEt Interrupt) 1 — |
Inherent Sets the I Flag
OF
TAP (Transfer accumulator A to Processor CCR) ACCA — CCR
Inherent Transfers bits 0 through 5 of ACCA to bits 0
06 through 5, respectively, of the CCR. Bits 6 and

7 of the accumulator have no effect since bits
6 and 7 of the CCR are permanently set to one.

TPA (Transfer Processor condition code register to accumulator
A) CCR - ACCA



Inherent Transfers bits 0 through 7 of CCR to bits 0
07 through 7, respectively, of ACCA. Note that bits
6 and 7 will always transfer as ones.

DATA SHIFTING, ROTATING, COMPARING,
AND TESTING

The following instructions are used in connection with the various
CCR flags in performing both arithmetic and logic operations.

A series of data-handling instructions will be used to shift and
rotate data within the accumulator. In these operations the C flag
acts as a ninth bit, or memory, thereby allowing us to test each data
bit using this flag. The 6800 has the ability to alter (branch) its
program execution based on the C-flag status.

A series of data test instructions utilize the Z and N flags to com-
pare or test data prior to a decision-making process. Finally, arith-
metic operations can be performed on bed numbers without special
conversion routines by using a decimal-adjust instruction which
utilizes the H flag.

Shift Left—Arithmetic (ASL, ASLA, ASLB)

e

I

4 o7

These instructions can be used to shift all of the bits in the ac-
cumulators, or a specified memory location, one place to the left.
Bit 7, the Most Significant Bit (MSB), will be shifted into the C bit
of the condition code register and a 0 will be placed in bit 0, the
Least Significant Bit (LSB).

ASL (Arithmetic Shift Left)

Extended All bits in the specified memory location are
78 shifted left one position. MSB — C, 0 — LSB
HI ADDR Note that this instruction does not affect the
LO ADDR accumulators..

ASLA (Arithmetic Shift Left—accumulator. A)
Inherent All bits in ACCA are shifted left one position.
48 MSB - C, 0—> LSB
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ASLB (Arithmetic Shift Left—accumulator B)

Inherent All bits in ACCB are shifted left one position.
58 MSB—-C, 0— LSB

Shift Right—Arithmetic (ASR, ASRA, ASRB)

—

-

87 L] [

These instructions are used to shift all of the bits in a specified
memory location, or in either accumulator, one place to the right.
Again, as in the shift-left instructions, the C bit of the condition
code register is used as a ninth bit. However, with the shift-right
instructions, bit 0 (LSB) will be loaded in the C bit and the con-
tents of bit 7 (MSB) will not change. Note that B7 - B6; however,
B7 remains unchanged (B7 — B7).

ASR (Arithmetic Shift Right)

Extended All bits in the specified memory location are
77 shifted right one position. MSB — MSB, LSB
HI ADDR —-C

LLO ADDR The accumulators are not affected.

ASRA (Arithmetic Shift Right—accumulator A)

Inherent All bits in ACCA are shifted right one position.
47 MSB — MSB, LSB— C

ASRB (Arithmetic Shift Right—accumulator B)
Inherent All bits in ACCB are shifted right one position.
57 MSB — MSB, LSB — C

Shift Right—Logic (LSR, LSRA, LSRB)

—

L LI T TTTT ]

[

This instruction is similar to the arithmetic shift except that the
MSB (bit 7) is loaded with a zero.
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LSR (Logic Shift Right)

Extended All bits in a specified memory location are
74 shifted right one position.

HI ADDR 0—> MSB,LSB—C

LO ADDR The accumulators are not affected.

LSRA (Logic Shift Right—accumulator A)

Inherent All bits in ACCA are shifted right one position.
44 0— MSB, LSB—>C

LSRB (Logic Shift Right—accumulator B)

Inherent All bits in ACCB are shifted right one position.
54 0— MSB,LSB— C

Rotate Left (ROL, ROLA, ROLB)

l—D'—(lllllll!-—]

c a7 80

Rotate Right (ROR, RORA, RORB)

\—-D—‘HIIIIIH—J

4 B7 BO

These instructions make a closed loop of a specified memory
location or either accumulator. Rotate Left (ROL) will move all bits
to the left by one position, with the C bit moving to the LSB (bit 0)
and the MSB (bit 7) moving into the C bit. In effect, we have a
clockwise rotation of the bits, again considering the C bit as the
ninth data bit. Rotate Right (ROR) will provide a counterclock-
wise movement of data, with the LSB (bit 0) moving into the C-
bit position and the C bit moving into the MSB (bit 7) position.

ROL (ROtate Left)

Extended All bits in the specified memory location are
79 rotated left by one position.

HI ADDR MSB— C, C— LSB

LO ADDR The accumulators are not affected.
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ROLA (ROtate Left—accumulator A)

Inherent All bits in ACCA are rotated left by one po-
49 sition.
MSB— C,C— LSB

ROLB (ROtate Left—accumulator B)

Inherent All bits in ACCB are rotated left by one posi-
59 tion.
MSB - C, C—> LSB

ROR (ROtate Right)

Extended All bits in the specified memory location are
76 rotated right one position.

HI ADDR C—> MSB,LSB— C

LO ADDR The accumulators are not affected.

RORA (ROtate Right—accumulator A)

Inherent All bits in ACCA are rotated right one position.
46 C-> MSB,LSB— C

RORB (ROtate Right—accumulator B)
Inherent All bits in ACCB are rotated right one position.
56 C—>MSB,LSB— C

Example 4-7: Multiplying by Two
Suppose that accumulator A contains the binary number 0011 0110,
when an ASLA instruction is encountered. After ASLA is executed, the new
accumulator contents will be 0110 1100.. Let us see what has happened
to the accumulator data:

0011 0110, = 54
0110 1100.= 108,

Notice that by shifting left one time, the contents are multiplied by two.
To multiply by four, you would shift left twice. However, you must be
careful because the 6800 could interpret the number as negative if a one
is shifted into bit 7. Also, you will start running out of shifting locations
as the number gets larger. To extend the shifting range, the C flag can be
used as a ninth bit.

Example 4-8: Dividing by Two

A number may be divided by two using the logic-shift-right instruction
(LSR). If an LSR instruction is executed on the contents, 0011 0110, =
5440, the result would be 0001 1011 = 27, with the cleared C flag indicat-
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ing no remainder. Another shift right operation would produce 0000 1101 =
13: with the carry flag set. In this case, the C flag would indicate a re-
mainder. Another shift right would produce 0000 0110 with the C flag
set, indicating 61 with remainder 1. The shifting can continue until a
zero result is obtained.

Add and Subtract With Carry (ADCA, ADCB, SBCA, SBCB)

The add and subtract with carry instructions allow the C bit and
any specified memory location to be added to or subtracted from
the contents of either accumulator A or accumulator B. The opera-
tion will place the result in the accumulator that was involved in
the operation. If a carry is generated as a result of this operation,
the new carry will be represented in the carry bit (C) of the CCR.

ADCA (ADd to C bit and accumulator A) ACCA+M;+C—

ACCA

Immediate
89
DATA

Direct
99
LO ADDR

Extended
B9

HI ADDR
LO ADDR

Add the C bit and the byte immediately fol-
lowing the op code to ACCA.

Add the C bit and the contents of the memory
location specified by the next byte to ACCA.
(No HI ADDR)

Add the C bit and the contents of the memory
location specified by the next two bytes to
ACCA.

ADCB (ADd to C-bit and accumulator B) ACCB+ M, +C—

ACCB

Immediate
C9
DATA

Direct
D9
LO ADDR

Extended
F9

HI ADDR
1.O ADDR

Add the C bit and the byte immediately follow-
ing the op code to ACCB.

Add the C bit and the contents of the memory
location specified by the next byte to ACCB.
(No HI ADDR)

Add the C bit and the contents of the memory
location specified by the next two bytes to
ACCB.

SBCA (SuBtract from accumulator A with Carry) ACCA—M,—C
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Immediate
82
DATA

Direct
92
LO ADDR

Extended
B2

HI ADDR
L.LO ADDR

Subtract the C bit and the byte immediately
following the op code from ACCA.

Subtract the C bit and the contents of the mem-
ory location specified by the next byte from
ACCA.

(No HI ADDR)

Subtract the C bit and the contents of the mem-
ory location specified by the next two bytes
from ACCA.

SBCB (SuBtract from accumulator B with Carry) ACCB—M,—C

— ACCB

Immediate
C2
DATA

Direct
D2
LO ADDR

Extended
F2

HI ADDR
LO ADDR

Subtract the C bit and the byte immediately
following the op code from ACCB.

Subtract the C bit and the contents of the mem-
ory location specified by the next byte from
ACCB.

(No HI ADDR)

Subtract the C bit and the contents of the mem-
ory location specified by the next two bytes
from ACCB.

Example 4-9: Adding With the Carry Bit

1011 0111 Accumulator
1100 1011 Memory Contents

+(PLUS) Carry Bit

1000 0011 Sum

New Carry generated from this operation

The preceding diagram shows how the ADC instruction would be exe-
cuted. One of the main uses for this instruction is when we represent
larger numbers using multiple bytes. Adding or subtracting multiple-byte
numbers is referred to as multiple precision arithmetic. Refer to Experi-
ment 4-3 for examples of multiple precision arithmetic.
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Data Comparing (CMPA, CMPB, CBA)

These instructions are used solely for the purpose of setting or
clearing the condition code register bits. Although they are used to
compare data bytes, the only effect is that they set or clear the CCR
flags accordingly. You can compare an immediate data byte with
the contents of ACCA or ACCB. You can also compare the con-
tents of a specified memory location wtih ACCA or ACCB, or com-
pare the contents of ACCB with ACCA. When comparing a mem-
ory location to one of the accumulators, the contents of the memory
location are subtracted from the respective accumulator with the
N, Z, V, and C flags being set or cleared accordingly. Neither the
contents of the memory location or the accumulator contents are
affected. You can also compare the contents of the two accumu-
lators. To do this, the 6800 subtracts ACCB from ACCA and sets
the N, Z, V, and C flags according to the result. Again, the original
contents of ACCA and ACCB are not affected.

CMPA (CoMPare to accumulator A) ACCA — M,

Immediate The byte immediately following the op code
81 is subtracted from ACCA with the N, Z, V, and
DATA C bits being set or cleared accordingly. The
contents of ACCA are not affected.
Direct The contents of the memory location specified
91 by the next byte are subtracted from ACCA,
LO ADDR with the N, Z, V, and C bits being set or cleared
accordingly. The contents of ACCA are not
affected.
(No HI ADDR)
Extended The contents of the memory location specified
B1 by the next two bytes are subtracted from
HI ADDR ACCA, with the N, Z, V, and C bits being set or
LO ADDR cleared accordingly. The contents of ACCA are

not affected.

CMPB (CoMPare to accumulator B) ACCB — M,

Immediate The byte immediately following the op code
Cl1 is subtracted from ACCB, with the N, Z, V, and
DATA C bits being set or cleared accordingly. The

contents of ACCB are not affected.



Direct
D1
LO ADDR

Extended
F1

HI ADDR
L.LO ADDR

The contents of the memory location specified
by the next byte are subtracted from ACCB,
with the N, Z, V, and C bits being set or cleared
accordingly. The contents of ACCB are not
affected. (No HI ADDR)

The contents of the memory location specified
by the next two bytes are subtracted from
ACCB, with the N, Z, V, and C bits being set
or cleared accordingly. The contents of ACCB
are not affected.

CBA (Compare accumulator B to A) ACCA — ACCB

Inherent
11

The contents of ACCB are subtracted from
ACCA, with the N, Z, V, and C bits being set or
cleared accordingly. The contents of ACCA and
ACCB are not affected.

Example 4-10: Executing a Compare Instruction

Accumulator

COMPARE
01001101 Memory Contents
NO RESULT GENERATED

HINZVC

ccR—x| x|1]o]o] 1]

With the compare operation, the memory contents are subtracted from
the accumulutor contents; however, no result is generated. The only effect
is to set or clear the CCR flags. Note in this example that the memory
contents are larger than the accumulator contents; therefore, the N flag
is set. The Xs in the H and I flags indicate a “don’t care” state which
means they are not affected by the operation,

Data Testing (BITA, BITB, TST, TSTA, TSTB)

The data testing instructions only affect the N and Z bits of the
condition code register. The contents of the registers involved in
the operation are not affected. Therefore, you can use these in-
structions to determine whether the contents of ACCA, ACCB, or
any memory location are positive, negative, or zero without affecting
the contents of the respective register. These instructions will
normally be used to test for a condition prior to branching within

a program.
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BITA (Bit Test—accumulator A) ACCA - M,

Immediate
85
DATA

Direct
95
LO ADDR

Extended
B5

HI ADDR
LO ADDR

The byte immediately following the op code is
anved with ACCA setting or clearing the N and
Z bits accordingly. The contents of ACCA are
not affected.

The contents of the memory location specified
by the next byte are anped with ACCA, with the
N and Z bits being set or cleared accordingly.
The contents of the ACCA are not affected. (No
HI ADDR)

The contents of the memory location specified
by the next two bytes are anved with ACCA,
with the N and Z bits being set or cleared ac-
cordingly. The contents of ACCA are not af-
fected.

BITB (B/t Test—accumulator B) ACCB - M

Immediate
C5
DATA

Direct
D5
LO ADDR

Extended
F5

HI ADDR
LO ADDR

The byte immediately following the op code is
anped with ACCB setting or clearing the N and
Z bits accordingly. The contents of ACCB are
not affected.

The contents of the memory location specified
by the next byte are anped with ACCB, with the
N and Z bits being set or cleared accordingly.
The contents of ACCB are not affected. (No HI
ADDR)

The contents of the memory location specified
by the next two bytes are anped with ACCB,
with the N and Z bits being set or cleared ac-
cordingly. The contents of ACCB are not af-
fected.

TST (TeST the specified memory location) M, — 00

Extended
7D

HI ADDR
LO ADDR

The value 00 is subtracted from the memory
location specified by the next two bytes, with
the N and Z bits being set or cleared accord-
ingly. The contents of M, are not affected.



TSTA (TeST accumulator A) ACCA — 00,4

Inherent The value 00 is subtracted from ACCA with
4D the N and Z bits being set or cleared accord-
ingly. The contents of ACCA are not affected.

TSTB (TeST accumulator B) ACCB — 00

Inherent The value 00 is subtracted from ACCB, with the
5D N and Z bits being set or cleared accordingly.
The contents of ACCB are not affected.

Example 4-11: Executing a Test Instruction

a. Accumulator or Memory

Contents
TEST
00000000 Internally Generated
Test Byte
HINZVC
cck  [x[xJo]1]x[x] No RESuLT

b. 10110101 Accumulator or Memory

Contents

00000000 Internally Generated

il

Test Byte
HINZVC
ccr (x| x[1] o] X] X] No REsuLT
c. Accumulator or Memory
Contents

TEST

]

Internally Generated

Test Byte
HI NZV C

cck  [x[x]oJo]x][x] No rEsULT

Notice the status of the CCR in each example. In Example 4-11a
the Z flag is set indicating the byte tested was zero. In Example
4-11b the N flag is set indicating the byte tested was negative.
Finally, in Example 4-11c the byte tested was positive and both
the N and Z flags are cleared. The other CCR flags are not affected
by this operation.



Binary Coded Decimal Instructions (DAA)

The 6800 can add binary coded decimal (bed) numbers directly
with the use of the decimal adjust accumulator (DAA) instruction.
It is used in conjunction with the ADD and ADC instructions and
allows you to add bed numbers directly without a conversion rou-
tine. The DAA instruction tells the 6800 that two bed numbers are
being added and to convert the result to bed. It must be used
directly after an ADD or ADC instruction and cannot be used to
simply convert binary to bed. (See Appendix B for a discussion of
the bed number system. )

DAA (Decimal Adjust Accumulator)

Inherent Converts binary addition of bed characters into
19 bed format.

Example 4-12: Using the Decimal Adjust instruction

LDAA # 01001000 Accumulator

48 (bed)
ADDA # Operand
25 (bed)
WAI
RESULT
(bed)

Example 4-12 shows how the DAA instruction can be used to
add two bed numbers. Notice that DAA is placed immediately after
the add instruction. When this is done, the 6800 assumes the num-
bers being added are bed and will generate a bed result. Without
DAA, the 6800 would add the numbers as straight binary and obtain
a result of 0110 1101,. This instruction proves to be very valuable in
interfacing since many instruments communicate in bed.

REVIEW QUESTIONS

1. How many bits are contained in the CCR?
2. How many bits in the CCR are utilized by the 6800?
3. The C flag can be thought of as the . bit of the accumulator.

4. The _________flag is connected directly to B7 of the accumulator.
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Table 4-1. Aiphabetical Mnemonic Listing of

Instructions Presented in This Chapter

Addressing Modes

Mnemonic | Inmediate | Direct | Extended | Inherent Operation
ADCA 89 99 B9 - A+M+C—A
ADCB Cc9 D9 F9 - B+M+C—B
ASL - - 78 - See Text
ASLA - - - 48 See Text
ASLB - - - 58 See Text
ASR - - 77 - See Text
ASRA - - - 47 See Text
ASRB - - - 57 See Text
BITA 85 95 B5 - A-M
BITB C5 D5 F5 - B-M
CBA - - - 11 A-B
CLC - - - oC 0—C
CLl - - - OE 0|
CLv - - - 0A 0—V
CMPA 81 91 Bt - A-M
CMPB C1 D1 F1 - B-M
DAA - - - 19 See Text
LSR - - 74 19 See Text
LSRA - - - 44 See Text
LSRB - - - 54 See Text
ROL - - 79 - See Text
ROLA - - - 49 See Text
ROLB - - - 59 See Text
ROR - - 76 - See Text
RORA - - - 46 See Text
RORB - - - 56 See Text
SBCA 82 92 B2 - A-M-C—A
SBCB Cc2 D2 F2 - B-M-C—B
SEC - - - oD 1-C
SEIl - - - OF 11—l
SEV - - - 0B 1=V
TAP - - - 06 A-+CCR
TPA - - - 07 CCR—A
TST - - 70 - M-00
TSTA - - - 4D A-00
TSTB - - - 5D B-00

5. When is the H flag set?

6. Explain the difference between the SUBA and CMPA instructions.
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10.

11.

12.

13.

14.

15.

S NI SR

. If B2 is added to 97 what CCR flags would be set?

. Define twos-complement overflow.

. Explain the difference between a logic and arithmetic shift right.

Rotate left moves accumulator data

Explain the difference between a compare and bit-test instruction.

The instruction that converts binary add of bed characters into bed format
isthe _____ ___ instruction.
Using the ASLA instruction four successive times would multiply ACCA

contents by

The and instructions, respectively, are used to add
and subtract multibyte numbers, respectively.

Define multiple-precision arithmetic.

ANSWERS

. Eight

Six
ninth
N

. When there is a carry from bit column 3 (B3) to bit column 4 (B4) during

an arithmetic operation involving one of the accumulators.

. Both instructions subtract an operand from ACCA; however, SUBA gen-

erates a result and places it in ACCA. The CMPA instruction does not
generate any result. It simply sets or resets the flags according to the
operation and the contents of ACCA are not affected.

7.Cand V
8. When, during an arithmetic operation, a carry modifies the value of the
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most significant bit (Bit 7) which results in a sign error in the result.

. With an arithmetic shift right, bit 7 remains unchanged. A logic shift

right will cause a 0 to be placed in bit 7.



10. clockwise

11. A compare subtracts an operand from the specified accumulator and sets
the CCR accordingly. A bit-test instruction axps an operand with the
specified accumulator and sets the CRR accordingly.

12. DAA (decimal adjust accumulator)
13. 16
14. ADC (add with carry) and SBC (subtract with carry)

15. This is an arithmetic operation performed on multiple-byte numbers.

EXPERIMENT 4-1
Purpose

To determine the various conditions that set and clear the C,V,
N, and Z flags.

Equipment:
ET3400 MEK6800D2

~ +5-volt dc power supply
Program

This program illustrates Examples 4-1 through 4-6 in their re-
spective order. Refer to the examples to check your results.

Hex Hex Mnemonics/
Address Contents Contents Operation
0000 4F CLRA - 00 — ACCA
0001 06 TAP ACCA — CCR
Example 4-1

0002 86 LDAA #

0003 5F 5F SF — ACCA -

0004. 8B ADDA #

0005. D6 D6 ACCA + D8 — ACCA
Example 4-2

0006 86 LDAA #

0007 5B 5B 5B — ACCA

0008 8B ADDA #

0009 6C 6C ACCA +6C —ACCA
Example 4-3

000A 86 LDAA#

000B B5 B5 B5S — ACCA

000C 8B ADDA#

000D 9C 9C ACCA +9C — ACCA
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Example 4-4

000E 86 LDAA# :
000F 69 69 69 — ACCA
0010 8B ADDA #
0011 97 97 ACCA + 9? — ACCA
Examplo 4-5
0012 86 LDAA#
0013 29 29 29 — ACCA
0014 81 CMPA#
0015 29 29 ACCA -29
" Example 4-8
0016 86 LDAA#
0017 E5 E5 E5 — ACCA
0018 8B ADDA #
0019 0A 0A ACCA + 0A — ACCA
001A 3E 3E STOP
Procedure
ET3400 MEK®6800D2 ‘
Step 1

Load the program and single step the first instruction. (Refer to
Experiment 2-4 for the single-stepping procedure.)

Step 2
Examine the contents of ACCA. You should observe 00.

Step 3

Single step the program again. Examine the contents of the condi-
tion code register.

a. With the ET3400 system, press the CC key. The display will
then show the H, I, N, Z, V, and C flags in that order. Note
that the displays are labeled to indicate their respective flags.

b. For the MEK6800D2 system, press the G key four times after
single stepping (N key) to display the contents of the condition
code register in hexadecimal.

None of the flags should be set since the TAP instruction transferred
the cleared accumulator contents into the CCR.
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Step 4 (Reference to Example 4-1)

Single step the program again and examine ACCA and the CCR.
The contents of ACCA should be 5F and none of the CCR flags
should be set.

Step 5 . —
Single step the program again and examine ACCA and the CCR.
ACCA should show 35 which is the result of our addition. The CCR
should show only the H and C flag set since the addition resulted
in a carry from bit column 3 to bit column 4 and a last carry was
generated.

Step 6 (Reference to Example 4-2)

Single step again and examine ACCA and CCR. ACCA should
show 5B which we loaded and the CCR should show the C flag
and H flag set. Why?

The H and C flags are still set from the previous operation and will
not change until the alu performs another operation. Simply loading
a quantity in ACCA does not cause the alu to perform an operation.

Step 7

Single step again. Now ACCA should show the result of the opera-
tion and the CCR should show the H, N, and V flags set.

Step 8 (Reference to Example 4-3)

Single step the program through the instructions related to Example
4-3. Examine ACCA and the CCR. Refer to the example in each
case to check your results. Explain to yourself why a particular flag
is set or cleared in each case.

Step 9 (Refer to Examples 4-4 through 4-6)
Repeat Step 8 for each one of the referenced examples.

Conclusions

What is the relationship between each flag and the contents of
the accumulator?
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When are the CCR flags not affected by a program instruction?

EXPERIMENT 4-2
Purpose
To investigate some applications of the shift instructions.

Equipment
ET3400 MEK®6800D2
+5-volt dc power supply

Program No. 1

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 86 LDAA #
0001 09 09 09 — ACCA
0002 48 ASLA
0003 48 ASLA Shift ACCA left
0004 48 ASLA . arithmetic three times
0005 3E WAI STOP

This program arithmetically shifts the contents of the accumu-
lator three times to the left. Each time we shift left, we are multi-
plying the contents by two. Therefore, by shifting left three times
we multiply the number by 23 or 8.

Program No. 2

Hex Hex Mnemonics/
Address Contents Contents Operation
0010 86 LDAA #
0011 09 09 09'— ACCA
0012 47 ASRA:
0013 47 ASRA: Shift ACCA right
0014 a7 ASRA arithmetic three times
0015 3E WAI STOP

This program arithmetically shifts the contents of the accumu-
lator three times to the right. Each time we shift, we divide the
accumulator contents by two.
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Program No. 3

Hex Hex Mnemonics/

Address Contents Contents Operation
0020 96 LDAA $
0021 30 30 Ma3o— ACCA
0022 48 ASLA Shift left arithmetic
0023 48 ASLA four times
0024 48 ASLA
0025 48 ASLA
0026 9B ADDAS
0027 40 40 ACCA + M40 — ACCA
0028 97 STAAS :
0029 50 50 ACCA — Mso
002A 3E WAL Stop
0030 . 03 03 unpacked bcd number
0040 07 07 unpacked bcd number
0050 - - packed bcd number

Given two bed numbers such as 0000 0011 (03,,) and 0000 0111
(070) it would require two bytes of memory to store them. Since
the first four bits are zero in each case, we can “pack” the two num-
bers into one byte using the ASLA instruction. This reduces the
memory space required by one-half. Program No. 3 accomplishes
this task and places the packed bed result in memory location 50.

Procedure

[ ET3400 | | MEKesooD2

Step 1
Load Program No. 1.

Step 2

Single step through the program, observing the contents of ACCA
at each step. The final result should have been 48,, which equals
7210, the product of 810 X 9]().

Step 3
Load Program No. 2.

Step 4

Step the program once and observe the contents of ACCA. This
should be 09,4 which was loaded into accumulator A.
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Step 5

Step the program again. Now the ASRA instruction shifts the con-
tents of ACCA to the right one place and, in effect, divides the
contents by two. The result should be 046 with remainder one.
Where do you think the remainder is located?

Check the C flag and you will find it!

Step 6

Single step the program again. The shift right occurs again and
now the result is two with a remainder of zero. (4 +2=2)

Step 7

Single step once more and two will be divided by two with a result
of one and a remainder of zero.

Step 8

Load and execute Program No. 3. Note that we are shifting the
first bed number four places to the left, then adding the second bed
number to this result.

Step 9

Verify the packed bed result in memory location 50.

Conclusions

Are there any limitations in multiplying and dividing using shift-
ing techniques?

What is the advantage of packing bed digits?

EXPERIMENT 4-3
Purpose

To demonstrate a procedure for adding and subtracting multiple-
byte numbers. To demonstrate the use of the ADC and SBC in-
structions.
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Equipment

ET3400 MEK6800D2
+5-volt dec power supply

Program
Hex Hex Mnemonics/
Address Contents Contents Operation

0000 96 LDAAS

0001 A2 A2 Maz— ACCA

0002 9B ADDAS$

0003 B2 B2 ACCA + Me2— ACCA

0004 97 STAAS$

0005 c2 Cc2 ACCA — Mc2

0006 96 LDAAS

0007 Al A1l Ma1—ACCA

0008 99 ADCAS$

0009 B1 B1 ACCA + MB1 + C—ACCA

000A 97 STAA $

000B C1 C1 ACCA — Mc1

000C 3E WAI STOP

00A1 1A 1A Most significant byte
of first operand

00A2 AF AF Least significant byte
of first operand

00B1 55 55 Most significant byte
of 2nd operand

00B2 9C 9C Least significant_byte
of 2nd operand

00C1 - - Most significant byte

of sum
00C2 - - Least significant byte
of sum

The preceding program adds two multiple-byte numbers using
the ADC (add with carry) instruction. This is called multiple-
precision arithmetic. Multiple-precision arithmetic is used when two
or more bytes are used to represent an operand. The procedure is to
add one byte at a time from each operand using the ADC instruc-
tion for all but the least-significant byte. Therefore, the 6800 can
process numbers of any size by simply stringing bytes together. The
above program adds 1AAF;¢ + 559C,¢ = 704B,¢ which is equivalent
to addlng 683110 + 21,91610 = 28,74710.

Note that the program adds the least significant bytes and stores
the result as the least significant byte of the sum at memory location
C2. Tt then adds the most significant bytes with the carry flag since
a carry was generated from the least significant byte addition. The
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Most Least
Significant | Significant
Bytes Bytes
C=1
1AAF;s= 0001 1010 | 1010 1111,
+ 559C,6 = + 0101 0101 | 1001 1100,

704B,6 0111 0000 | 0100 1011,

result of the ADC operation is stored at memory location C1 as the
most significant byte of the sum.

Procedure

[ MEkeso0D2 |

Step 1

Load the program and single step, observing ACCA and the CCR
at each step. Note that the carry flag was set after the addition of
the least significant bytes. This carry was then used when adding
the most significant bytes. Verify the result in memory locations
00C1 and 00C2.

Step 2

Revise the program to subtract the two numbers given in the
original program. The result found in memory locations 00C1 and
00C2 should be C513,6. Note also that the N flag is set indicating
a negative result; therefore, using the twos-complement code
C513,6 = —(3AED;4) = —15,0854,.

Conclusions

Why didn’t we use an ADC instruction to add the least significant
bytes? ( Hint: Suppose that the C flag was set from some previous
operation. )

Describe a procedure for adding or subtracting any size number.

10



EXPERIMENT 4-4
Purpose

To add two multiple-precision bcd numbers.
To demonstrate the use of the DAA instruction.

Equipment
ET3400 MEK6800D2
+5-volt dc power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 96 LDAAS
0001 A3 A3 Mas — ACCA
0002 98 ADDAS$
0003 B3 B3 ACCA + Me3 —ACCA
0004 19 DAA Convert to bcd Format
0005 97 STAAS$
0006 C3 C3 ACCA — Mcs3
0007 926 LDAAS
0008 A2 A2 Maz — ACCA
0009 99 ADCAS$ ACCA+MB2+C—~ACCA
000A B2 B2
000B 19 DAA Convert to bcd Format
000C 97 STAAS
000D Cc2 Cc2 ACCA — Mc2
000E 96 LDAAS
000F A1 Al Ma1— ACCA
0010 99 ADCAS
0011 B1 B1 ACCA+Ms1+C—ACCA
0012 19 DAA Convert to bed Format
0013 97 STAAS
0014 C1 C1 ACCA — Mc1
0015 3E WAI STOP
00A1 00 00
00A2 68 68 bed operand
00A3 31 31
00B1 02 02
00B2 19 19 bcd operand
00B3 16 16
00C1 - - .
00C2 - - bed resuit
00C3 - -

The two numbers previously added in Experiment 4-3 were
6831, + 21,916, which is equivalent to (0110 1000 0011 0001,.q) +
(0010 0001 1001 0001 0110,) in binary coded decimal. This sum
would be 0010 1000 0111 0100 0111y, (28,747)10. Therefore, in the
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preceding program, we enter 006831 in addresses Al through A3
and 021916 in addresses Bl through B3. The result is stored at ad-
dresses C1 through C3. Note that the DAA instruction is used to
provide the proper bed result for each arithmetic operation.

Procedure

[ MEK6800D2

Step 1

Load the program and single step, observing the contents of ACCA
and the CCR at each step. Verify to yourself that these register
contents are correct.

Step 2

Examine the result of the bed addition at memory locations C1
through C3. You should find 028747.

Step 3

Change the program to add any two or more bed numbers. You now
have all you need.

Conclusion
Explain the procedure for adding multiple-precision bed numbers.
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CHAPTER 5

6800 Branching, Indexing,
and Stacks

INTRODUCTION

There will be many cases when you will want your program to
alter its execution path based on the status of the CCR flags. Recall
from Chapter 4 that these flags can be set or cleared as a result of
the data test and compare instructions. Once a test or comparison
has been made, the 6800 must be capable of making a decision
based on the results. Instructions that give the 6800 this decision-
making capability are called branch instructions. If a branch is
initiated, it will cause a new address to be loaded into the pro-
gram counter. This will cause the program to alter its flow so that
program execution continues with the new address specified by the
branch operation. The 6800 instruction set contains 16 different
branch instructions. Each of these instructions utilizes an addressing
mode called relative addressing. These instructions and relative
addressing will be discussed in the first part of this chapter.

Later in this chapter, we will expand the architecture of the
6800 to include two additional 16-bit registers—the index register
and stack pointer. The index register will provide you with the most
powerful form of addressing available in the 6800, indexed ad-
dressing. This type of addressing, along with the branch instructions,
will allow you to perform data transfer and arithmetic operations
on large quantities of data very efficiently without numerous pro-
gram instructions. Most of the instructions we have already discussed
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in Chapters 3 and 4 can utilize indexed addressing to significantly
increase their capabilities. The stack pointer register will allow
you to “create” areas in memory known as stacks. The stack can
be used to temporarily save register data in the event that the
6800 is required to deviate from, or leave, its main program. Saving
the internal register data will allow the 6800 to resume operation
of the main program at the point at which it left to perform some
other task. Both the index register and stack pointer have instructions
associated with them that will be discussed in this chapter.

Finally, you will apply your knowledge of branches and stacks
in a discussion of subroutines to finish up the 6800 software. Subrou-
tines or subprograms are usually small, frequently used programs
that can be called by the main program when the task that they
perform is required. Since they are frequently used by different
programs, they are normally stored in read-only memory (ROM)
such that they are not lost when power is removed from the system.
The 6800 has four instructions which will allow you to call on a
subroutine and to then automatically return to the main program
when the subroutine has been completed. These instructions will
be discussed in this chapter.

OBJECTIVES
At the end of this chapter you will be able to do the following:

¢ Define what is meant by the terms relative address, uncondi-
tional branch, and conditional branch.

¢ Determine relative addresses for branching forward and back-
ward.

¢ Be familiar with all the conditional branch instructions.

® Explain the function of the index register as related to indexed
addressing.

¢ Understand the INX, DEX, LDX, STX, and CPX instructions
and how they are used with the index register and the various
addressing modes.

¢ Explain the function of the stack pointer and how it is related
to a memory stack.

¢ Explain the function of a memory stack.

® Be familiar with the INS, DES, LDS, STS, TXS, and TSX in-
structions and how they are used with the stack pointer and the
various addressing modes.

¢ Understand what is meant by a subroutine and how the 6800
uses subroutines.
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¢ Understand the function of and differences between the JMP,
JSR, RTS, and BSR instructions as related to subroutines.

BRANCHING

Branch instructions tell the 6800 to go to an address other than
the next one, in sequence for its next instruction. If a branch is to
occur, you must tell the program where to branch. The branch
destination is an address in memory where the next instruction is
to be found. This destination address is determined by adding the
contents of the program counter to a relative address. Therefore,
6800 branch instructions use a mode of addressing called relative
addressing. The 6800 branch instructions are always two bytes
long. The instruction is followed by a one-byte relative address as
shown in Fig. 5-1. This address is relative to the contents of the
program counter. Remember from Chapter 1 that the program
counter always contains the address of the next instruction to be
fetched in a “straight-line” program. Since the branch instruction
is always two bytes long, the contents of the program counter will
be the location of the branch instruction plus two. The 6800 adds
the relative address to the program counter contents to determine
the branching destination. In practice, you usually know the branch-
ing destination and you can determine the contents of the pro-
gram counter. Therefore, the problem is to determine the relative
address.

BRANCH
Fig. 5-1. Branch instruction format. (HSTRUCTION PR - 2 Byt
RELATIVE ADDRESS

Example 5-1: Relative Address Determination for Forward Branch

Suppose that you have a branch instruction located at address 0010 and
you wish to branch to memory location 0020. Determine the relative ad-
dress required.

Since your branch instruction is at location 0010 and branch instructions
are only two bytes long, the program counter contains 0010 + 2 = 0012.
You want to branch to location 0020. Therefore, the question is: “What
must be added to 0012 to get 0020?” The answer is 0020 — 0012 = OE.
Therefore, the relative address is OE.

Example 5-2: Destination Determination

Given a branch instruction located at address 002B with a relative ad-
dress of 6F. Determine the branch destination.

The program counter contains 002B 4 2 = 002D. The destination equals
the program counter contents plus the relative address = 002D + 6F =
009C.
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In the two preceding examples, the program branched forward
in both cases. Suppose that you wish to branch backward. The
6800 accomplishes this by using signed twos-complement addition
of the relative address. If bit 7 of the relative address is 0, the 6800
will branch forward; if bit 7 is 1, it will branch backward. This
brings about a limitation on the branching range. The maximum for-
ward branch is 0111 1111,, or 127,,, memory locations. The maxi-
mum backward branch is 1000 0000., or 128,,, memory locations.

Example 5-3: Relative Address Determination for Backward Branch

Suppose that you wish to insert a branch instruction in your program at
location 009F and you desire to branch backward to location 005C. De-
termine the relative address required. The contents of the program counter
are 009F 4 2 = 00A1l. Therefore, the relative address required is the
destination minus the program counter contents.

005C _ 0101 1100. _ 0101 1100, _ -
—00A1 = —1010 0001.= +0101 1111, = 1011 1011:=BB

Note that the number of memory locations from 00Al back to 005C is
69:.0 and the twos complement of BB is 69:.0. Therefore, this is the correct
relative address. To make the process simpler, refer to Table 5-1 for de-
termining relative addresses.

BRANCH INSTRUCTIONS

There are two types of branch instructions, unconditional and
conditional. The unconditional branch is one that causes the program
to branch regardless of any conditions. In the 6800, this is the BRA
instruction. The conditional branch is one which is dependent upon
some condition as indicated by the condition code register. If the
condition is met, the branch will occur. If not, the program will
continue to the next sequential address without branching. Ex-
amples of this type of branching are branch if equal zero (BEQ)
and branch if minus (BMI). Table 5-2 lists all of the branch in-
structions along with their respective op codes. In the case of the
conditional branches, the test that is made on the condition code
register is also indicated.

The instructions involving a direct check on one of the condition
code register bits are self-explanatory and are usually used after
an arithmetic or logic instruction. The other instructions are less
obvious and, thus, justify some explanation. The BGE, BGT, BHI,
BLE, BLS, and BLT instructions are all normally used immediately
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Table 5-1. M6800 Branch Address Calculator Table

MSH-B F E D C B A 9 8
LSH-B ; LSH-F

16 32 48 | 64 80 96 | 112
17 33 49 | 65 81 97 | 113
18 {34 | 50 |66 | 82 | 98 | 114
19 | 35 | 61 | 67 | 83 | 99 | 115
20 | 36 | 52 | 68 | 84 | 100 | 116
21 37153 | 69 | 8 |101 | 117
22 | 38 | 54 |70 | 86 | 102 | 118
23 | 39 | 55 | T1 87 | 103 | 119
24 | 40 | 56 |72 | 88 | 104 | 120
25 | 41 57 | 73 | 89 | 105 | 121
26 | 42 | 58 | 74 | 90 | 106 | 122
27 143 | 59 |75 | 91 | 107 }123
28 144 | 60 | 76 | 92 | 108 | 124
29 | 45 | 61 77 |1 93 109 | 125
30 146 (62 |78 | 94 1110 | 126
31 47 (63 |79 |95 111 |127
32 |48 |64 |80 |96 112 | — -
1 2 3 4 5 6 7 MSH-F
1. Count the number of bytes (in decimal) from the instruction following the branch to the branch target
instruction.
2. Find this number inside the table.
3. Read this hexadecimal equivalent.

a. Top and left for branching backward.
b. Bottom and right for branching forward.

CapLWARON®OPIOOMT |
MEOOTPOINOPNRWN 2O

CoptbBmaoOONOORWN = |

Examples: Back 1510 bytes F116' Forward 7710 bytes = 4D g, Back 10710 bytes = 9516'
4. Key:

MSH-B = Most significant hex —backward

LSH-B = Least significant hex — backward

MSH-F = Most significant hex — forward

LSH-F = Least significant hex —forward

Courtesy Mr. Ray Boaz, 1516 Jarvis Pl., San Jose, Calif. 95118

after execution of any of the compare or subtract instructions, CBA,
CMPA, CMPB, SBA, SUBA, and SUBB. The compare and subtract
instructions can be used to test data to determine if it is positive,
negative, or zero. Once the instruction is executed, the N and Z flags
will be set accordingly. Then, the branch can occur based on the
flag status.

The following instructions are used with twos-complement signed
binary numbers:

Branch if = Zero (BGE)—The branch will occur if the signed
accumulator contents are greater than or equal to the signed mem-

ory contents.
Branch if > Zero (BGT)—The branch will occur if the signed
accumulator contents are greater than the signed memory contents.
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Table 5-2. 6800 Branch Instructions

Operation Mnemonic | Op Code Branch Test
Branch Always BRA 20 None
Branch if Carry Clear BCC 24 C=0
Branch if Carry Set BCS 25 C=1
Branch if = Zero BEQ 27 Z=1
Branch if > Zero BGE 2C N@®V=0
Branch if > Zero BGT 2E Z+(N@WV=0
Branch if Higher BHI 22 C+Z=0
Branch if < Zero BLE 2F Z+(N@OV) =1
Branch if Lower or Same BLS 23 C+Z=1
Branch if < Zero BLT 20 NDOV=1
Branch if Minus BMI 28 N=1
Branch if Not Equal Zero BNE 26 Z=0
Branch if Overflow Clear BVC 28 v=0
Branch if Overflow Set BVS 29 v=1
Branch if Plus BPL 2A N=0
Branch to Subroutine BSR 8D Special
(See Subroutines
in this Chapter)

Branch if < Zero (BLE)—The branch will occur if the signed
contents of the accumulator are less than or equal to the signed
memory contents.

Branch if < Zero (BLT)—The branch will occur if the signed
contents of the accumulator are less than the signed memory con-
tents.

The next two instructions are used with unsigned binary numbers:

Branch if Higher (BHI)—The branch will occur if the unsigned
contents of the accumulator are greater than the unsigned memory
contents.

Branch if Lower or Same (BLS)—The branch will occur if the
unsigned contents of the accumulator are less than or equal to un-
signed memory contents.

The branch to subroutine (BSR) instruction will be discussed
later in this chapter.

Example 5-4: Execution of the BNE Instruction

Suppose that the 6800 encounters the following set of instructions in
your program:
CMPB #
00
BNE
FB
WAI
What will happen?
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Here, you are comparing accumulator B immediately with the operand
00. Recall that the compare instruction subtracts this operand from the
specified register (ACCB in this case) and sets or clears the CCR flags
accordingly. In this example you are concerned with the Z-flag and it will
be set only when ACCB contents are 00. BNE is the branch if not equal
instruction. From Table 5-2, you see that the branch test for this instruc-
tion is on the Z flag. When Z=0, the branch will occur. When the Z flag is
set, the program will not branch. Therefore, this program will branch until
ACCB contents are 00. When ACCB contents are 00, the Z flag will be set.
As a result, the branch will not occur and the WAI instruction will be
executed causing the program to stop.

In which direction, and how many steps, will the program branch?

The relative address is FB = 1111 1011.. Bit 7 is one; therefore, the pro-
gram will branch backward. From Table 5-1 you will see that the program
will branch five steps backwards from the WALI struction location.

Example 5-5: Execution of the BGT instruction -

Suppose that the 6800 encounters the following set of instructions in
your program:
CMPA $$%
01
00
BGT
05
What will happen?

In this example you are comparing accumulator A with-the contents of
memory location 0100. If the signed accumulater A contents are greater
than the signed contents at address 0100, the program will branch forward
five steps from the location of the next instruction: If the branch test is not.
satisfied, the next instruction will be executed.

Example 5-6: Execution of the BHI Instruction
What would happen if BGT were replaced with BHI in Example 5-5?

The only difference is that the 6800 would not look at the accumulator
and memory contents as twos-complement signed numbers. The branch
would occur if. the unsigned accumulator A contents are greater than the
unsigned contents of memory location 0100.
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INDEX REGISTER AND ADDRESSING

Now we are ready to make the 6800 a very powerful processing
unit. Fig. 5-2 represents an expanded block diagram of the actual
6800 chip structure. In addition to the functional model we dis-
cussed in Chapter 3, we note that the chip also contains an index
register (IX) and stack pointer (SP). Note in this diagram that all
of the registers are connected to a single internal bus. Therefore,
internally, the address bus and data bus are one and the same. The
control section (CON) acts as a “traffic cop” for data and address
manipulation on the internal bus. This type of structure is referred
to as single-bus architecture and is typical of most standard micro-
processors, such as the 6800, 8080, and Z-80. The disadvantage of a
single-bus system is its slow operation.

The index register (IX) is a two-byte register that can be used
to store data or 16-bit addresses in conjunction with the indexed
mode of memory addressing.

Indexed Addressing

This mode of addressing is often referred to as the most powerful
mode of addressing available to the 6800 since the index register
contents may be manipulated with special instructions. An in-
struction utilizing indexed addressing always consists of two bytes—
the instruction byte and an offset address as shown in Fig. 5-3.
The idea is simple. In order to form the address of the operand, the

Fig. 5-3. Indexed addressing INSTRUCTION 0P - cope
instruction format.

- 2 Bytes
OFFSET

6800 simply adds the offset address to the contents of the index
register. Since the index register is a 16-bit register, we can access
any address in memory with this mode of addressing. At first glance,
this might seem to be the same as extended addressing. However, as
you will see, the index register can be incremented and decremented
which allows data to be stored or retrieved from consecutive memory
locations. Also, the indexed addressing mode only requires two bytes
while extended addressing requires three bytes.
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Example 5-7: Indexed Addressing

Suppose that the index register ‘contains the number. A5. We will use
an “X” after a mnemonic to denote indexed addressing. Now suppose the
following instruction is encountered by the 6800:

STAA X
05
What will happen?

The 6800 will add the offset address (05) to the index register contents
{A5) and obtain AA. The contents of ACCA will then be stored at memory
location AA.

Table 5-3 lists all the 6800 instructions that directly affect the index
register.

From Table 5-3 we see that the index register can be incremented
and decremented using the inherent instructions INX and DEX.
We may load the index register (LDX) using immediate, direct,
indexed, or extended addressing. Since the index register is a 16-
bit register, the specified memory address contents (M) will be
loaded. into the high byte of the index register with the next con-
secutive memory address contents (M+1) being loaded into the
low byte of the index register. We may also store the index register
contents using direct, indexed, or extended addressing. Here, the

Table 5-3. Index Register Instructions

Operation
Operation Mnemonic | Op Cod Symbol
increment Index Register INX 08: X+1—X
Decrement Index Register DEX 09 X-1—X
Load Index Register LDX # CE
LDX$ DE M — XH
LDX X EE M+ 1) — XL
: LDX $$ FE
Store Index Register STX$ DF XH—M
STX X EF XX—M + 1)
STX $$ FF
Compare Index Register CPX# 8C
CPX$ 9C (XHIXL) - (MIM + 1
CPX X AC
CPX 83 BC
Key: Address Mode Symbols
no symbol = inherent $$ = extended
# = immediate X = indexed
$ = direct

122



Example 5-8: Loading the index Register Using Direct Addressing

Suppose that the 6800 encounters the following instruction in your pro-
gram:
LDX $
B7
What will happen?

The LDX $ instruction means to load the index register using direct ad-
dressing. Therefore, the contents of memory location B7 (M) will be
loaded into the high byte of the index register and the contents of memory
location B8 (M+1) will be loaded into the low byte of the index register.
Referring to the operation symbol in Table 5-3 for this instruction, note
that M > Xu and M+1 - X.. Here, M=B7 and M+1=B7+41=BS. Re-
member, however, that these are memory addresses and the contents of
memory at these addresses are actually what is being loaded into Xa and
X1, respectively.

high byte of the index register is stored in the specified memory
location M and the low byte stored in the next memory location
M+1. The compare index register instruction (CPX) allows us to
compare any two consecutive bytes of memory with the index reg-
ister contents using the immediate, direct, indexed, or extended ad-
dressing modes.

Example 5-9: Storing the Index Register Using indexed Addressing

Suppose that the 6800 encounters the following instruction in your pro-
gram:
STX X
05
Also, suppose the index register presently looks as follows:
Index Register

jcz | o2
XH XL
What will happen?

The STX X instruction means to store the contents of the index register
using indexed addressing. The offset in this example is 05 and the index
register contents are C702. Therefore, the high byte of the index register
(C7) will be stored at memory location C7024+05=C707 and the low
byte of the index register (02) will be stored at memory location C707+
1=C708. Note that the index register contents will remain unchanged.
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Example 5-10: Comparing the Index Register
Using Immediate Addressing

Suppose that the 6800 encounters the following instruction in your pro-
gram:
CPX #
00
50
What will happen?

The CPX # instruction means to compare the index register with what
follows immediately. Therefore, 0050 will be compared with the index
register contents. This means that 0050 will be subtracted from Xu/Xu,
with the condition code register flags being set accordingly. Remember
that no result is generated with any compare operation. If the contents
of the index register equal 0050, the Z flag will be set. If the index
register contents are less than 0030, the N flag will be set.

Most of the 6800 arithmetic and logic instructions can utilize the in-
dexed addressing mode. Refer to the complete 6800 instruction set in
Appendix C for their respective op codes.

Consult the experiment section of this chapter for examples of programs
using indexed addressing.

STACKS AND STACK POINTER

Referring to the expanded block diagram of the 63800 in Fig. 5-2,
we see that there is one more register that we need to discuss. This
is the 16-bit stack pointer. The stack pointer is a temporary storage
register that will contain the memory address of the top of a memory
stack.

A memory stack is a series of consecutive memory locations set
aside by the programmer in which data or addresses are stored
and from which they may be retrieved. Stack instructions can be
used to establish one or more stacks anywhere in R/W memory.
The stack length is limited only by the amount of memory available.
The memory stack is also used by the 6800 to save its internal
register contents when it is required to perform other functions
aside from the main program, such as those in interrupt routines
and subroutines (to be discussed shortly). The top of the stack
is always the memory address just above the last byte placed on the
stack. Therefore, the stack pointer “points” to the next available
stack location. Fig. 5-4 shows a typical stack structure and corre-
sponding stack pointer contents.

The 6800 has instructions which allow us to push and pull infor-
mation to and from the stack from or to either accumulator. The
push instructions, PSHA and PSHB, will deposit accumulator in-

124



formation at the memory location indicated by the stack pointer
(SP). Once the information is deposited on the stack, the stack
pointer is decremented by one to point to the new available stack
location. Fig. 5-5 shows the stack before and after the execution of
a typical stack push operation. In this case, we are pushing a byte
of information from accumulator A onto the stack (PSHA). Note
that the information does not move within the stack. However, the

6800 CHiP
STACK POINTER

00A0

R/w MEMORY

W
.
0O09F
{—) Next Available Stack Location 00A0
00A1 F8
00A2 26
00A3 37
00A4 (-]
00AS
L~

Fig. 5-4. Memory stack structure and stack pointer.

stack pointer moves with relation to the top of the stack. The pull
instructions, PULA and PULB, will retrieve stack information be-
ginning with the last byte pushed onto the stack.

The term last-in, first-out (LIFO) is used when retrieving stack
information. Fig. 5-6 shows the stack before and after the execu-
tion of a typical stack pull operation. Here, you are pulling a byte
of information from the stack and placing it into accumulator B
(PULB). Note that since the “reset” position of the stack pointer is
the next lowest address, just below the address of the last stack lo-
cation used, the 6800 automatically increments the stack pointer
by one before retrieving any information from the stack. Table 5-4
shows a complete listing of all the stack and stack-pointer-related
instructions.
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STACK POINTER ACCA STACK POINTER ACCA

e ] [ I

MEMORY MEMORY
009F 009F
L ocoao 0040 89
00A( Fe ooal 8
0042 26 00A2 26
0043 37 00A3 37
00A4 ‘C8 00A4 cs
M‘N\\ M

(A) 6800 chip and stack before PSHA. (B) 6800 chip and stack after PSHA.
Fig. 5-5. Stack push operation.

STACK POINTER ACCB

STACK POINTER ACCB ’_{

o] l I oore | [ bs

MEMORY
MEMORY

00 9F

OO09F
——> 0040 89

00AO 8s
00AI s 004l F8

0042 28
00A2 26

00A3 37
00A3 37

00A4 ca
00A4 cs

004AS
00AS

. . .

(A) 6800 chip and stack before PULB. (B) 6800 chip and stack after PULB.
Fig. 5-6. Stack pull operation.
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Table 5-4. Stack and Stack Pointer Instructions

Operation Mnemonic | Op Code Operation Symbol
Push Data PSHA 36 A — Msp, SP-1— SP
PSHB 37 B~ Msp, SP—-1— SP
Pull Data PULA 32 SP +1— SP, Msp — A
PULB 33 SP+1—SP, Msp—B
Increment SP INS 31 SP+1—SP
Decrement SP DES 34 SP-1—SP
Load SP LDS # 8E
LDS $ 9E M — SPH, (M + 1) —SPL
LDS X AE
LDS $$ BE
Store SP STS $ 9F
STS X AF SPH— M, SPL— (M + 1)
STS $% BF
IX — SP TXS 35 X-1—SP
SP — IX TSX 30 SP+1— X
Key: Address Mode Symbols
no symbol = inherent $$ = extended
# = immediate X = indexed
$ = direct

Table 5-4 shows that the stack pointer can be incremented and
decremented using the inherent instructions INS and DES, re-
spectively. You may also load the stack pointer using immediate,
direct, indexed, or extended addressing. Since the stack pointer is
a 16-bit register, the specified memory address contents (M) will
be loaded into the high byte of the stack pointer with the next
consecutive memory address (M+1) being loaded into the low byte
of the stack pointer. You may also store the stack pointer contents
using direct, indexed, or extended addressing. Here, the high byte
of the stack pointer is stored in the specified memory location (M)
and the low byte is stored in the next memory location (M+1).
Note that you may also transfer the index register contents to the
stack pointer and vice versa. The TXS instruction loads the stack
pointer with the contents of the index register minus one, leaving
the index register contents unchanged and TSX loads the index
register with the contents of the stack pointer plus one, leaving the
previous stack pointer unchanged.

SUBROUTINES

The final topic that we must discuss to complete our understand-
ing of 6800 software is subroutines. A subroutine or subprogram is
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usually a group of instructions within a main program or a group
of instructions residing in a block of memory aside from the main
program. The subroutine usually performs a short but frequently
required task. The subroutine may be used many times within the
execution of the main program. Typical uses of subroutines would
be for repetitive addition, time delays, multiplication, division, bed-
to-binary translations, etc. The 6800 has four instructions that may
be used in conjunction with subroutines as indicated by Table 5-5.

Jump (JMP)

The jump instruction is similar to the unconditional branch in-
struction, branch always (BRA). Recall that the BRA instruction
is a two-byte instruction utilizing relative addressing. It can be
used to branch backward or forward, depending on the relative
address. But since the relative address is only one byte, you are
limited to branching within the range of —128;4 bytes to +127;,
bytes from the address in the program counter. The JMP instruction
is more powerful since it allows you to jump to any location in
memory, regardless of the range. To do this, the JMP instruction
can use either extended or indexed addressing. Fig. 5-7 shows the
execution of a JMP instruction using extended addressing. Note that
the computer program is jumping forward to address 0l1A. The
program will go to this address and then continue its execution
from this point. Fig. 5-8 shows the execution of a JMP instruction
utilizing indexed addressing. Here, the computer program is jump-
ing backward to address 0109. Note that this destination is com-
puted by adding the offset (09) to the index register contents
(0100). Also, once the JMP is encountered by the program (Fig.
5-8), it will repeat (loop) itself endlessly between addresses 0109
and 0111. Fig. 5-9 shows how you might utilize the JMP instruction

Table 5-5. Subroutine Instructions

Operation Mnemonic Op Code
Jump JMP X 6E
JMP $$ 7E
Jump to Subroutine JSR X AD
JSR $$ BD
Return from Subroutine RTS 39
Branch to Subroutine BSR (relative) 8D
Key: Address Mode Symbols
no symbol = inherent $$ = extended
# = immediate X = indexed

$ = direct
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to call a subroutine. Note that you must also use a JMP instruction
at the end of the subroutine to return to the main program. What
would be the disadvantage of using this method to call a subroutine?

The disadvantage would be that you could only call the sub-
routine once from the main program. Suppose that you wish to call
the same subroutine again later in the main program, The problem
with using the JMP instruction is getting back to the main program
once the subroutine is completed. The first time the subroutine is
called there is no problem; however, the second time you call the
same subroutine the return jump instruction must be changed to
indicate the new return address. Although you could do this through
a software routine, there is a much easier way to go about this as
you shall now see.

Jump to Subroutine (JSR)/Return from Subroutine (RTS)

The combined use of the instructions JSR and RT§..elimmates the
return-from-subroutine problem. The JSR instruction is used in the
same manner as the JMP instruction when it is used to call a sub-

129



routine. It can utilize either extended or indexed addressing. How-
ever, the RTS is an inherent instruction that must be used at the
end of the subroutine to return to the main program. How does the
6800 know the proper address to which it is to return in the main
program?

6800 CHIP
INDEX REGISTER

MEMORY

|

0109 ,T/

0t0A

0i0B

cloc

0100

Qi0E

OIOF

olo

Oty

Fig. 5-8. JMP instruction uéing indexed addressing.

The return-from-subroutine operation uses the contents of the
program counter that existed before the jump to subroutine occurred.
Recall that when the JSR operation is executed, the contents of the
program counter will be the address of the next instruction; that is,
the location that the computer must return to. The JSR instruction
causes the contents of the program counter to be pushed into a mem-
ory stack. The low byte goes into the stack first followed by the high
byte. When the RTS instruction is encountered in the subroutine,
the old program count is automatically pulled from the stack and
placed in the program counter. Therefore, the 6800 will return to
the main program at the proper location. Now the program can
jump to, or call, a subroutine any number of times within the main

130



oo

ol

oN2

ons

MEMORY

(Man PROGRAM )

OIAQ

o1l
01A2
Ol1A3
OlA4
0lAS
OlA6
Ol1A7
ota8

0lA9

MEMORY

(suerouTine)
TN

-~

JMP

-1}

OlAA 13

Paa e

Fig. 5-9. JMP being used to call a subroutine.

program. Fig. 5-10 illustrates the execution of the JSR and RTS
instructions. The JSR and RTS instructions now make possible the
use of nested subroutines. A nested subroutine is a subroutine within
a subroutine. For example, the main program may call subroutine
A, while subroutine A further calls subroutine B, while subroutine
B calls subroutine C, and so on. Each time we jump to a new sub-
routine, the contents of the program counter are saved on the stack.

Since the stack operates on the last-in, first-out principle, it can
work its way back to the proper return point in the main program
after each successive subroutine has been completed. Fig. 5-11
illustrates the nested subroutine concept.

Branch to Subroutine (BSR)

The last subroutine instruction we have is the branch to sub-
routine (BSR) instruction. The execution of the BSR instruction
is the same as the JSR instruction, except that we only need two
bytes to cause the jump. It utilizes relative addressing; therefore,
the subroutine must be within the —128,4 to 127, address range
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of the program counter. When the BSR instruction is used, the
old program count is saved on the stack and the RTS must be used
at the end of the subroutine to cause the program to return to the
main program.

MEMORY MEMORY
(MAIN PROGRAM) (susrOUTINE)

| w [

1Al

ono

JSR /

ont ol / o1a2

onz - a0 0143

on3 o1

ona 01AS
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oie 0IAT

onr ola8 '
JSR RYS

o118 0l 01A9

ons A0 ol1AA

ollA o1a8

ous T o1aC

oue l 01D

Fig. 5-10. Use of the JSR and RTS instructions.

REVIEW QUESTIONS

1. Branch instructions are always .. bytes long.
. The second byte of a branch instruction is called the
. The two types of branch instructions are the and

. A branch instruction is located at address 001E and has a relative address
of 20. Where will the program branch?

[ I ]
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Fig. 5-11. Nested subroutines.

. A branch instruction is to be located at address 0A18 of your program. At

this point you desire to branch back to address 0A00 if a certain condition
exists. Determine the relative address required.

. The maximum branching range using relative addressing is — ...

bytes to + bytes from the program count.

. What designates a forward branch? A backward branch?

. Most standard microprocessors, such as the 6800, use . archi-

tecture for internal data transfers.

-bit register.

Instructions using indexed addressing are always bytes long.
The second byte of an instruction using indexed addressing is called the
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12. How is the operand address determined using indexed addressing?

13. What is one advantage of indexed over extended addressing?

14. The 6800 encounters the following instruction in your program:
LDX $$
0A
59
What will happen?

15. The stack pointer isa._________-bit register.
16. Explain what is meant by the term “memory stack.”

17. The stack pointer always points to what location?

18. The two instructions used to move information in and out of the stack

are the and instructions.
19. The 6800 encounters the following instruction in your program:
STS X
00
What will happen?

20. When are stacks normally used?
21, A jump (JMP) instruction is always ... .. bytes long.
22. When would you use a subroutine?
23. What is the advantage of the JSR over the JMP instruction?
24, The 6800 encounters the following instruction:

JSR X

05
What will happen?

25. When would you use a BSR in lieu of a JSR instruction?

26. When using BSR or JSR, the subroutine must always contain a
instruction to get back to the main program.
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10.
11
12,

13.

14.

15.
16.

17,
18.
19.

20.

21.
22,

© o =N w

ANSWERS

two

. relative address
. unconditional and conditional

. Since the branch instruction is located at address 001E, the program count

is 001E 4 2 = 0020. The destination is the program count plus the relative
address = 0020 + 20 = 0040. It will be a forward branch since bit 7 of
the relative address is zero.

. From Table 5-1, the relative address would be E6.
. —128, bytes to +1271o bytes

. Bit 7 of the relative address is zero. Bit 7 of the relative address is one.

. single bus

16

two

offset

By adding the offset to the contents of the index regist‘er.

Instructions using indexed addressing are only two bytes long where ex-
tended addressing requires three bytes.

LDX $$ means to load the index register using extended addressing. The
high byte of the index register will be loaded with the contents of memory
location 0A59 and the low byte of the index register will be loaded with
the contents of memory location 0A59+1 = 0AS5A.

16

A memory stack is a series of consecutive memory locations set aside by the
programmer in which data or addresses are stored and retrieved.

The next available location in the stack.
PUSH and PULL

STS X means to store the stack pointer contents using indexed addressing.
Since the offset is 00, the high byte of the stack pointer will be stored at
the memory location specified by the index register (M) and the low byte
of the stack pointer will be stored at the memory location specified by the
index register plus one (M-+1).

To save internal register information during interrupts and subroutines.
two or three

When performing a short but frequently used task.
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23. With the JSR instruction, a subroutine can be called more than once in
a main program without special software being needed to get back to the
main program.

24. JSR X means to jump to subroutine using indexed addressing. The 6800
will leave the main program and jump to a subroutine located at address
(05 + index register contents). The 6800 will then return to the main
program when the RTS instruction is encountered at the end of the sub-
routine.

25. When calling subroutine which is within a —128 to 127: byte range.
26, RTS

EXPERIMENT 5-1
Purpose

To demonstrate the use of branching and indexed addressing in
clearing consecutive memory locations (0000 through 0009).

Equipment
ET3400 MEK6800D2
+5-volt dc power supply
Program
Hex Hex Mnemonics/
Address Contents Contents . Operation
000A . CE LDX #
000B 00 00 00 — XH
000C 00 00 00 —XL
000D 6F CLRX .
000E 00 00 00— M
O000F 08 INX X+1—X
0010 8C CPX #
0011 00 00 (XH/XL) — (00/0A)
0012 0A 0A
0013 26 BNE
0014 F8 F8 Branch if Z flag clear
(to address 000D)
0015 3E WAI STOP

This program illustrates how branching and indexed addressing
are used to clear the first ten R/W memory locations. Note that
since you wish to clear memory locations 0000 through 0009, your
program must reside in memory above location 0009, Therefore, you
start loading the program at address 000A. You start off by clearing
the index register. Then the CLR X instruction clears the address
indicated by the index register since the offset is 00. The next step
is to increment the index register (INX). Then you come to the
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CPX # 000A instruction which will compare the contents of the
index register to 000A. If they are not equal, the BNE instruction
causes the program to return to the CLR X instruction to clear the
next memory location. When the index register equals 0004, the
program will stop.

Procedure

| MEKes00D2

Step 1
Load the program starting at address 000A.

Step 2

Single step the program once and observe the index register con-
tents. (Remember to start single stepping at address 000A.)

Nore: With the Heath ET3400, press the key marked “index”
to observe the index register contents. With the Motorola
MEK6800D2, sequence the G key once to display the index
register.

The index register should contain 0000 since it was cleared with
the first instruction.

Step 3
Single step the program again and observe memory location 0000.

You should observe 00 since you just cleared that location with
the CLR X instruction.

NotE: With the MEK6800D2 system, you must exit then display
memory location 0000. When you exit from a single step routine
using this system, you must reinsert the breakpoint before you
can single step the program again since the exit removes the
initial breakpoint. In this case you should reinsert the break-
point at the address where the exit occurred (000F).

Step 4

Single step the program again and examine the contents of the
index register. You should observe 0001 since you just incremented
it (INX).
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Step 5

Single step again and observe the contents of the CCR. You just
performed the compare index register instruction (CPX). The Z
flag should not be set since the index register does not equal 000A.

Step 6

Single step and examine the program counter contents. You should
observe 000D. Why? The branch test was Z=0; therefore, the branch
occurred back to address 000D.

Step 7

Continue to single step until the program comes to a halt. Observe
the index register contents at each step.

Step 8

Examine the contents of the CCR. Notice that the Z flag is set. This
happened when the index register contents equaled 000A. There-
fore, the branch did not take place after this point and the pro-
gram stopped.

Step 9
Examine memory locations 0000 through 0009. They should all
contain 00.

Step 10

Revise the program to clear the first 100;0 memory locations. Re-
member, your program must be stored in memory above the last
location to be cleared.

Step 11

Execute the new program and verify that the locations have been
cleared.

Conclusions

How would the program have to be written without the power
of indexed addressing?

Recalculate the relative address given in the program and verify
to yourself that it is correct.
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What did the 6800 look for before deciding to branch or not to
branch?

Could the program be revised using the DEX instruction rather
than the INX instruction? If so, how?

EXPERIMENT 5-2
Purpose

To demonstrate the use of branching and indexed addressing
to add a series of consecutive numbers from memory.

Equipment
ET3400 MEK6800D2
+5-volt de power supply
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 CE LDX #
0001 00 00 ' 00 — XH
0002 Co Cco CO — XL
0003 4F CLRA 00 — ACCA
0004 AB ADDA X
0005 00 00 ACCA + M — ACCA
0006 08 INX X+1—X
0007 8C CPX #
0008 00 00 (XH/XL) — (00/CA)
0009 CA CA
000A 26 BNE
000B F8 F8 Branch if Z flag clear
(to address 0004)
000C B7 STAA $$
000D 00 00 ACCA — 0050
000E 50 50
000F 3E WAI STOP
00CO 01 01 DATA
00C1 02 02 DATA
00C2 03 03 DATA
00C3 04 04 DATA
00C4 05 05 DATA
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00C5 06 06 DATA

00C6 07 07 DATA
00C7 08 08 DATA
00C8 09 09 DATA
00C9 0A 0A DATA
0050 - - RESULT

This program illustrates how branching and indexed addressing
are used to add data located in ten consecutive memory locations
(00C0-00C9). Again, the index register is incremented each time
you loop through the program. You are adding using indexed ad-
dressing; therefore, the operand address is determined by adding
the offset (00) to the index register contents. You start by loading
the index register with the location of the first operand. Since the
offset is 00, the index register specifies the operand address directly.
By incrementing the index register each time you loop through the
program, you add the contents of each successive memory location
to accumulator A. Note that you are comparing the index register
with 00CA, which is the location just after the last byte. When
you get to this point, you want to stop. At this point, the compare in-
struction will cause the Z flag to be set, the branch will not occur,
and the looping will not continue. You then store the result in lo-
cation 0050 before stopping the program.

Procedure

MEK6800D2

Step 1

Load the program starting at address 0000. Be sure to remember
to load the data in memory locations 00CO through 00C9.

Step 2

Single step through the program, observing the contents of the
index register and accumulator A at each step. Verify to yourself
that the contents are correct and that the program is operating

properly.

Step 3

Examine the final result in memory location 0050. You should ob-
serve 37, which is the hex result of 1+2+3+4+45+6-7+8+94+A.
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Step 4

Revise the program to add the same list of numbers using the DEX

instruction in place of the INX instruction.

Step 5

Execute the new program and verify its results.

Conclusions

Would the relative address associated with the BNE instruction
program were located in a different part of memory?

change if the
Why?

Purpose

EXPERIMENT 5-3

To demonstrate the use of the subroutine instructions.

Equipment
ET3400

Program

Hex
Address

0000
0001
0002
0003
0004
0005
0006

0030
0031
0032
0033

0034
0035
0036
0037
0038

0039

Hex

Contents

8E

00
50
BD
00
30
3E

(Subroutine)
CE
00
05
09

8C
00
00
26
FA

39

MEK6800D2
Mnemonics/
Contents Operation
LDS #
00 00 — SPH
50 50 — SPL
JSR $%
00 Jump to subroutine
30 located at address 0030
WAI Stop
LDX #
00 00 — XH
05 05 > XL
DEX
X-1—X
CMPX #
00 Compare index register
00 immediate with 0000
BNE
FA Branch if Z flag cleared
(to address 0033)
RTS Return to main program
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This program shows how a subroutine can be called using the
jump-to-subroutine (JSR) instruction. The first instruction loads
the stack pointer with 0050. Recall that when the JSR instruction
is executed, the program counter contents are saved on the stack
such that the 6800 can return to where it left off in the main pro-
gram when the subroutine is completed. The next instruction is the
JSR which will call the subroutine beginning with address 0030.
The subroutine loads the index register with 0005 then decrements
it down to zero before returning to the main program at address
0006. A subroutine such as this is sometimes used to create a time
delay within a program. Loading the index register with a larger
value would create a longer delay. More will be said about this in
Chapter 8. :

Procedure

| MEKesooD2 |

Step 1
Enter the given program.

Step 2

Set the program counter to 0000 and single step the program. Ex-
amine the stack pointer contents by pressing the SP key on the
Heath ET34Q0 or by sequencing the G key five times on the Mo-
torola MEK6800D2. You should observe 0050 since the first instruc-
tion loaded this value into the stack pointer.

Step 3

Single step the program and note that the display indicates the first
instruction of the subroutine since you have just executed the JSR
instruction.

Step 4

The next executable instruction in the main program is the WAI
instruction located at address 0006. In order to return to the main
program at the WAI instruction, the 6800 must save address 0006
on the stack. The stack pointer was set to 0050 and, therefore, the
low address byte (06) should be saved in memory location 0050
and the high address byte (00) should be in memory location 004F.
Verify this by examining these two addresses.
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Step 5
Now examine the stack pointer contents. You should observe 004E

since the stack pointer has been decremented twice during the
process of saving the program count.

Step 6

Single step through the subroutine until you return to the main pro-
gram at address 0006 via the RTS instruction. You should observe
the index register contents while single stepping the subroutine.
Note that the index register will be decremented down to 0000 be-
fore the 6800 will return to the main program. Do not execute the
WAL instruction.

Step 7

Examine the stack pointer contents. You should observe 0050 since
the old program count (0006) was pulled from the stack causing
the stack pointer to increment twice.

Conclusion

Could a BSR instruction be used in place of the JSR instruction?
(Try it!)

How would a JMP instruction be used to call the same subroutine?
(Try it!)

What limitations are involved with the BSR and JMP instruc-
tions?
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CHAPTER 6

6800 Inpui’l Output

INTRODUCTION

Now that you have completed the chapters about the 6800 soft-
ware, you are ready to learn about the hardware aspects of the 6800.
In this chapter and subsequent chapters, we will primarily concern
ourselves with how to interface this powerful processor to the
“outside world” in order to perform real computer-controlled func-
tions. Our discussion will begin with a minimum 6800 system con-
figuration that will enable you to accommodate 80 to 90 percent of
all microcomputer applications. Most microcomputer applications
are the small dedicated ones which do not require the large amounts
of memory and higher speeds that minicomputers and larger com-
puters can supply. In most cases, the 6800 will provide more speed
and memory capability than is required by the application. When
interfacing, keep in mind what the application requires so as not to
overdesign the system. One of the big advantages of a micro-
processor-based system is that it can be expanded if the application
so dictates. Therefore, when designing a microcomputer system,
always use the simplest possible approach that gets the job done.

After configuring the basic system, we will discuss 6800 data
input/output (i/o). You will see that no special instructions are
needed to accomplish data i/o since each i/o device will be treated
as a memory location or group of locations. Therefore, you will
simply use the load- and store-accumulator instructions to input
and output data. This type of data i/o is referred to as memory-
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mapped ifo. After discussing simple data i/o, two basic techniques
used for scheduling data transfers between the 6800 and its i/o
devices will be discussed. They are programmed ifo (polling)
and interrupts. You will see that programmed i/o is the simplest
method and is adequate for most applications. However, where an
i/o device requires immediate service (fast response), interrupts
must be utilized. A complete discussion of all the 6800 interrupts
is given later in this chapter. (See 6800 Interrupts.)

You will then learn the three basics of interfacing: three-state
buffering, latching, and decoding. We will not spend a great deal of
time discussing digital-logic design techniques for accomplishing
these three functions. This is because these functions can now be
performed by using inexpensive smart peripheral interface chips,
such as the 6821 peripheral interface adapter (PIA). These chips
are so inexpensive that it would cost more in hardware to replace
their functions with conventional digital-logic chips, let alone the
time it would take to design a conventional circuit to achieve the
same function. “Smart” means that the chips are programmable and,
therefore, very flexible. They are very easy to use and they eliminate
a lot of aggravation. A complete discussion of the PIA will be given
in Chapters 8 and 9.

Finally, in this chapter, you will learn the function of each of
the 40 pins on the 6800 chip. These functions can be divided into
four main categories: power, data, address, and control. The first
three categories are almost self-explanatory. However, you will want
to pay particular attention to the functions of the various control
pins since they play a very important part in interfacing.

OBJECTIVES
At the end of this chapter you will be able to do the following:

* Know what is required to make up a minimum 6800 micro-
computer system configuration.

¢ Define what is meant by the term interfacing and the various
techniques that can be utilized to accomplish interfacing.

® Understand how to use existing instructions to input and output
data between the 6800 and its i/o devices.

¢ Explain what is meant by an address map and how it is used in
microcomputer system design.

® Understand the power and clocking requirements of the 6800.

® Explain the three basics of interfacing and the function of each.

® Explain the difference between programmed i/o0 and interrupts.
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Understand how the 6800 handles the NMI, IRQ, SWI, and
Reset interrupts.

Know what is meant by a vectored interrupt.

Explain the total significance of the WAI instruction.

Explain the difference between full and partial decoding and
how to accomplish each.

Understand how to use the 7442 and 74154 decoder chips.
Describe the function of each of the 40 pins on the 6800.

GENERAL 1/0 CONCEPTS

Fig. 6-1 represents a typical 6800 system configuration and, for
that matter, a typical configuration used with most standard micro-
processors. Note that there are three external buses to all of the
external chips: the bidirectional data and control buses and the
unidirectional address bus. The data bus is an 8-bit bus which con-
nects to the 8 data pins of the MPU, representing data bits DO
through D7. The address bus is a 16-bit bus which connects to the
16 address pins of the 6800, representing address bits A0 through
A15. The control lines are utilized to provide timing, synchroniza-
tion, and supervision of data exchange between the 6800 and the
external chips. Aside from the 6800, a typical system will consist of
read/write memory (R/W), read-only memory (ROM), and a
peripheral interface adapter (PIA). As mentioned earlier, R/W

16 - 81T ADDRESS BUS >
+5VDC
SUPPLY

6800

MPU RAM ROM 6820/ \Jo

XTAL 682t
R DEVICES
(o) <:>

ol v i

CONTROL LINES TO ALL CHIPS J>

=

Fig. 6-1. 6800 microcomputer system configuration.
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memory is used to temporarily store data and user programs and is
volatile. This means that if power to the system is lost, any program
or data information in R/W memory will also be lost. The ROM is
used to store programs that are frequently called upon to perform
various tasks. Actually, ROM is usually made up of a series of small
frequently used subroutines. The ROM is nonvolatile, meaning that
you will not lose its contents when power to the system is lost.
However, by definition, we can only read information from ROM
and it cannot be used for temporary program and data storage. The
6820/6821 PIA is a single chip which makes communication with
the outside world much easier. We will see that it is a smart chip,
meaning it can actually be programmed. The PIA can be thought
of as a buffer and supervisor of data communication between the
6800 and i/o devices, such as switches, relays, LEDs, keyboards,
etc. Finally, note that the 6800 requires an external clock and a
5-volt power supply. Two nonoverlapping clock signals (¢l and
¢2) must be provided. The requirements of these signals are shown
in Fig. 6-2. There are three versions of the 6800 available—the 6800,
the 68A00, and the 68B00. Each version requires a different clock
frequency. This clock frequency is directly related to MPU speed;
that is, the higher the clock frequency, the faster the MPU can exe-
cute instructions. The Motorola MC6875 two-phase clock generator
can be used to supply the required clock signals for the 6800 series
chips. All of the newer Motorola chips, such as the 6802, 6809, and
6801, have on-board clocks and only require an external crystal to
determine the clock frequency. The power supply should be capa-
ble of supplying +5 volts dc at 1 watt maximum. In addition, the
dc voltage should be relatively ripple free.

Fig. 6-1 represents the minimum requirements for an effective
microcomputer system. These requirements include the 6800, power
supply, clock, R/W memory, ROM, and PIA. Now that we have
developed a microcomputer, we must interface it with the outside
world in order for it to be useful. We can consider the outside
world as being made up of i/o devices, such as switches, relays,
keyboards, displays, etc. The microcomputer system must be capable
of accepting data from some i/o device, processing the data, and
then passing the results to the same or another i/o device. There-
fore, the whole idea of interfacing translates to data communication
between the microcomputer and its i/o devices. Data communica-
tion involves the microcomputer receiving data from an i/o device
and the microcomputer sending data to the outside device. Data
communication can be achieved in two ways. Some microprocessors,
such as the Intel 8080 and 8085, have special input and output in-
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ELECTRICAL CHARACTERISTICS (Ve =5.0 V £ 6%, Vs =0, T4 = 0 t0 70°C unless otherwise noted.)

Characteristic Symbol Min Typ Max Unit
Input High Voltage Logic VIH Vgg+20 - Vee Vde
i ?1.02 Vine | Vec-03 - Vee + 0.1
Input Low Voltage Logic Vig Vgg ~0.3 - Vgg +08 Vde
61,92 ViLe vgs — 0.1 - Vss +0.3
Clock Overshoot/Undershoat — Input High Level Vos Vec - 06 - Vee+05 Vde
— Input Low Level Vsg — 05 - Vgg +0.6
Input Leakage Current lin rAdc
{Vin =0105.25 V, Vg = max) Logic* - 10 25
(Vin=0105.25V, Vgc = 0.0 V) 01,62 — - 100
Frequency of Operation t 0.1 - 10 MHz
Clock Timing (Figure 1)
Cycle Time teye 1.0 -~ 10 us
Clock Pulse Width PWoH [
(Messured at Vg — 0.3 V) o1 430 - 4500
$2 450 - 4500
Total $1 and $2 Up Time e 940 - - ns
Rise and Fall Times 1,92 tor. 1ot 5.0 - 50 ns
(Measured between Vgs + 0.3 V and Voo — 0.3 V)
Delsy Time or Ciock Separation ty ] - 9100 ns
{Measured at Voy = Vgs + 0.5 V)
Overshoot Duration tos 0 - 40 . ns

*Except THQ and NMI, which require 3 kS2 puliup load resistors for wire-OR capability at optimum operation.
#Capacitances are periodically sampled rather than 100% tested.

CLOCK TIMING WAVEFORM

Overshoot

Vos
g
Vinemin
T Vos
tos
Undershoot
tos
___ Vvos
ViLcmex
ot
VOV = Vgs + 0.5 V = Clock Overlap Vos

rneasurement point

Courtesy Motorola Semiconductor Products Inc.
Fig. 6-2. 6800 clock specifications.

structions that cause data to be transmitted and received via some
internal register, usually the accumulator. When these instructions
are executed, an i/o device addressing byte must be put onto the
address bus to select a particular i/o device.

Another way to communicate with i/o devices is to treat each
device as a separate “memory” location or a series of memory loca-
tions. This is referred to as memory-mapped i/o and it is the way
that the 6800 operates. With memory-mapped i/o, no special i/o
instructions are needed. To send data out to an i/o device, you
simply execute a store-accumulator (STA) instruction and to receive
data from some i/o device you execute a load-accumulator (LDA)
instruction. This reduces program complexity and makes for a much
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more efficient operation. Since each device is treated as a memory
location, each device must be assigned an address. Therefore, re-
ferring back to the typical 6800 system in Fig. 6-1, you must assign
addresses to R/W memory, ROM, and the i/o devices (PIA). The
available addresses must be mapped or assigned according to the
external system requirements. In 6800-based systems, you have
65,536 (64K) valid addresses that can be assigned or divided be-
tween R/W memory, ROM, and the i/o devices. Fig. 6-3 shows an

0000

RAM
{ 2K Bytes)
O7FF

Used
Fig. 6-3. Memory address map for a
typicai 6800 system.

5000

PlA
5003

Not
Used

FCOO0

ROM
(1K Bytes)

FFFF

address map for a typical 6800 system. Notice that R/W memory
is assigned to the lower memory addresses (0000-07FF) and ROM
to the higher memory addresses (FCO0-FFFF), given 2K of R/W
memory and 1K of ROM. The i/o devices, represented by the PIA,
are assigned addresses 5000 through 5003. If more R/W memory,
ROM, or i/o is required, you would need to use more of the avail-
able addresses. However, for most small applications, very few of
the 64K available addresses are utilized. When a device address
is put on the address bus, the particular device must recognize
its address. To do this, each i/o device or group of devices will have
an associated address-decoder circuit.

Fig. 6-4 represents the simplest type of input device, the switch.
Here, four switches are being used to feed fov~ bits of binary data
into the 6800 system. The switches are connected to the +5-volt dc
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supply through pull-up resistors. An open switch will cause a logic
one to be present while a depressed switch will cause a logic zero
to be present. Note that the switches are driving three-state buffers.
These buffers will pass information from their input to output only
when they are enabled. This type of buffering is required to ef-
fectively isolate the switches from the data bus when they are not
being addressed. When the buffers are not enabled, they repre-

ADDRESS BUS (5000)

6800 [?‘ _

MICROCOMPUTER ADDRESS DECODER

SYSTEM

CE

|
LDAA |
50 I

(e

!

-
I
|
|
I
I
I

3~-STATE BUFFERS

"
L
Fig. 6-4. Switches used as data input devices.

sent an infinite impedance (off state) between the data bus and
switches. Three-state buffering is a must when working with bus
systems. The address decoder is connected directly to the enabling
line of the buffers. When the decoder recognizes the proper address
on the address bus, it will enable the three-state buffers such that
the switch data is passed to the 6800 via the data bus. In Fig. 6-4
the switches are assigned address 5000. When the LDAA 5000
instruction is executed, the switch data will be loaded into accumu-
lator A.

Fig. 6-5 shows the simplest type of output device, the light. In
this case the lights are light-emitting diodes (LEDs). The LEDs
are connected in a common-anode configuration. A “0” output from
the latch will forward bias the diode and cause an LED to illumi-
nate, while a “1” will reverse-bias the diode and provide no illumi-
nation. In Fig. 6-5 the LEDs are assigned address 5002. When this
address appears on the address bus, the decoder will enable the
4-bit latch. Simultaneously, the 6800 places the accumulator data
on the data bus and the latch will then store the data bus informa-
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tion. The latch is required since the data is only present on the data
bus for a very short period of time (less than one microsecond ).
However, once we store the data in the latch, it appears at the latch
output and, hence, at the LEDs until it is desired to output new in-
formation. In this example, when the STAA 5002 instruction is
executed, accumulator A information will be passed to the LEDs.
In both of these examples, we were only utilizing four bits of the
8-bit data bus.

ADDRESS BUS (5002)

6800
MICROCOMPUTER
SYSTEM

STAA
50
o2

Fig. 6-5. LEDs used for data output.

We will see shortly that the PIA can perform all of the address
decoding, three-state buffering, and latching for most i/o applica-
tions.

DECODING

In Figs. 6-4 and 6-5 you saw the use of an address decoder. Re-
call that the address decoder was necessary to recognize the proper
address from the address bus and then to enable the i/o circuitry
for data transfer. The i/o devices must be assigned an address or, in
the case of memory, a group of addresses. An address decoder can
be a series of logic gates configured to recognize a particular address
or it can be a decoding chip that makes the logic design less com-
plicated.

Suppose, as in Fig. 6-4, our i/o device is assigned address 5000.
Our decoder circuit must be capable of detecting this address and
then enabling the three-state buffers. A typical logic circuit that
could perform this function is shown in Fig. 6-6. The decoding chart
at the bottom of Fig. 6-6 indicates the necessary address bit status
for address 5000. Note that we are decoding all of the address lines
such that the only address that will cause a chip enable is the
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address 5000. When all of the address lines are decoded, we say
the address is fully decoded.

Another way to decode the same address is shown in Fig. 6-7.
Here we are only decoding part of the address bus. This type of
decoding is referred to as partial decoding. In this example we are

Al
A9
A8
A6

AlS Al2 all

Ns/ No/ No/ No/

Fig. 6-6. Full decoding circuit for address 5000.

only decoding the upper eight bits of the address bus. The ad-
vantage of this decoding method is that fewer logic gates are re-
quired. However, the disadvantage is that any address from 5000
through 50FF will cause an enable condition. This is the price we
must pay to reduce the hardware required. Since we usually have
many addresses available to use (218=64K), it probably will not
pose a problem to allocate addresses 5000 through 50FF to one i/o

At2

AlS

A3 o

Al

a0 _—j “ Fig. 6-7. Partial decoding circuit for
::5)0——— address 5000.

AlS Al2 Al A8 AT A4

\ 5/ \o/ \oou"r care
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device. In Fig. 6-7, we show the lower half of the decoding chart
filled with Xs, indicating a don’t-care state, either logic 1 or logic 0.

Another way to provide decoding is through decoding chips.
We will discuss two decoders that are commonly used in micro-
computer interfacing. A 7442 decoder is shown in Fig. 6-8, along
with its input/output truth table. This is a 16-pin chip of which 10
pins are output. The outputs are lines 0 through 9 shown inside the
block while the input lines are A, B, C, and D. The numbers on each
line represent the respective chip pin number. This type of de-
coder is referred to as a 1-of-10 decoder since only one of the output
lines is at a logic O state for any binary representation of decimals

+5V GND

) 1 Ia”

vee A 1] c [} (] £ ] 9 'o
6] [1s 1 [ul[u][n]n 8'-’—
‘ el, &[T
312 gT
4 g al &
Ha =
23
P v | ._Ii
7442 or—

7442

The truth table for the chip is as follows:

Inputs Outputs
D C B A 01 2 3 4 56 7 89
0 0 0 0 01 11111111
0 0 01 1011111111
0 01 0 1101111111
00 11 1110111111
01 0 o0 1111011111
01 0 1 11111011 11
01 10 1111110111
0111 11111110 11
1 0 00 1111111101
1 0 0 1 1111111110
1 010 1111111111
1 0 11 1111111111
1 1 0 0 j 111111111
1 10 1 11111111 1 1
1 1 10 1111111111
1111 1111111111

Courtesy E&L tnstruments, Inc.

Fig. 6-8. 7442 decoder with truth table.
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il

Fig. 6-9. Using the 7442 to partially
decode address 5000.

1]

Ai3 Al2 Al AB AT A4 A3 Ao
(ol TeT] {efofofe] [<[xIx[x] [xIXIx[x]

0 through 9 on the input. We may also refer to the 7442 as a bcd-
to-decimal decoder since, with a bed combination at the input, you
get a logic O state on the corresponding decimal output line. Fig.
6-9 shows how we might use the 7442 to partially decode the ad-
dress 5000. Note that we only need to use one output line from each
7442. In this case, we use lines 5 and 0 which correspond to the
high byte of the address being decoded. We could use these same
two chips to decode another address and utilize different output
lines to provide decoding for another i/o device.

A 74154 decoder with its truth table is shown in Fig. 6-10. This
is a 1-0f-16 decoder which will convert a 4-bit binary input word
to a logic O state at one of the output lines among 16 possible lines.
Note that the 74154 is a 24-pin chip with 4 input lines (A, B, C, D),
16 output lines (0-15), and 2 enable lines (G1, G2). Both G1 and
G2 must be at a logic 0 state for the chip to be enabled. Fig. 6-11
shows how we might use the 74154 to partially decode address
5000. Here we are using the enabling lines (G1, G2) to provide
more complete decoding. With this circuit, addresses 5000 through
500F will cause a chip enable where in the 7442 circuit (Fig. 6-9)
addresses 5000 through 50FF would enable the i/o device. Thus, the
74154 circuit provides more complete decoding.

I/0 TECHNIQUES

There are two main i/o techniques that can be utilized with a
6800 system. They are polling and interrupts.

Polling

Polling is also referred to as programmed ifo. It is the simplest
type of i/o and is normally used for small, dedicated applications.
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Courtesy E&L Instruments, inc.

Fig. 6-10. 74154 decoder with truth table.

for service is indicated, the 6800

periodically ask each i/o device
will enter into a service routine for that device. If no service is

The idea here is that the 6800 will
if it needs to be serviced. If a need

and so on. With this

scheme, each device must be polled for any input or output transfer

k4

needed, the 6800 will poll the next device
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of data several times a second. This requires a program called a
polling loop. The method of asking an i/o device if it needs to be
serviced and then responding accordingly is also referred to as hand-
shaking. Usually, when a device is polled, a flag is tested on the
device. If the flag test is positive, a service routine will be initiated.

74154
15

L]

L

74154 15—
All  ~———{0
alo ——c .
a9 ——8 .
AB —A 22—
| —
[+
' _G;
AS
a4
AlS Al2 All A8 A7 A4 A3 AO

o[ [o[1] [e[eofe] {oToTe[o]
Fig. 6-11. Using the 74154 1o partially decode address 5000.

An even simpler method of programmed i/o would be to re-
peatedly read data in from input devices and write data out to
output devices, regardless of whether or not service is needed. In
Figs. 6-4 and 6-5, this would require a program loop that continually
inputs data from the switches and outputs it to the LEDs.

The advantages of programmed i/o are that it requires minimal
interfacing hardware and only a few control lines. Also, you know
exactly when each i/o device is being serviced and how long each
service routine will take. You can schedule your i/o operations and
nothing will interfere with that schedule. Therefore, we say that
programmed i/o is synchronous or synchronized with program exe-
cution.

The greatest disadvantages of programmed i/o are that it requires
extensive software in the form of polling loops and it wastes time
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since the 6800 cannot perform other tasks if it is to check the various
devices on a regular basis. Also, as the number of i/o devices in-
creases, the loop gets larger and the time period between polling
increases. In this case, the 6800 could miss an event such as a momen-
tary switch closure.

Interrupts

Interrupts are used when the system becomes more sophisticated
and the microprocessor’s time is critical. They are also used when
fast response times are required by the i/o devices. When the in-
terrupt technique is used, the i/o device has the responsibility of
notifying the 6800 of its desire to be serviced. When the 6800 is
interrupted, it must break away from its current operation and
service the interrupt. After the interrupt has been serviced, the
6800 will return to the original operation at the point that it was
interrupted and it will continue with this task until it is interrupted
again. Interrupts fall into two main categories: the maskable and the
nonmaskable interrupt. The 6800 has the option of accepting or
ignoring the maskable interrupt, while it has no choice but to accept
a nonmaskable interrupt. Once an interrupt has been accepted, the
6800 must determine which i/o device generated the interrupt. If
several i/o devices generate interrupts simultaneously, they must be
assigned a priority since only one device can be serviced at a time.
The assignment of the priorities may be difficult and it usually
requires extra hardware and software. :

Interrupts are analogous to a situation you have probably experi-
enced—your supervisor talking with you in his office. While talking,
his phone rings, representing an interruption. He answers the phone
(servicing the interrupter), then continues his discussion with you—
hopefully where he left off. If more than one call comes in at once,
he must decide on which one to service first, second, and so on
before getting back to you—if he ever does. However, before your
talk begins, he could tell his sceretary to “hold all calls” (maskable
interrupt) until he completes his discussion with you.

If we are to apply this analogy to programmed i/o, your super-
visor would not have a bell on his telephone and he would peri-
odically have to pick up the phone to see if anyone is on the other
end requesting service.

The advantage of interrupts is that they provide fast response
times for i/o devices. The disadvantages are that extra hardware
and software are needed, especially if interrrupts are to be assigned
priorities. Also, interrupts are asynchronous when compared to the
execution of a program, meaning that they are not scheduled. You
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do not know exactly when they will take place or how much time
the servicing might require.

In most small dedicated applications it is advantageous to stay
away from interrupts. Instead, polled i/o should be used as fre-
quently as possible to solve interfacing tasks.

6800 INTERRUPTS

There are four different types of interrupts utilized by the 6800.
They are:

Reset

Nonmaskable Interrupt (NMI)
Interrupt Request (IRQ)
Software Interrupt (SWI)

Each one of these interrupts is a vectored interrupt. Recall from the
previous section that when an interrupt occurs, the 6800 must break
away from its main program routine and branch to a service routine.
Therefore, a service-routine address must be supplied for each inter-
rupt. This address is called an interrupt vector since it points to
the address of the service routine for the interrupt. Each of the 6800
interrupts has a specific location in memory where the 6800 looks
for these vectors. The 6800 interrupt vector address map is shown
in Fig. 6-12. As shown in Fig. 6-12, the last eight memory addresses
in the 64K memory space are assigned to these vectors.

In a typical 6800 system we will usually assign ROM to these
high memory addresses. Therefore, the vectors will occupy the last
eight bytes of ROM. When an interrupt occurs, the 6800 will auto-
matically look to these memory addresses for the proper service
routine vector. The reset, NMI, and IRQ interrupts are referred to
as hardware interrupts since there are actual pins on the 6800 chip
whereby an external device can initiate the interrupt. The SWI is a

MEMORY MEMORY CONTENTS
FFF8 IRQ - HI ADDR
FFF9 IRQ - LO ADDR
Frea SW! ZHI_ADDR Fig. 6-12. 6800 interrupt vector
FFFB SWI_- LO ADDR address map.
FFFC NM| - HI ADDR
FFFD NM!_ - LO ADDR.
FFFE RESET - HI_ADDR
FFFF RESET - LO_ADDR
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software interrupt since it is caused by a program instruction. Now,
we will discuss each of the different types of 6800 interrupts in
detail.

Reset

The reset interrupt is a nonmaskable interrupt and is normally
used to initialize or restart the system. It provides a starting point
for program execution by placing the address of the first instruction
to be executed in the program counter. A reset subroutine, located
in ROM, will normally be required to initialize the system. There-
fore, the reset vector which is located in ROM addresses FFFE and

Set Interrupt (1)

Flag

(CCR Bit 4)

Lood interrupt
Vector into

Fig. 6-13. Program flow for Program Counter

reset interrupt. F_\,L__,N

Ist Service
Routine Instr.

2nd Service
Routine Instr,

o)

FFFF will direct the 6800 to the beginning of the reset subroutine.
Fig. 6-13 shows the sequence of events that takes place when the
reset interrupt is encountered. Note that the first thing to happen
is that the interrupt (I) flag is set in the condition code register.
This will prevent any maskable interrupts from taking place during
the reset operation. The 6800 then goes to addresses FFFE and
FFFF to obtain the reset interrupt vector. This vector is loaded
into the program counter and the service routine for the reset inter-
rupt is then executed. After this subroutine or subprogram has been
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executed, it branches to the main program that is started to control
the operation of the computer/interface system.

Nonmaskable Interrupt (NMI)

As the name implies, this is a nonmaskable interrupt and it will
take place regardless of any other 6800 operation except reset. Fig.
6-14 shows the sequence of events for this interrupt. Note that there
are two main differences between this and the reset interrupt. The
first difference is that the present instruction that the 6800 is execut-
ing is completed before the interrupt actually takes effect. The sec-
ond, and most important, difference is that the contents of the inter-
nal registers are saved in a memory stack. Prior to the start of the
interrupt service routine, the program counter, index register, accu-
mulator A, accumulator B, and the condition code register are
pushed onto the stack in that specific order. The stack will be located
at whatever memory location the stack pointer specifies at the time
the interrupt occurs. Of course, the stack pointer must have been
set to point to a stack area in R/W memory prior to the use of any
interrupts.

( NMI/SVII ’

Present
Instruction

Finished STACK

M-6|Condition Code Register
ACCB

M-5
Steck 6800 M-4 ACCA
Register Contents M-3] Index Register (Xy )
2
1

Index Register (X, )

Program Counter (PCy)
M | Progrom Counter (PC, )

Set |- Flag
(CCR Bit*4)

Load Interrupt Vector
into
Program Counter

|

interrupt

Service Routine

Continue
Main Program

RTI

Fig. 6-14. Sequence of events for nonmaskable interrupt (NMI).
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Note that after this operation occurs, the sequence of events
is the same as for the reset interrupt. That is, the I flag is set, the
NMI interrupt vector located at locations FFFC and FFFD is loaded
into the program counter, and the nonmaskable interrupt service
routine is executed. Once the interrupt service routine has been
completed, execution must be directed back to the main program.
This is done by using a return-from-interrupt instruction (RTI, op
code 3B) as the last instruction in the interrupt service routine. The
RTI returns the 6800 to its previous status by pulling the old register
contents from the stack. It is very similar to the RTS instruction.
Pushing and pulling this information to and from the stack tables
takes place automatically when a nonmaskable interrupt occurs and
when the RTI instruction is executed.

When a reset interrupt took place, the internal register contents
did not need to be saved in a stack since the reset input is used to
restart or initialize the system. Since the system is being restarted,
we also have no need for the RTI instruction at the end of the
service routine for the reset interrupt.

Nonmaskable interrupts can be used for emergency situations.
For example, nonmaskable interrupts might be used for limit
switches on machine tools, fire alarms, security alarms, or any situa-
tion where the main program must be interrupted.

Interrupt Request (IRQ)

The IRQ is a maskable interrupt. Refer to Fig. 6-15 for the IRQ
sequence of events. You may mask out the IRQ with the I flag in
the condition code register (CCR). If the I flag is set (logic 1)
when the request is made, the interrupt will be ignored. If the I
flag is cleared (logic 0), the interrupt will be accepted. Except for
this condition, the IRQ sequence of events is the same as for non-
maskable interrupt. Once the interrupt has been accepted, the
internal register contents are saved on the stack, the I flag is set,
the IRQ interrupt vector located at locations FFF8 and FFF9 is
loaded into the program counter, and the interrupt service routine
is executed. Again, you must use the RTI instruction at the end of
your interrupt service routine to get back to the main program.
Why should a maskable interrupt set the I flag status to a logic 1
condition? Because this action prevents other maskable interrupts
from interrupting while the first interrupt is being serviced. How-
ever, you could clear the I flag at the beginning of your service
routine to allow other maskable interrupts to interrupt. If not, the
I flag will be cleared when the return from interrupt is executed.
When the maskable interrupt is used, you can protect critical parts
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Instruction
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Continue
Main Program

STACK

SP—>M-7

M-6| Condition Code Register
Stack 6800 @ M-5 ACCB
Register Contents M-4 ACCA

M-3|  Index Register (X,)

l M-2| Index Register (X, )

M-1] program Counter (PC

Program Counter (PC )

Set |- Flag
(CCR Bt *4)

=

Load IRQ Vector
into
Program Counter

interrupt
Service Routine

. Continue
RTI Main Program

Fig. 6-15. Sequence of events for interrupt request (IRQ).

of the main program from being interrupted except for emergency
situations.

At the beginning of a critical main program section, you can set
the I flag with the SEI (OF) instruction, and at the end of this sec-
tion you can clear the I flag with the CLI (OE) instruction. Then,
during this portion of the program the 6800 will ignore all maskable
interrupt requests (IRQs). However, the 6800 could be interrupted
if an emergency condition exists in the form of a nonmaskable in-
terrupt (NMI).

Software Interrupt (SWIi)

A software interrupt is one which is caused by the execution of
a special instruction. In the 6800 a software interrupt is caused by
the SWI instruction (op code 3F). It is an inherent instruction,
and when encountered in the program, it causes a nonmaskable
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interrupt to occur. The sequence of events for the SWI are identical
to the NMI (refer to Fig. 6-14). The software interrupt vector is
located at memory locations FFFA and FFFB. Once the service
routine is finished, the RTI instruction must be utilized to get back to
the main program. Software interrupts are normally used to simulate
a hardware interrupt during system design and can also be used to
insert pauses into a program. The Heath ET3400 trainer uses this
interrupt to perform the single-step function.

Wait for Interrupt (WAI)

Up to this point, the WAI (3E) instruction has been used at the
end of programs to cause the 6800 to stop or halt its execution. Al-
though it does cause the 6800 to halt, it takes on much more sig-
nificance. The WAI instruction also puts the 6800 in a wait-for-
interrupt state. The sequence of events associated with the wait
instruction is shown in Fig. 6-16. When the 6800 encounters the

wal STACK

SP—» M-7

6 | Conditiop Code ister
5 Accs

4 ACCA
3
2

1

Stack 6800 - 1
Register Contents 3| __Index Register (xu)

Index Register (X, )
=1 | Program Counter (PCy)
M { Program Counter (PC, )

zrzzxs

Reset Reset Woi NMI NMI
Sequence oit Loop Sequence

IRQ

Yes
1-Flog Set?

IRQ
Sequence

Fig. 6-16. Wait for interrupt (WAI) sequence of events.

WAL instruction, it immediately pushes the internal register con-
tents onto the stack and then enters a wait loop. The wait loop may
be broken only by any of three interrupts—reset, NMI, or IRQ. Note
that the I flag in the condition code register must be cleared to
allow the IRQ to break the wait loop. Once the loop is broken by
one of the three preceding interrupts, the respective interrupt se-
quence is initiated.
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6800 PIN ASSIGNMENTS

The 6800 pin assignments, sometimes referred to as “pinouts,”
are shown in Fig. 6-17, with the direction of signal flow for each
pin shown by the arrows. Note that the 6800 is a 40-pin dual in-line
package (DIP) integrated circuit. The following is a brief descrip-
tion of each pin function. A more complete description of the pin
functions will follow as more interfacing is discussed.

Ground (Pins 1 and 21)
These pins must be connected to the power supply ground.

HALT (Pin 2)

This pin provides for a hardware halt of the 6800 operation. When
you supply a logic zero (0) state to this pin, all activity in the
6800 will be halted. When this happens, the three-state buffers of the
data and address lines will go into their high-impedance state and
effectively disconnect the 6800 from the external data and address
buses. This function is normally used for hardware troubleshooting
and program debugging since it allows an external device to con-
trol program execution one step at a time. You will normally have
this pin connected to the +5-volt dc supply for uninterrupted sys-
tem operation.

Clocks (41, ¢2: Pins 3 and 37)

These two pins are used to provide the 6800 with a two-phase
nonoverlapping clock as discussed in the first part of this chapter.
The ¢1 clock is used for internal 6800 timing while the ¢2 clock
is used to synchronize data communication between the 6800 and
its external chips.

Interrupt Request (IRQ: pin 4)

Interrupt request (IRQ), as discussed earlier, is a hardware
interrupt controlled by an external device. The sequence of events
shown in Fig. 6-15 will be initiated when pin 4 goes from a high
(1) to low (0) state.

Valid Memory Address (VMA: Pin 5)

The Valid Memory Address (VMA) pin is an output control
line. It will go to a logical 1 state when the 6800 places a valid ad-
dress on the address bus. This is necessary because an improper ad-
dress can occasionally appear on the bus. The VMA line should
be part of any address-decoding scheme such that all i/o devices
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Fig. 6-17. 6800 pin assignments.

will be disabled if it is at a logic O state, indicating an address which
is not valid. One standard TTL load may be directly driven by this
pin.

Nonmaskable Interrupt (NMI: Pin 6)

Nonmaskable interrupt (NMI ), as discussed earlier, is a hardware
interrupt controlled by an external device. The sequence of events
shown in Fig. 6-14 will be initiated when pin 6 goes from a high
(1) to low (0) state.

Bus Available (BA: Pin 7)

BA stands for Bus Available. It is an output control pin used to
tell external devices that the 6800 has stopped executing instructions
for one of two reasons, Either a WAI instruction has been en-
countered or the HALT input has changed to a logic 0 state. When
either of the above take place, the BA pin will go to a logic 1 state.
At the same time, the 6800 disables the three-state buffers for the
data and address buses, thereby effectively isolating itself from
these buses. When this happens, an external device may take com-
mand of the address and data bus and gain access to R/W memory
or ROM to provide direct memory access (DMA) to the external
device,

+5-Volt Power (Pin 8)
Pin 8 is connected to the +5-volt dc power supply.
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Address (A0-A15: Pins 9-20 and 22-25)

These pins provide the external-address-bus address lines AQ
through Al15. Recall that the address bus is unidirectional {one
way) from the 6800 to external devices. Therefore, these pins are
output only from the 6800 to external chips. They are three-state
buffered and each is capable of driving one TTL load.

Data (D0-D7: Pins 26-33)

Pins 26 through 33 provide the external data bus lines D7 to DO.
They are bidirectional and have three-state output buffers capable
of driving one TTL load.

Read/Write (R/W: Pin 34)

This is an output control line which tells i/o devices that the
MPU is in either a read or write mode. A logic 1 on this line indi-
cates that the 6800 is performing a read operation while a logic 0
indicates a write operation. It is three-state buffered and it is capable
of driving one standard TTL load. This line will be disabled when
the processor is halted due to a WAI or HALT function. It may also
be enabled or disabled by the TSC line (pin 39) to be discussed
shortly. ‘

Data Bus Enable (DBE: Pin 36)

This is an input signal that will enable and disable the three-
state data bus buffers. A logic 1 will enable the data lines while
a logic 0 will effectively disconnect the data lines from the external
data bus. All data transfers between the 6800 and external i/o
devices must take place when the ¢2 clock is high; therefore, the
DBE line is often directly connected to the ¢2 clock line.

Three-State Control (TSC: Pin 39)

The TSC line is an input control line that can be used by an
external device to gain control of the address bus to provide direct
memory access (DMA). This will allow an external device to gain
direct access to memory without going through the 6800._When
the TSC line goes high, all the address lines and the R/W line
will go into their off or high-impedance state. The data lines are
not affected since they have their own three-state control line
(DBE). The TSC line should be brought to a logic 1 state when
#1 clock is high. It then requires the ¢1 clock to be held at a high
state and clock ¢2 to be held at a low state for this function to
operate properly. The address bus will then be available for other
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devices to access memory directly. The 6800 can only be held in this
state for 4.5 microseconds or internal register data will be lost.
Since DMA is seldom required for small applications, you may con-
nect the TSC line to ground permanently.

RESET (Pin 40)

The reset function, as discussed earlier, is a hardware interrupt.

The system will restart or be reinitiated when pin 40 goes from a
high (1) to a low (0) state (refer to Fig. 6-13).

Finally, note that pins 35 and 38 are not used and that no connec-

tion should be made to these pins.

10.

11.
12.

13.

REVIEW QUESTIONS

. A minimum workable 6800 system would consist of what major functional

parts?

. The three external buses required for a 6800 system are the |

and

. What three functions are necessary for i/o device interfacing?

. PIA stands for .
. ¢ clock is normally used where?

. What is meant by the term “memory-mapped i/0”?

.A______ instruction would be used to send data te an i/o device.
. What is a “memory address map”?

. Explain the difference between programmed i/o and interrupts.

When would the use of interrupts be justified?

“Handshaking” is synonymous with ____ |
State an advantage and a disadvantage of programmed i/o.

The two main categories of interrupts are and
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14.
15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

Interrupts are _______ with program execution.

The four interrupts utilized by the 6800 are the

and
What is an interrupt vector?

In what order are the internal 6800 registers pushed onto the stack during
an interrupt?

The RTI instruction must be used with which interrupts?

The —___ instruction will set the interrupt mask bit.
What does the WAI instruction do?

State the differences between partial and full decoding.
What is the disadvantage of partial decoding.
Two chips that are utilized in microcomputer systems for decoding are

the and
What does the VMA pin do and how should it be utilized?

Explain the function of the R/ W pin.

ANSWERS

. +5-volt dc power supply ( Vec)

1-2-MHz two-phase nonoverlapping clock (¢1 & ¢2)
6800 Microprocessor Chip

RAM

ROM

PIA

. address, data, and control

3. Decoding, latching, and three-state buffering.
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. To synchronize data communication between the 6800 and its external

chips.

. Each i/o device or group of devices is treated as a memory location or

group of memory locations.

. store accumulator

8. A chart showing address assignments to RAM, ROM, and i/o devices.

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.

21.

25.

. With programmed i/o, the 6800 polls or contacts the i/o devices to pro-

vide them service. With interrupts, the i/o devices independently request
service from the 6800 when needed.

When fast i/o0 response times are required.
polling, but can also be provided by using interrupts.

Advantages:
Minimum interfacing hardware.
Minimum control lines.
Synchronous with program execution.
Disadvantages:
‘Wastes computer time.
Momentary events could be missed.

maskable and nonmaskable

asynchronous

reset, NMI, IRQ, and SWI

An address which points to the beginning of an interrupt service routine.
Program counter, index register, ACCA, ACCB, condition code register.
NMI, IRQ, and SWI.

set interrupt mask (SEI: op code OF )

The WAI instruction halts program execution, places the internal 6800
register contents in a memory stack, and then remains in a wait loop until
broken with a reset, NMI, or IRQ interrupt.

Full decoding decodes all 16 address lines while partial decoding only
decodes part of the address lines.

. More than one address may enable an i/0 device.
23.
24.

7442 and 74154

VMA stands for valid memory address and goes high when the 6800 places
a valid address on the address bus. It should be used in all decoding
schemes so that the i/o devices will not be enabled for invalid addresses.

R/W stands for read/write. This pin goes high (1) when the 6800 is in
the read mode and goes low (0) when it is in the write mode. It is used
to tell the external chips what the 6800 is doing and should be part of i/o
decoding schemes.
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EXPERIMENT 6-1

Purpose

To verify the 74154 truth table and demonstrate its operation.
Equipment
ET3400 74154 decoder

Schematic Diagram (Fig. 6-18)

+5v GND

2e |2

15—

il

3 20

Losic 2
SWITCHES !
[

10, 5— T

21
22

: LAMP
- MONITORS
«— e

» o oo

23

184 6
19} g2

GNO

Fig. 6-18. Schematic diagram for Experiment 6-1.

Procedure

Step 1

Construct the circuit in Fig. 6-18 on the breadboard block using
4 logic switches and 1 lamp monitor. The 4 logic switches will be
used as inputs and the lamp monitor will be used to test each of
the 16 output lines.

Step 2

Set the 4 logic switches to 0000 and then test output line zero (pin 1)
with the lamp monitor. The lamp should not light, indicating a
logic zero (0) state. Test each of the other 15 lines and observe
that they all cause the lamp to light, indicating a logic one (1)
state.

Step 3

Set the 4 logic switches such that DCBA (pins 20, 21, 22, 23) equals
0001. Which output line is at logic zero?
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We conclude that output line No. 1 is at logic zero and all the re-
maining lines are at a logic 1 state.

Step 4
Complete the following truth table.

Inputs Outputs

DCBA 012345678910 11 12 13 14 15
0000 O111111111 1 1 1 1 1 1
0001 1011111111 1 1 1 1 1 1

o
(=]
-
o

—_ A D dw A da 0000

—A—L—l_loooo_L—l_A—lo
_A_LOQ_L_AOO_A_AQO_L
-Ao-no_xo_go_no_no_n

Conclusions
Where could the 74154 be used in a microcomputer system?

How many 74154 decoders would be required to decode at least
half of the 6800 address lines?

EXPERIMENT 6-2

Purpose

To provide partial decoding of the 6800 address bus using 74154
decoders. To demonstrate data latching using a 7475 latch.

Equipment
ET3400 7427 nor Gate
Two 74154 decoders 7475 latch
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Schematic Diagram (Fig. 6-19)

The decoder circuit in Fig. 6-19 is designed to partially decode
address 5000. When address 5000 is on the address bus, the decoder
circuit will enable the 7475 latch such that the logic switch data
will be transferred to the lamp monitor(s).

Sv GND
I“ l'! AlS Al2 Al AB A7 A4 A3 AQ
s o|o (o[ Tol1] [elefele] [efolelo] D]
ala 2llc N7 No /7 No/ Noe/
Al3 .22
e
5 5V GND
A6 _‘8] Gl
A7 121 62 E.
14
! T T475
sv GND [ L 3 e
IZl II2
AAII:) i g 2 ] Qt 16
a9 221p l__
aAs 234 A
74154 [} 0
LOGIC LAMP
SWITCHES MONITORS
as 8l al
As 2] g2 \
]
Fig. 6-19. Schematic diagram for Experiment 6-2.
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 B7 STAA $$
0001 50 50 ACCA — M5000
0002 00 00
0003 3E WAI Stop

This program will allow the 6800 to place address 5000 on the ad-
dress bus for decoding.

Procedure

Step 1

Construct the decoding circuit as shown in Fig. 6-19.
Step 2

Enter the program beginning at address 0000,

Step 3

Set the logic switch 0 to a logic-one position (up).
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Step 4

Execute the program. The lamp monitor should illuminate.

Step 5

Set logic switch 0 to a logic-zero position (down).

Step 6

Execute the program. The lamp monitor should now go out. Why?

Step 7

Change address 0002 to OF and repeat Steps 3 through 6. Verify
your results.

Step 8

Change address 0002 to 10 and repeat Steps 3 through 6. Verify your
results.

Conclusions

Why did the lamp respond to the program change of Step 7 and
not Step 8?

What is the function of the 7475 latch?

How could you use this circuit in a microcomputer system?

EXPERIMENT 6-3
Purpose
To simulate a nonmaskable interrupt using the software interrupt
(SWI) instruction.
Equipment

ET3400 MEK6800D2
512 bytes of R/W memory
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Nore: You must have at least 512 bytes of R/W memory
(RAM) with your trainer to do this experiment. With the Heath
ET3400 trainer, all four RAM chip sockets must contain a
2112 RAM chip.

Program

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 4F CLRA 00 — ACCA
0001 5F CLRB 00— ACCB
0002 53 CcOMB ACCB — ACCB
0003 CE LDX #
0004 33 33 33 — XH
0005 55 55 55 — Xo
0006 8E LDS #
0007 00 00 00 — SPH
0008 50 50 50 — SPL
0009 06 TAP ACCA — CCR
000A 3F Swi {Software interrupt
000B 3E WAI (vector = 00FA)

(Interrupt Service Routine)

00FA CE LDX #
00FB 00 00 00 — XH
00FC 05 05 05 — XL
00FD 09 DEX X-1—X
00FE 8C CMPX # Compare index register
O0FF 00 00 immediate with 0000
0100 00 00
0101 26 BNE Branch if Z flag cleared
0102 FA FA (to address 00FD)
0103 3B RTI Return to main program

You will analyze each program instruction while single stepping the
program.,

Procedure

Step 1

Enter the given program.

Step 2

Set the program counter to 0000.

Step 3

Single step the program and examine ACCA. You should observe
00 since the first instruction cleared ACCA.
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Step 4

Single step the program twice and examine ACCB. You should ob-
serve FF since the two instructions you just executed cleared and
then complemented ACCB.

Step 5

Single step the program and examine the index register. You should
observe 3355 as a result of the LDX instruction.

Step 6

Single step the program and examine the stack pointer. You should
observe 0050 as a result of the LDS instruction.

Step 7

Single step the program and examine the condition code register
(CCR). You should observe 000000 as a result of the TAP instruc-
tion:

Step 8

To summarize, the 6800 internal registers should now contain the
following:

Stack Pointer—0050
Condition Code—000000
Accumulator B—FF
Accumulator A—00
Index Register—3355

After the SWI instruction, the next executable instruction is the
WAL instruction at address 000B. When the SWI instruction is
executed, the 6800 will save the register contents just given along
with 000B as the program count on the stack. Address 000B is saved
so that the 6800 can return to the main program after the interrupt
service routine is executed.

Now, execute the SWI instruction by single stepping the program.
The display should now indicate the address of the first instruction
of the interrupt service routine. You have entered a short interrupt
service routine beginning at address 00FA that will load and decre-
ment the index register to provide a software delay before return-
ing to the main program. Note, address 00FA is obtained indirectly
by the ET3400 monitor program. The actual SWI vector located at
addresses FFFA: FFFB is 00F4.
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Examine the stack pointer. You should now observe 0049. Why?
Now examine the seven memory locations above the stack pointer
(004A-0050). You should observe the following:

Address Contents
004A Cco CCR contents
004B FF ACCB contents
004C 00 ACCA contents
004D 33 XH
004E 55 XL
004F 00 PCH
0050 0B PCL

NortE: The CCR contents saved are CO rather than 00 since bits
6 and 7 of the CCR are always set.

Step 9

Examine the condition code register and note that the SWI instruc-
tion has also set the I flag such that all maskable interrupts will be
masked out.

Step 10

Single step through the service routine umtil you return to the
main program at address 000B via the RTI instruction. You might
want to observe the index register contents while single stepping the
service routine. Do not execute the WAI instruction.

Step 11

Now that you have returned to the main program, examine the
stack pointer. You should observe 0050 since the register informa-
tion has now been pulled from the stack causing the stack pointer
to be incremented back to its original value.
Step 12
Verify that the original information has been returned to the in-
ternal registers.
Conclusion

Why was the SWI service routine located at address 00FAP

Why is the SWI instruction useful in developing system programs?
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CHAPTER 7

Interfacing With Memory

INTRODUCTION

Now you are ready to begin constructing a complete, workable
microcomputer system using the 6800. The system you will study
in the remaining chapters will be the minimum 6800 system con-
figuration developed in Chapter 6. Recall that this system consisted
of read/write memory or R/W, read-only memory (ROM), and a
peripheral interface adapter (PIA). Before looking at specific mem-
ory chips, it would be beneficial at this point to discuss the tech-
nology that has made the microcomputer possible. This chapter
will provide a brief history of electronic integrated-circuit tech-
nology and then discuss such present-day technologies as bipolar,
integrated-injection logic (I*L ), metal oxide semiconductor (MOS),
charge coupled devices (CCDs), and magnetic bubbles. In choos-
ing a particular technology to fit an application there are four main
considerations: speed, cost, size, and power consumption. Compari-
sons between the different technologies will be provided so that you
can decide what is best for your application.

In this chapter you will become familiar with two different read/
write memory chips—the Motorola MCM6810 and the Intel 2112.
There are many different memory chips 6n the market and these
two were chosen as typical for small system applications. Another
reason for choosing these two chips is that the Heath ET3400 micro-
computer trainer uses the 2112 chip and the Motorola MEK6800D2
trainer kit uses the 6810. The pin assignments of each chip will be
discussed as well as how each would be connected to the 6800
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to provide read/write memory for your system. A discussion of
read-only memory (ROM) will then be provided. You will be-
come familiar with the terms mask-programmed read-only memory
(ROM), programmable read-only memory (PROM), erasable-
programmable read-only memory (EPROM ), and electrically alter-
able read-only memory (EAROM). Each of these read-only mem-
ories has a particular advantage over the other, depending on the
application. Each type will be discussed briefly in this chapter.
The two read-only memory chips that will be discussed are the
Motorola 6830 and 68708 (Intel 2708). The 6830 is a 1K-byte mask-
programmed ROM and the 68708 is a 1K-byte EPROM. Both are
completely compatible with your 6800 system. This chapter will
discuss the pin assignments of each chip and show how each would
be connected to the 6800 to provide read-only memory for your
system.

OBJECTIVES
At the end of this chapter you will be able to do the following:

¢ State what is meant by the terms SSI, MSI, LSI, VLSI, SLSI.

¢ Be familiar with the various integrated-circuit technologies, such
as bipolar, I2L, PMOS, NMOS, CMOS, CCD, and bubbles.

® State the three main categories of memory.

® Define what is meant by the term “K” as related to chips versus
systems.

® Explain the differences between static and dynamic R/W
memory.

® Understand the 6810 and 2112 RAM pin assignments.

® Explain how to connect the 6810 and 2112 RAM chips to pro-
vide read/write memory for a 6800 system.

® Explain the differences between mask-programmed ROM,
PROM, EPROM, and EAROM.

® Understand the 6830 ROM and 68708 EPROM pin assign-
ments.

® Explain how to connect the 6830 ROM chip and 68708 EPROM
chip to provide read-only memory for a 6800 system.

MEMORY TECHNOLOGY

Since the invention of the transistor in 1947 the major thrust of
the industry has been to integrate as many transistors as possible
on a small silicon substrate, typically 25mm?, called a chip. Tran-
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Table 7-1. Integrated-Circuit Development

Technology Transistors per Chip Period
SSi 1to 50 early 1960s
MSI 50 to 500 mid-1960s
LSl 500 to 20,000 late 1960s to mid-1970s
vLsl 20,000 to 100,000 late 1970s to 1980s
SLSI Over 100,000 1980s

sistor devices along with their associated components are formed
within the chip using a photolithographic process or, more recently,
an electron-beam-lithography process. After the transistors have
been integrated into the chip, leads are attached and a plastic or
ceramic package is formed around the chip and lead assembly.
Once the process has been completed, the package is referred to as
an integrated circuit (IC). Integrated-circuit technology developed
through the 1960s from small scale integration (SSI) to large scale
integration (LSI). Computer and memory technology naturally
paralleled these developments since the ICs were being incorpo-
rated into computers and memories. The early and mid-1960s saw
the development of small scale integration and medium scale inte-
gration which resulted in the digital and linear integrated-circuit
markets. Large scale integration, developed in the late 1960s, led to
the first microprocessors. The 1970s have taken us into very-large
scale integration (VLSI) and provided the new generation micro-
computers, such as the 6801 and 6809. The 1980s will lead us into
super-large scale integration (SLSI) and, hopefully, provide a one-
million-bit memory chip. A rough breakdown of the different IC
developments is shown in Table 7-1. Note that with each develop-
ment, more and more transistors were being packed into the same
chip area. This has resulted in ICs with increased capabilities at
lower cost. Packing density is a term used to indicate the number of
transistor devices per chip.

Four basic design considerations must be kept in mind when de-
signing a microcomputer system. They are:

cost

speed

packing density (size)
power consumption

These considerations must be applied to each part of the system in-
dependently, as well as to the overall system. The priority placed on
each might not be in the order shown here since the application will

179



dictate the priority. For example, if a system were being designed
to be used in a satellite, size and power consumption would probably
take on a high priority with speed and cost assuming lower priorities.
These design considerations should be kept in mind as we look at
some different LSI technologies. Each of the following technologies
has advantages and/or disadvantages as related to the aforemen-
tioned design considerations.

Bipolar

Bipolar technology is the oldest transistor technology. It is the
basis for all of the transistor-transistor logic (TTL) series of digital
electronic chips, SN7400, SN74L.00, SN74LS00, and others. Bipolar
devices have a characteristic high speed; however, they also have
low packing density and relatively high power consumption. A
CPU chip utilizing bipolar technology could have an instruction
cycle time of between 50 to 100 nanoseconds versus one microsecond
for the 6800 microprocessor. A lower power version of bipolar is
low-power Schottky TTL (LPSTTL). Another form of bipolar is
integrated injection logic (12L) technology. I?L has been developed
for the small-calculator and digital-watch markets. It promises to
have the characteristic high speed of bipolar technology along with
lower power consumption and high packing density. However, more
development needs to be done until all of the predictions for I°L
are fulfilled. If these predictions become reality, I2L. could become
a major technology to be utilized in the microcomputer industry.
Usually, but not always, cost is an inverse function of packing
density. A technology such as bipolar, which has a relatively low
packing density, will have a relatively high cost as compared to high
density technologies. Presently, bipolar technology does not allow
the implementation of a complete microprocessor on a chip due to
its characteristic low packing density. Therefore, the most common
use of bipolar technology has been in the bit-slice microprocessor
industry, where the main consideration is speed.

MOS

Along with developments in packing density, new transistor
technologies were developed. One technology that has allowed
greater packing densities and has had a great impact on the micro-
computer industry is MOS technology. The acronym MOS stands
for metal-oxide semiconductor. In general, MOS technology offers
higher density and lower power consumption at a lower cost than
bipolar technology. There are several varieties of MOS technology
that can presently be identified. They are:
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s PMOS
* NMOS
» CMOS
s VMOS
* DMOS

Each MOS technology has its own particular advantage over the
others and each of them will now be discussed.

PMOS

PMOS stands for p-channel MOS. It is an older MOS technology
and its manufacturing processes are well developed, resulting in a
relatively low cost. PMOS provides excellent densities (11,000 to
15,000 transistors per chip) but is relatively slow as compared to
the other MOS technologies. It was used for the first microprocessors
and is still utilized quite extensively for memory chips where speed
is less important than cost, such as in calculators.

NMOS

NMOS stands for n-channel MOS. Most of the present-day micro-
processors and microcomputers, such as the 6800, 6809, and 6801,
utilize this technology. NMOS offers higher speed but less density
than PMOS. A microprocessor utilizing NMOS technology will be
at least two times as fast as an equivalent processor that uses
PMOS technology. More devices are utilizing this technology as
its manufacturing processes become better developed, resulting in
costs comparable to PMOS-implemented circuits.

CMOS

CMOS is an acronym for complementary metal-oxide semicon-
ductor. It is a combination of PMOS and NMOS and, therefore,
has speed and packing density characteristics somewhere between
those of NMOS and PMOS. The main advantage to CMOS is its
very low power consumption. It is typically used in military or
space applications, or any application where power consumption
is an important consideration. For example, most read/write mem-
ory is volatile and in many applications it is desirable to maintain
memory if a loss of system power occurs. This can be done with a
* battery backup unit. However, CMOS RAM must be utilized since
PMOS or NMOS would cause too much of a battery drain to main-
tain the information in the memory for extended periods. Another
advantage of CMOS is its excellent noise immunity as compared to
the other technologies. A typical application of CMOS is in elec-
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tronic watches which must operate for long periods of time on a
small battery.

VMOS

Vertical MOS (VMOS) is a MOS technology that uses a V-shaped
groove in the silicon chip to achieve greater packing densities. Its
characteristics are similar to those of PMOS or NMOS. However,
it’s not as widely used since the manufacturing processes are not
as well developed.

DMOS

Double-diffused MOS (DMOS) is another MOS technology that
provides very high packing densities. It is presently used in high-
density memories and, again, the manufacturing processes need
more development before DMOS becomes economical.

Fig. 7-1 shows a speed and power consumption comparison be-
tween the major bipolar and MOS technologies.

Charge-Coupled Devices

Charge-coupled devices (CCDs) are probably the most promising
technology of the future, especially as related to memories. The

0"

POWER CONSUMPTION PER LOGIC CIRCUIT (WATTS)

w0* 4 w0? 0 [
SWITCHING SPEED (NANOSECONDS)

From Microelectronic Circuit Elements, by James D. Meindl.
Copyright 1977 by Scientific American, Inc. All rights reserved.

Fig. 7-1. Comparison of bipolar and MOS technologies.
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greatest advantage here is in packing density. A 64K-bit memory
on a chip has already been produced and CCD technology will’
probably lead to a one-megabit chip. The big disadvantage of CCD
is speed. CCD memories have a very slow access time. Access time
is the time required to fetch a word from memory. An R/W memory
using NMOS technology will have a typical access time of 50-250
nanoseconds, whereas the same R/W memory using CCD tech-
nology would have an access time of more than 100 microseconds.
CCD memories might someday replace mass-memory units, such as
floppy disks, but will probably not replace the main working memory
of the computer due to their slow access time.

Magnetic Bubbles

Magnetic-bubble memories have recently begun to appear on
the commercial. market. They are different from the preceding
technologies in that they are magnetic. devices. An inherent ad-
vantage of magnetic devices is that they are nonvolatile, meaning
they retain their contents when power is removed. The biggest
advantage of “bubbles” is their extremely high densities. One-
megabit magnetic-bubble memory units have been successfully pro-
duced (Intel). Magnetic bubbles also offer low power consumption
and are lightweight. The disadvantages of magnetic bubbles are
speed and: cost. Bubble memories are presently slower than CCDs
and the cost of using bubbles in place of a MOS R/W memory would
be intolerable: However, the cost per bit for bubble memories goes
down as the amount of memory goes up. Therefore, magnetic
bubble memories are another likely candidate to replace disk mem-
ories in the future.

Microcomputer Memory Devices

CPU memories may be divided into three main categories—in-
ternal memory, main working memory, and mass memory. Inter-
nal memory would include the internal registers on the CPU chip
along with any read/write memory that might be included as
part of the CPU chip. This type of memory is the fastest and is
normally configured using bipolar or MOS. technology. The main
working memory is that memory that is separate from the CPU
chip but is connected directly to the address lines of the CPU
chip. In 6800-based systems, the main working memory can be up
to 64K bytes and it is usually fast. Presently, MOS devices are used
to provide the read/write and ROM parts of this memory. The mass
memory in a microcomputer system will usually be a magnetic
cassette recorder or floppy-disk unit. Mass memory is nonvolatile
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and is used to save programs and large amounts of data. The cost
per bit of mass memory is relatively low when compared to the
other memory categories; however, it is very slow. Fig. 7-2 shows
cost and speed comparisons for the different categories of memory
technology. Note that bipolar memory is the fastest but most ex-
pensive and magnetic tape is the slowest and cheapest. Also note
where CCD and magnetic bubbles fit into the picture. They both
seem to represent a compromise that fills the gap between MOS
R/W memory and magnetic mass memory.
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Fig. 7-2, Memory cost and speed comparisons.

INTERFACING WITH READ/WRITE MEMORY

The development of R/W memory has naturally followed the
integrated-circuit developments. The first 1K R/W memory chip
was marketed by the Intel Corporation in 1971. In 1973 4K chips
were introduced and in 1978, 16K chips became available. By 1980
you can expect to have a 64K chip commercially available. As IC
technology gets better and starts moving into VLSI and SLSI in
the 1980s, you will see memory chips with very high densities.

Now some of the terms associated with memories need to be dis-
cussed. As mentioned earlier in this book, “K” stands for the num-
ber 1024. However, you must define the units that “K” is being
applied to. The accepted convention is that when you apply the
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term K to a system memory, you mean K bytes of memory. When K
is applied to a memory chip, you mean K bits of individual memory
locations. For example, the 6800 is capable of addressing 64K bytes
of memory, but the Motorola MCM4116 is a 16K-bit R/W memory
chip. Various terms and abbreviations are used to describe memory
chips in the manufacturer’s specifications. The following are some
of the more common terms that are used to describe memory chips.

Access Time (t,, t...)

Access time is probably the most standardized term used to indi-
cate memory speed. It is the time from when the address and chip
select inputs are applied to, when memory data is available on the
data output pins.

Read-Cycle Time (trc, t.yc(x))

Read-cycle time is the time from when the memory is addressed
to when the memory is ready for the next read operation.
Norz: t, will usually be less than tge.

Write-Cycle Time (tyc, teye(w))

Write-cycle time is the time required to write data into an ad-
dressed memory location.

Setup Time ()

Setup time is the minimum time interval, immediately preceding
the chip enabling pulse or pulses, that the address information
and/or data must be maintained at the chip to ensure its recog-
nition. Examples are address time (tas) and data setup time (tpg).

Hold Time (ig)

Hold time is the minimum time interval, immediately following
the chip enabling pulse or pulses, that the address information
and/or data must be maintained at the chip to ensure its continued
recognition. Examples would be address hold time (tsu) and data
hOld time (tDH)o

Unfortunately, there has not been much standardization of speci-
fications between the memory chip manufacturers. It might very
well happen that two manufacturers will specify the same memory
chip characteristics in different terms. You might also see the terms
R/W and RAM used synonymously. Technically, this is incorrect
since ROM is also random-access memory. However, the term RAM
has been accepted over the years to mean read/write memory.
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R/W memory is internally organized in matrices of words X bits.
For example, the Motorola MCM4116 R/W memory previously
mentioned is a 16K X 1 chip. This means the chip contains 16,384
1-bit words; therefore, eight of them would be needed to configure
a 16K-byte memory. The Motorola MCM2114 is a 1K X 4 R/W
memory chip, meaning it contains 1024 4-bit words. Two of these
chips would be required to configure a 1K-byte memory and 32
would be needed to configure a 16K-byte memory. Finally, the
MCMBS6810 is a 128 X 8 R/W memory meaning that it contains 128
8-bit words. Here, only one chip would be needed to provide 128
bytes of memory for a system; however, it would require 128 of these
chips to provide a 16K-byte memory system.

The Motorola MCM2114 and MCM2147 are both 4K R/W mem-
ory chips. However, the 2114 is a 1K X 4 chip and the 2147 is a
4K X 1 chip. Note that they both contain the same number of bits
but they have different internal structures. A memory system might
be configured differently depending upon which types of chips are
to be used. The main point here is that, even though the 2114 and
2147 are both 4K R/W memory chips, they are not interchangeable.

There are two general categories of R/W memory—static and
dynamic. Static R/W memory utilizes the flip-flop (refer to Ap-
pendix A) as its basic storage element. Recall that one of the proper-
ties of a flip-flop is that it will stay latched in one of two states as
long as power is supplied. A dynamic memory stores binary infor-
mation as a charge. For example, a charge being present might
indicate a binary one and no charge present would indicate a binary
zero. The dynamic R/W memory actually uses the capacitance
between the gate and substrate of a MOS transistor to store the
charge. However, you know that a capacitor does not hold a charge
indefinitely and that it must be recharged. This is the main dis-
advantage of dynamic RAM. Within a few milliseconds, most of
the charge is lost and you must refresh the charge. This is normally
accomplished by reading the stored information out of the memory
and then writing it back into the same memory locations once every
one to two milliseconds. You would not want to tie up the CPU
to perform this function; therefore, extra refresh circuitry must be
provided. We can achieve about four times greater density with
dynamic RAM than with static RAM, reducing the cost per bit
significantly. In fact, it costs about the same to produce a 16K
dynamic RAM as it does to produce a 4K static RAM. However, the
addition of the refresh circuitry required for dynamic RAM makes
this type of memory less economical for small systems. Most micro-
computer systems use static RAM since it is cheaper when rela-

186



tively small amounts of memory are required and makes the system
design process less complicated. Dynamic RAM is normally used in
minicomputer and large computer applications where larger amounts
of memory are required.

Now we will consider some real memory products. Again, large
amounts of memory are not required for most microcomputer appli-
cations. In many cases 512 bytes of memory are more than enough
to do the job. In this section the Motorola 6810, which is a 128 X 8
static R/W memory, and the Intel 2112, a 256 X 4 static R/W mem-
ory, will be discussed.

MCM 6810 R/W MEMORY

The 6810 is a 24-pin NMOS static R/W memory. It is organized
as 128 bytes of 8 bits, operates from a single 5-volt power supply,
and has a maximum access time of 450 nanoseconds. The following
is an explanation of the 6810 pin assignments as shown in Fig. 7-3.

Ground (V,: Pin 1)
Pin 1 should be connected to the system ground.

Data (D0-D7: Pins 2-9)

These pins are connected to the eight data bus lines DO through
D7 of the 6800. They are bidirectional and have three-state output
buffers capable of driving one TTL load.

Chip-Select Inputs (CS0-CS5: Pins 10-15)

These pins are used to select or enable the chip. The chip will be
enabled when CSO and CS3 are high and CS1, CS2, C54, and CS5
are low. You can connect these chip-select lines to the address bus
in such a way that only one 6810 R/W memory is enabled at a
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time. These lines will provide you with the chip decoding scheme.
The availability of six chip-select lines allows you to use this R/W
memory with little or no external address decoding. The use of
these pins will be discussed in more detail shortly.

Read/Write (R/W: Pin 16)

This pin is connected directly to the R/W pin of the 6800. It
tells the memory chip that the 6800 is in the read or write mode as
described in Chapter 6.

Address Inputs (AO—AS: Pins 23-17)

There are seven address pins which can address 27, or 128, differ-
ent locations within the chip. These pins will always be connected
to address lines AO-A8, respectively, on the 6800. They are used to
select a particular word in the chip once that chip has been enabled.
Even if there is more than one 6810 in the system, the address pins
on each chip will always be connected to the address bus lines
(A0-A8) of the 6800. The different memory chips will be selected
independently through the chip-select configuration of each chip.

V.. (Pin 24)

Connect this pin to the system +5-volt dc power supply. Each
6810 in the system will draw approximately 80 mA from the supply.

Fig. 7-4 shows a functional block diagram of the 6810 chip. Note
that the three basic interfacing requirements, decoding, three-state
buffering, and latching, are all provided for in this single-chip pack-
age. Decoding is accomplished by using the chip-select pins, and
the internal A0-A6 address decoder. Three-state buffering is in-
cluded as an internal part of the data lines. When R/W memory is
not enabled, the data lines will go on their off (high-impedance)
state. Latching is inherent since this is a memory chip.

Fig. 7-5 shows how you would interface two 6810 chips to the
6800 microprocessor to provide 256 bytes of RAM. First, note how
the 6800 control pins are connected. Reset is connected to the 5-volt

BLOCK DIAGRAM

it

Fig. 7-4. Functional block diagram of
6810 R/W memory.

g AYGAY 2322222

<
Gra Pnt

Courtesy Motorola
Semiconductor Products Inc.

188



source through a pull-up resistor and to ground through a switch.
With the switch open, Reset will be held high. When the switch is
closed, Reset will go low causing a reset interrupt sequence to occur.
The IRQ, HALT, and NMI inputs are all held high with the 5-volt
source since their functions are not required for this application.
The ¢1 and ¢2 clock signals are applied to their respective pins
on the 6800. However, note that the ¢2 clock signal to the DBE
pin is also being applied. Read/write operations will take place only
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Fig. 75. Interfacing 256 bytes of RAM using two 6810 R/W memories.

when ¢2 is high. Therefore, by tying ¢2 to DBE, you will only
enable the data bus during the read/write operations. This is nor-
mally done to isolate the 6800 data lines from the data bus when
the bus is not being utilized by the 6800. The R/W signal is con-
nected directly to the R/W pin on each 6810 chip. The VMA line
is used in the 6810 decoding scheme. The BA pin is a 6800 output
line that is not being used and, therefore, no connection is made to
this pin. Finally, the TSC pin is held low since its function is not
required.

Now consider the 6810 connections. Address lines AQ through
A6 of the 6800 microprocessor are connected to the AO-A6 pins of
both of the 6810 chips. This will allow the computer to select one
of the 128 bytes within either chip using the lowest seven address
lines (A0-A6). In this scheme, the chip-select lines are connected
such that chip No. 1 will use addresses 0000 through 007F and chip
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No. 2 will use addresses 0080 through 00FF. An address decoding
chart for each chip is shown in Fig. 7-6. Note that in each case
the address bus is being only partially decoded. Full decoding would
require_more logic_external to each 6810 chip. Chip-select inputs
SI, CS4, and CS5 provide partial decoding for the upper eight
address lines. Address lines All, Al4, and Al5 are connected to
these chip selects. Address line A7 is “decoded” to select either chip
No. 1 or chip No. 2. On chip No. 1, A7 is connected to CS2 to
CHIP *| (0000 - 007F)
T BLLT] FE[Dx] D]
\0'5/ \0’7/ \0‘7/ \0>F/

cHIP®™2 (0080 - OOFF)

BT FOOT BED) R
DZE U N S N

Key: CS=|

Ts=0
X = Connected to some line on 6810: can be § or O

® = not used

Fig. 7-6. 6810 chip decoding charts.

enable that chip when A7 is low, while on chip No. 2, A7 is con-
nected to CS3 such that chip No. 2 is enabled when A7 is high. This
will allow chip No. 1 to provide the lower 128 bytes of R/W mem-
ory and chip No. 2 to provide the upper 128 bytes of the 256 bytes
implemented. On each chip, the $2 and VMA signals are connected
to the remaining chip selects such that the chip will only be en-
abled when ¢2 and VMA are high.

The data i/o pins, DO through D7, on each 6810 chip are con-
nected to lines DO through D7 on the 6800 data bus. The 6810 R/W
line is tied directly to the 6800 R/W line.

2112 R/W MEMORY

The 2112 is a 16-pin 256 X 4-bit static R/W memory. It operates
on a single 5-volt power supply and has an access time similar to
that of the 6810. To obtain 256 bytes of R/W memory would re-
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quire two 2112s since each is only four bits. Recall that the 6810 is
a 128 X 8 R/W memory. Both of these chips contain the same num-
ber of storage cells (1024), but internally they have been structured
differently. The following is an explanation of the pin assignments
for the 2112 as shown in Fig. 7-7.

Address (A0-A7: Pins 1-7, 15)

These eight address pins can address 28 = 256 different 4-bit lo-
cations in the chip. They will always be connected to address lines
A0 through A7, respectively, on the 6800. As with the 6810 chip,
the address lines are used to select a particular word within the
chip, once that chip has been selected.

Ground (V,,: Pin 8)
Pin 8 should be connected to the system ground.

Data (1/01-1/04: Pins 9-12)

I/01 through I/04 provide the four data lines to and from the
chip. Since each 2112 memory has only four data lines and since
the 6800 has an 8-bit data bus, you will be interfacing blocks of
8-bit bytes by using pairs of 2112 chips. Each pair of 2112 chips
will provide 256 bytes of R/W memory. Therefore, within any one
pair, I/O1 through I/0O4 of one 2112 must be connected to DO
through D3 of the data bus and I/O1 through 1/04 of the other
2112 must be tied to D4 through D7 of the data bus.

Chip Enable (CE: Pin 13)

When pin 13 goes low (0), the chip will be enabled. Since this
is the only chip-select pin available on this chip, you will have to
provide external address decoding as discussed in Chapter 6. The
CE pin will connect to the output of your address decoder.

Read/Write (R/W: Pin 14)

You will connect this pin directly to the R/W pin of the 6800.
It tells an enabled memory chip that data is to be read from or
written into its storage cells.

V.. (Pin 16)

Connect this pin to the +5-volt dc power supply of the system.
Fig. 7-8 shows how two 2112 chips would have to be connected
to the 6800 to provide 256 bytes of RAM. The connections to the
6800 are the same as were required for the 6810 interfacing. Note
that the two 2112 chips are enabled simultaneously by the address
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decoder that decodes the upper eight address lines. External de-
coding must be provided for the 2112 chips, since only one chip-
enable pin is provided. The lower eight address lines are used to
select the particular byte required in the memory. To obtain the
full byte of data, chip No. 1 is connected to data lines DO through
D3 and chip No. 2 is connected to data lines D4 through D7.
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Fig. 7-8. Interfacing 256 bytes of RAM using two 2112 R/W memories.

INTERFACING WITH READ-ONLY MEMORY (ROM)

Your system will require some type of read-only memory to pro-
vide such functions as restarting (reset), program loading, single
stepping, address examination, and any frequently used program
required for your application. Several types of read-only memory are
available. A brief discussion of each follows.
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Mask-Programmable ROM

This type of read-only memory can only be programmed by the
manufacturer. When purchasing a mask-programmed ROM, you
must supply the manufacturer with the program you desire to have
implemented into ROM. Your program may be forwarded to the
manufacturer in several different formats. Refer to the specifications
for the Motorola 6830 ROM in Appendix D for an example of cus-
tom programming requirements. The 1s and Os that make up the
op codes and those in your program will be masked into the ROM
chip during the last manufacturing step. This step is referred to as
the metallization step. The manufacturer will actually produce a
mask from your program to be used in the metallization process.
Since production of this mask is quite costly, the manufacturer will
usually require you to place a minimum order. The minimum order
required depends on the manufacturer and the stage of process de-
velopment.

An obvious disadvantage of a mask-programmed ROM is the
delivery time. Once you place an order, it will typically take three
to six weeks for the manufacturer to fill that order. Also, the pro-
gram cannot be modified once the ROM is produced. If modifi-
cation is required, the existing ROM must be discarded and a new
order placed. The advantages of this type of ROM are its high
packing density and lower cost in large quantities once a program

has been debugged.

PROM (Programmable ROM)

This type of read-only memory is user-programmed, meaning that
you can program your own PROMs using a device called a PROM
programmer. Most of the PROMs used today are erasable PROMs,
sometimes called EPROMs. The erasable devices can be easily
identified since they have a transparent quartz window above the
chip. When these chips are exposed to ultraviolet light for several
minutes, all of the internal storage cells are returned to either a
zero or one state, depending upon the particular device. After
erasing, the PROM may be reprogrammed using the PROM pro-
grammer. The nonerasable PROMs, or one-shot ROMs, are a smaller
part of the market since they may only be programmed once and
then discarded if the program requirements change.

The PROM devices will generally meet the microcomputer manu-
facturer’s speed or access-time specification, but they are generally
much slower and larger than mask-programmed ROMs. While
16K-bit PROMs are readily available, 64K-bit ROMs are common.
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Normally, you will develop your system using the PROM de-
vices. Once the system is debugged, you can then order mask-
programmed ROMs for large-volume production runs of systems
initially using the PROMs. For applications which do not involve
large production runs, the PROMs may be used as the permanent
read-only memory.

EAROM (Electrically Alterable ROM)

This type of ROM could actually be classified as a read/write
memory since you can electrically write information into it as well
as read from it. However, the write operation is very slow (typically
one millisecond) and, therefore, it is not used as a general read/
write memory. A better classification for EAROM would be read-
mostly memory. One advantage of EAROM is that a special burner
is not required for programming. Usually all that is required is a
26-volt dc level which can be supplied by a simple power-supply
circuit. Once this voltage is supplied, you can write information into
the EAROM by transferring data located in RAM to the EAROM
memory locations. This data transfer can be accomplished very
easily with the 6800 by using indexed addressing. The data-transfer
cycle should be repeated (looped) several times to assure proper
EAROM programming. If the program is to be changed, the change
is made in RAM and then the procedure repeated. EAROMs are
nonvolatile and should be considered for applications which require
small amounts of read-only memory since they are relatively ex-
pensive. Now two typical read-only memory chips, the Motorola
MCM 6830 ROM and the MCM 68708 (Intel 2708) EPROM will be
discussed.

MCM 6830 ROM

The 6830 is a 24-pin mask-programmable ROM containing 1K
bytes (1024 X 8) of memory. It uses NMOS technology and has an
access time of 250-350 nanoseconds. The 6830 pin assignments are
shown in Fig. 7-9. The following is a brief functional description
of each pin.

Ground (V,: Pin 1)
Pin 1 should be connected to the system ground.

Data (D0-D7: Pins 2-9)

These pins are connected to the eight data bus lines, DO through
D7, on the 6800 microprocessor. They are only used for output, since
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data is only read from a ROM. These lines are three-state buffered
and capable of driving one TTL load. When the ROM is not en-
abled, its data lines will go into their off (high-impedance) state.

Chip-Select Inputs (CS0-CS3: Pins 10, 11, 13, 14)

These pins are used to partially decode the address bus to enable
the chip. They are user defined, meaning that the user will specify
to the manufacturer which pins are to be high and which are to be
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low. The chip selects will then be manufactured into the chip, as
specified, during the mask-program step of the manufacturing pro-
cess. As with the 6810, the chip-select pins will be tied to the address
bus so that only one ROM will be enabled at a time.

Ve, (Pin 12)

Connect this pin to the system +5-volt dc power supply. Each
6830 will draw approximately 130 mA maximum from the power

supply.

Address (A0—A9: Pins 24-15)

There are ten address pins which can address 219, or 1024, different
8-bit locations within the chip. These pins will always be connected
to address lines AQ through A9, respectively, on the 6800 micro-
processor. They are used to select a particular word in the chip
once that chip has been enabled. If there is more than one 6830
in the system, the ten address pins on each chip will still be con-
nected to address bus lines AQ through A9 in each case. The differ-
ent chips will be selected independently through the chip-select con-
figuration of each chip.

Fig. 7-10 shows how the 6830 chip might be connected to your
6800 system. It is desirable to locate the 1K of ROM at addresses
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FCO0 through FFFF. The decoding chart at the top of Fig. 7-10
will provide partial decoding for this group of addresses if it is as-
sumed that the ROM has been mask-programmed to make CS1, CS2,
and CS3 high. It is also assumed that CSO has been mask-pro-
grammed low. Note that CS0 is being driven by a NaND gate whose
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Fig. 7-10. Interfacing 1K bytes of ROM using the 6830.

inputs are ¢2 and VMA. This allows the ROM to be enabled only
when ¢2 and VMA are high. Once the chip is enabled, address lines
A0 through A9 will select the one of 1024 bytes required. The chip
data lines (D0-D7) are connected to the 6800 data bus.

MCM 68708 (INTEL 2708) EPROM

The 68708 is a 24-pin erasable PROM containing 1K bytes (1024 X
8) of read-only memory. It has an access time of 300450 nano-
seconds and is equivalent to the Intel 2708 EPROM. A system that
has been developed and debugged using this device may then be
produced in large volume runs using the Motorola MCM 65308 or
MCM 68308 or the Intel 2308 mask-programmed ROMs. These
ROMs are pin-for-pin compatible with the 68708. The following
is a brief functional description of the 68708 pin assignments shown
in Fig. 7-11.
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Address (A0-A9: Pins 8-1, 23, 22)

These are the ten address pins which access the 1024 different
8-bit word locations within the chip. These pins will always con-
nect lines AO-A9 on the 6800 respectively.

Data (D0-D7: Pins 9-11, 13-17)

These pins are connected to the eight data bus lines, DO through
D7, on the 6800. They are used as output for the read mode and as
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input during the chip programming mode. The data lines are
three-state buffered and capable of driving one TTL load.
Ground (V,: Pin 12)

Pin 12 should be connected to the system ground.

Program (Progr: Pin 18)

This pin is used during the chip programming mode. When pro-
gramming the chip, a 26-volt pulse with a pulse width of approxi-
mately 0.5 ms must be supplied for each address being programmed
to allow data storage at that address. During the chip-read mode,
this pin must be at the V,; (ground) level.

Vpp (Pin 19)
This pin must be connected to a +12-volt dc supply.

Chip Select/Write Enable (CS/WE: Pin 20)

This pin performs two functions. In the read mode, it functions
as a chip-select input. A low level (logic 0) at pin 20 will enable
the chip. In the programming mode, this pin must be raised to a
+12-volt dc level to allow data to be entered through the data pins.
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Vig (Pin 21)
This pin must be connected to a —5-volt dc supply.

V.. (Pin 24)

This pin must be connected to the +5-volt dc supply.

As you can see from the discussion of the pin assignments, there
are two modes in which the chip can function—a programming mode
and read mode.

Program Mode

After completion of an erase operation, every bit in the device
is in the 1 state. Data is then entered by programming Os into the
required bits. The words within the chips are addressed the same
as in the read mode. To set the chip up for the programming mode,
the CS/WE input (Pin 20) must be raised to +12 volts. The logic
levels for the data lines and address lines and the supply voltages
(Vee, Ve, Vpp) are the same as for the read mode. After address
and data setup, one program pulse per address is applied to the
Progr. input (pin 18). A program loop is a full pass through all
addresses. The number of program loops required for complete
programming is a function of the Progr. input pulse width. If the
pulse width is 0.5 ms, 200 program loops will be required. See the
68708 specification in Appendix D for the programming pulse
timing requirements and a more detailed explanation of the pro-
gramming mode.

Read Mode

In the read mode, the 68708 is treated just like any memory. A
group of addresses is assigned to the chip and data is read from
the PROM using the 6800 LDA instructions. Fig. 7-12 shows how
the 68708 chip might be connected to your 6800 system. Note that
the Progr. input is tied to ground. A logic 0 at CS will enable the
chip and provide data output from the location specified by ad-
dress lines AQ through A9. Since the 68708 is “bus compatible” with
your 6800 system, no special logic is needed between the 6800 system
and the 68708.

The 68708 can be erased by exposing the chip to a high-intensity
ultraviolet light source with a wavelength of 2537 angstroms. The
ultraviolet source should be placed about one inch away from the
68708 chip window for approximately 30 minutes. After erasing,
every bit is in the 1 state and data is entered by programming Os
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Fig. 7-12, Interfacing 1K bytes of EPROM using the Motorola 68708 or the

Intel 2708.

into the bits. A programmed 0 can only be changed to a 1 by the
erasing process.

The 6830 or 68708 can now be connected directly to either the

6810 system or the 2112 system developed in Figs. 7-5 and 7-8,
respectively, to provide a system containing both R/W memory
and ROM. The PIA is the only other device that must be added to
complete the basic microcomputer system.

DO =

SO A W

REVIEW QUESTIONS

. VLSI is an acronym for: . = |
. The four basic design considerations for configuring a microcomputer

system are , , and

. The fastest integrated-circuit technology available is
. PL stands for

. The 6800 is manufactured using _____________ integrated-circuit technology.
. An integrated-circuit technology which has very low power consumption

is

. Memories can be divided into three main categories. They are .. |

and

. A 16K memory chip contains 16K ______ of memory.
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10.
11.

12.
13.

14,
15.

16.
17.

18,

19.

20.

21.
22.

23.

24,

25.

26
27.

200

. A 4K X 4 memory chip is organized as . words, each word con-

sisting of ________ bits.

The two general categories of R/W memory are and

R/W memory requires refresh circuitry.

The 6810 is a X static R/W memory chip.
The chip-select pins of the 6810 are connected to the ___________ to pro-
vide

Pins AO through A6 of the 6810 are always connected to
Pins DO through D7 of the 6810 are always connected to
The 2112 is a X static R/W memory chip.

Recall, the three basics of interfacing are three-state buffering, decoding
and latching. Which of these are not provided internal to the 2112 chip?

Name three types of read-only memory.

What type of read-only memory is the 68307

the 687087 .
A type of read-only memory which can be erased with ultraviolet light

and then reprogrammed is . .
The 6830 has ___ chip selects to provide partial decoding.
Pins AO through A9 of the 6830 and 68708 are always connected to

ﬁth the 6830, the active states of the chip selects are defined by

When assigning addresses to various parts of a microcomputer system, you

would normally assign ROM to what group of addresses?
A ROM chip having 11 address pins and 8 data pins would be a

X ROM.

A +26-volt level is required on the ... pin to program the 68708.

When the 68708 is erased, all the storage bits are returned to
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20.
21.
22.
23.
. High addresses FFFF on down, depenidng on the size of ROM.
25,
26.

. The 68708 requires three supply voltages of

© ® N> G WD

and ____ . volts.

ANSWERS

. very-large scale integration
. cost, speed, size, and power consumption
. bipolar

. integrated-injection logic

NMOS
CMOS

. internal, main-working, and mass

bits

. 4K, four

. static and dynamic

. Dynamic

. 128 X 8

. address bus to provide partial decoding for the chip
. A0 through A6 of the address bus

. DO through D7 of the data bus

. 256 X 4

. Decoding.

. Mask-programmed, PROM, EAROM, EPROM.
. Mask-programmed.

Erasable-programmable.
EPROM

four

AQ through A9 of the address bus

the user in the mask program

2% x 8 or 2048 x 8 or 2K X 8 or 16K bits
Progr



27. alogic 1 state
28. +5 volts, —5 volts, and +12 volts

EXPERIMENT 7-1

Purpose

To interface 128 bytes of R/W memory to the 6800 system using
the 6810 memory chip.

Equipment
ET3400 741.827 digital IC (3-bit NOR)
6810 R/W memory chip 741830 digital IC (8-bit NAND)

7400 digital IC (2-bit NaND)
Schematic Diagram (Fig. 7-13)

a0 23] a0 vee vSS
Al 224 g

az 2]a2 RIW |- afW
A3 _20] a3
a4 12 aq
as 81 as
a6 71 a6

o7 |2 b7

a5 2 N ,
it JEme ok e o os
6810 7

Al % N - p5 T DS
¢2 5 | 7400 ¢Sl 04 5 D4
a2 03 -2 D3
vMA 1@5 24 cs2 bz |02
3
a0 1 ol |2 oI
e oo o [+ oo
14} ==
ar -4 ¢4
Digital 1C Power: GND 15 5%
Pin 14 - 48V
Pin 7 - GNO
1
2

RE —2q(raLssg—2— Al4

Fig. 7-13. Schematic diagram for Experiment 7-1.

Program

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 CE LDX # Load the index register
0001 50 50 immediate with 5000
0002 00 00
0003 6F CLR X Clear using indexed
0004 00 00 addressing
0005 08 INX Increment the index register
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0006 8C CPX #

0007 50 50 Compare the index register
0008 ‘80 80 immediate to 5080
0009 26 BNE Branch if Z flag clear
000A F8 F8 (to address 0003)
000B 3E 3E Stop

This program uses a routine similar to the one used in Experiment
5-1 to clear a series of memory locations. However, here you will
clear memory locations 5000 through 507F. These are the 128 ad-
dresses that have been assigned to the 6810 R/W memory chip in
your circuit.

Procedure
Step 1

Construct the circuit shown in the schematic diagram.

Cavution: Be extremely careful when handling the 6810 memory
chip since it is a MOS device and is very sensitive to static elec-
tricity. Make sure you are grounded with a ground strap. Also,
when not using the 6810, be sure to place it in conductive foam or a
protective device.

The extra logic circuitry is used to completely decode the address
bus for addresses 5000 through 507F. Also, the 741.S30 nanD gate
is used to enable the data input lines of the Heath ET3400 trainer
through RE. The ET3400 trainer uses three-state buffering between
the 6800 data bus and the data i/o connector blocks provided on
the trainer. These buffers are normally enabled to allow data transfer
from the bus to the connector blocks. However, a logic zero must be
applied to RE to allow data to be transferred from the data blocks
onto the data bus. The 741.S30 supplies the logic zero state when
a read operation is performed.

Step 2
Examine memory location 5000 and change its contents.

Step 3

Re-examine 5000. The contents should be the changed value, indi-
cating that you have accessed a 6810 memory location. This is the
first byte of memory in the 6810.

Step 4

Repeat Steps 2 and 3 for memory location 507F. This is the last
byte of memory in the 6810.



Step 5

Repeat Steps 2 and 3 for memory locations 4FFF and 5080. You
should observe that the contents of these locations cannot be
changed since you have wired the 6810 to respond only to addresses
5000 through 507F (128 bytes).

Step 6

Execute the given program.

Step 7
Examine memory locations 5000 through 507F. You should observe
that all these locations have been cleared by the program execution.

Conclusions

Verify from the schematic diagram that the 6810 has been as-
signed to addresses 5000 through 507F.

How many 2112 R/W memory chips would be required to pro-
vide the same 128 bytes of memory?

What must you do to provide 256 bytes of R/W memory using the
68107 :

EXPERIMENT 7-2
Purpose

To interface 256 bytes of R/W memory to the 6800 system using
the 2112 memory chip.

Program

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 CE LDX # Load the index register
0001 50 50 immediate with 5000
0002 00 00
0003 6F CLR X Clear using indexed
0004 00 00 addressing
0005 08 INX Increment the index register
0006 8C CPX # »
0007 51 51 Compare the index register
0008 00 00 immediate to 5100
0009 26 BNE Branch if Z flag clear
000A F8 F8 (to address 0003)
000B 3E WAI Stop
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This program uses a routine similar to the ones used in Experi-
ments 5-1 and 7-1 to clear a series of memory locations. However,
here you will clear memory locations 5000 through 50FF. These are
the 256 addresses that have been assigned to the 2112 memory chips
in the circuit.

Equipment
ET3400 741527 digital IC (3-bit NoR)

Two 2112 R/W memory chips Two 74154 decoders
7400 digital IC (2-bit NanD)

Schematic Diagram (Fig. 7-14)

+5V  GND +5Y  GND
24 t2 1] 8
7
ar L a7
a5 22 p a6 S a6
Alq 2ldc A5 51 A5
a3 22lg Aq 18] aq
a2 23] A A3 —z' A3
74154 s az —24 a2
s 82 3122 2ue
a0 —41ao o-4 % o7
vMa N W A g o3 Ds
P :: 1] R i |/o-z—"°—oa
62 31 cE 1jo-1 |2—pa
] 1
U 3
45V GND @‘H ﬂ@ WV GND
24 2 'lG lB
a7 —:- A7
AN 204 D A6 =2 a6
a0 2ldc as 21 as
A 224 a3z L343
74154 Az Liaz .,
Al 34 ar
a0 2] a0 |/o~4l'—f D3
14 -3 p—
n RIW nf@  lo-3r5- D2
e @ yo-2 o py
GND 2] 62 ol B o~ }2-00

R /i‘ RE

Fig. 7-14. Schematic diagram for Experiment 7-2.

Procedure
Step 1

Construct the circuit shown in the schematic diagram.
Cavtion: Be extremely careful when handling the 2112 memory
chips. These are MOS devices which are very sensitive to static elec-
tricity. Make sure you are grounded with a ground strap. Also, when
not using the 2112s, be sure to place them in conductive foam or a
protective device.

The two 74154 decoders are used to completely decode the ad-
dress bus for addresses 5000 through 50FF. This decoding circuit is
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similar to the one you constructed in Experiment 6-2. When any
of these addresses appear on the address bus, the 2112 chips will be
enabled via CE. One 2112 is connected to data lines DO through
D3 and the other to data lines D4 through D7. The ET3400 trainer
uses three-state buffering between the 6800 data bus and the data
1/O connector blocks provided on the trainer. These buffers are
normally enabled to allow data transfer from the bus to the con-
nector blocks. However, a logic zero must be applied to RE to allow
data to be transferred from the data connector blocks onto the 63800
data bus. A 7400 NaND gate supplies this signal.

Step 2
Examine memory location 5000 and change its contents.

Step 3

Re-examine location 5000. The contents should be the changed value,
indicating that you have accessed a read/write memory location
supplied by the 2112s.

Step 4

Repeat Steps 2 and 3 for memory location S0FF.

Step 5

Repeat Steps 2 and 3 for memory locations 4FFF and 5100. You
should observe that the contents of these locations cannot be
changed since you have wired the 2112s to respond only to addresses
5000 through 50FF (256 bytes).

Step 6

Execute the given program.

Step 7

Examine memory locations 5000 through 50FF. You should observe
that all of these locations have been cleared by the program exe-
cution.

Conclusion
Verify the decoding scheme used on the schematic diagram.

Why are ¢2 clock and VMA used in the decoding scheme?



What is the reason for R/W on the 2112 chips?

How many 2112 chips would be required to provide 128 bytes of
memory? 512 bytes? 1024 bytes?
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CHAPTER 8

The 6820[6821 Peripheral
Interface Adapter

INTRODUCTION

You will now complete your 6800-microcomputer system with the
Motorola 6820/6821 peripheral interface adapter (PIA). For all
functional purposes, the 6820 and 6821 are interchangeable and
either chip can be used in your system. Motorola was the first major
chip manufacturer to provide a programmable (smart) chip for in-
terfacing the microprocessor to the “outside world.” Since Motorola
introduced the PIA, other manufacturers have introduced similar
chips, such as the Intel 8255 programmable peripheral interface
(PPI) and the Zilog programmable input-output (PIO) chip. Each
chip has its advantages and disadvantages. However, the function is
the same: to provide the basic interfacing requirements of address
decoding, three-state buffering, and latching. The PIA has two 8-bit
channels or ports that may be connected to peripheral devices. These
ports can be programmed as either input or output ports. In fact,
each bit within the port can be separately programmed for either in-
put or output transfers, a feature that is only available on one of the
three ports on the 8080-family 8255 i/o chip. Once the port lines
have been designated as input or output lines, you will simply treat
each port as if it were a separate memory location and then transfer



data between the 6800 and the PIA using the 6800 load and store in-
structions.

The PIA also has the capability of generating interrupt requests
that are sent to the 6800 after having been initiated by a peripheral
device. A problem with the 6800 interrupt request (IRQ) is that,
without the PIA chip (or an external flag circuit), the request will
be lost if the I flag of the 6800 is set. However, when a peripheral de-
vice generates an interrupt request through the PIA, an interrupt
flag bit is set within the PIA that causes the interrupt request signal
to be generated until the interrupt has been serviced. Therefore, the
request is not lost even if the I flag is set when the request is initially
made.

Another common use of the PIA is to provide complete and partial
handshaking between the 6800 and a peripheral device. That is, the
PIA can be used as a communicator between the 6800 and a periph-
eral device to tell the 6800 when service is requested and then to tell
the peripheral device when that service has been rendered.

Because of its flexibility and low cost, the PIA can easily be part of
any 6800 microcomputer system, It makes the job of interfacing
much easier. In this chapter you will become familiar with the inter-
nal structure and pin assignments of the PIA. You will also learn how
to initialize and program the PIA to perform its various functions.
Then, in Chapter 9, you will learn how to connect the PIA to the
6800 and i/o devices such as switches, relays, keyboards, and dis-

plays. ’
OBJECTIVES
At the end of this chapter you will be able to do the following:

® Describe the internal registers of the PIA.

¢ Program the PIA port lines for input and output operations.

e Explain the initialization procedure for the PIA and write an
initialization program.

® Describe the 6820/6821 pin assignments.

® Explain how to connect the PIA to the 6800 system.

¢ Write a program to provide data i/ o using the PIA.

¢ Describe the procedure for addressing the PIA and for internal
register selection.

® Describe the function of each control bit in the PIA control regi-
sters.

¢ Understand how interrupts are processed through the PIA.

¢ Understand how the PIA may be used to provide complete and
partial handshaking with peripheral devices.

209



6821 FUNCTIONAL DESCRIPTION

Before entering into a detailed discussion of the PIA pin assign-
ments and interfacing requirements, let us take a look at the PIA
from a functional viewpoint. A functional diagram of the 6821 is
shown in Fig. 8-1. First, note that the PIA can be looked at func-
tionally as having two sides—a 6800 side and a peripheral side. The
6800 side includes the data, address, and control lines which inter-
face to the 6800 data, address, and control buses. The peripheral side

6800 ‘ Peripheral
Side ! Side
|

Data Register A

Data Direction Reg A

Contro! Reg A

6820 /GBaI
ADDRESS

PlA

Datc Direction Reg B

PORT B

03030

Control Reg 8

Fig. 8-1. Functional diagrams of the 6820/6821 PIA.

contains two i/0 ports (A and B) which will interface to peripheral
devices. Each port contains eight data lines which may be configured
independently as input or output. This allows for a high degree of
interfacing flexibility. Shortly the procedure for port configuration
will be discussed. Internally, the PIA contains six 8-bit registers.
Three registers apply to port A and three apply to port B. Each group
of three registers has the same function with respect to its respective
port. Each group of three registers contains a data register ( DRA or
DRB, data direction register (DDRA or DDRB), and control regis-
ter (CRA or CRB). A discussion of each follows.

Data Registers (DRA and DRB)

Each data register acts as a temporary 8-bit storage register for
data being transferred between the 6800 and the i/o device con-
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nected to the PIA chip. Each of the eight bits in the data registers is
connected to one of the i/ o port data lines. Recall that each port con-
tains eight i/o data lines. For example, port A contains eight data
lines, PAO through PA7. Therefore, bit 0 of DRA is tied to PAO, bit
1 of DRA is tied to PA1, and so on. The same arrangement is used for
the DRB bits and lines PBO through PB7. The register bits are
latched when used for output operations and they are unlatched
(simple gates) when they are used for input.

Data Direction Registers (DDRA and DDRB)

The data direction registers are 8-bit registers which define the
port lines as being used for either input or output operations. Each
bit within the DDR configures its corresponding port data line. A 1
in a DDR bit will cause its corresponding port line to be configured
as an output line, while a zero will cause it to be configured as an
input line. For example, if DDRA bit 3 contains a 1, the PA3 line
will be configured as an output data line. If DDRA bit 4 contained a
0, the PA4 line would be configured as an input data line. The ports
are configured by storing a data byte into each data direction regis-
ter. To configure port A as an input port and port B as an output
port, you would store 00 in DDRA and FF in DDRB. Remember
that since the data direction register and the data register are con-
sidered to be memory locations, they are loaded with memory-refer-
ence instructions.

Control Registers (CRA and CRB)

The control registers are 8-bit registers which are used for a
variety of control functions. Each bit within the register controls a
particular function. The control register will allow four of the pe-
ripheral control lines of the PIA to be used for interrupt servicing
and polling routines. The control register is also used to select either
the DR or DDR for use in a data transfer operation. A more detailed
discussion of the control register is included later in this chapter.

6820/6821 PIN ASSIGNMENTS

The PIA is a 40-pin integrated circuit. The various pin assignments
are shown in Fig. 8-2. A functional description of each pin follows.

V.: (Ground: Pin 1)
Pin 1 should be connected to the system ground.
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Port A Data Lines (PAO-PA7: Pins 2-9)

As stated earlier, each of these lines may be used as an input or an
output line. The use of a particular line is determined through pro-
per selection of individual bits in the data direction register
(DDRA).

Data will be transferred into the 6800 through the lines that have
been configured as input. This will be accomplished when a load in-
struction is executed, transferring the information from the PIA port
input lines to the 6800 internal register that is being loaded. In the
input mode, each input data line represents a maximum of one TTL
load.

Data will be output to the i/o devices through the data lines that
have been configured as output lines. This output transfer will be
accomplished with a store instruction which, when executed, will
transfer data from the desired 6800 register to data register A
(DRA). The data that has been stored in DRA will then appear on
the port A data lines which have been configured as output lines.
With the 6820, the port A lines only have CMOS drive capabilities
and must be buffered to provide drive for TTL devices. With the
6821, they are directly TTL compatible.

Port B Data Lines (PB0—PB7: Pins 10-17)

These lines are used very similar to the port A data lines. You may
configure each of the lines as being either an input or an output line
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through the use of data direction register B (DDRB). With the 6820,
one major difference between ports A and B is that when the port B
lines have been configured as output, they are TTL compatible and
each may be used as a source of up to 1 milliampere at 1.5 volts to
directly drive the base of a transistor switch. With the 6821 both
ports have TTL drive capabilities.

Interrupt Input—Port B (CB1: Pin 18)

This is an input-only line used to set bit 7 of control register B
which is used as a flag to indicate that a peripheral wishes to inter-
rupt the 6800. This will be discussed in more detail later in this
chapter (see PIA Control Registers).

Peripheral Control—Port B (CB2: Pin 19)

This line can be programmed through the use of control register
B to act as an interrupt input or as a peripheral control output to
provide handshaking. When in the output mode, it is TTL compat-
ible and when configured as an interrupt input, it represents one
TTL load. This pin will be discussed in more detail later in this
chapter (see PIA Control Registers).

V.. (Pin 20)
This pin is connected to the system +5-volt dc power supply.

Read/Write (R/W: Pin 21)

This pin is connected directly to the R/W line on the 6800. A low
state on this line allows data to be transferred from the 6800 to the
PIA. A high state allows for data transfer from the PIA to the 6800.
Data will only be transferred when the proper address and enabling
pulse are present at the PIA. PIA addressing and enabling will be
discussed shortly.

Chip Selects (CS0, CS2, CS1: Pins 22-24)

These pins are used in the same way that the chip-select signals
were used on the 6810 R/W memory and 6830 ROM chips. They will
partially decode the address bus to select the PIA. To select the PIA,
€S0 and CS1 must be high and CS2 must be low.

Enable (E: Pin 25)

This pin is used to supply a timing signal to the PIA and, there-
fore, is normally connected directly to the ¢2 clock. To completely
enable the PIA, the chip selects must be held in their active state for
the duration of the E(¢2) pulse.
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Data (D0-D7: Pins 33-26)

These pins are connected directly to the eight data bus lines DO
through D7. The data bus lines are bidirectional and allow data
transfer between the 6800 and PIA. The output drivers are three-
state buffered and remain in their high-impedance state except when
a PIA read operation is being performed.

Reset (Reset: Pin 34)

A high-to-low transition at this pin will cause all register bits in
the PIA to be reset to a logical 0 state. It can be used with a power-
on reset signal or tied to the 6800 reset interrupt pin to reset the PIA
when the entire system is reset.

Register Selects (RS0, RS1: Pins 36, 35)

These two lines are used to select the various registers within the
PIA. They are normally tied to address lines A0 and Al, respectively,
and are used in conjunction with the control registers to select the
specific register that is desired. This selection process is discussed
in the next section of this chapter.

Interrupt Requests (IRQA, IRQB: Pins 38, 37)

These are output lines that are normally wire-ored together to be
connected directly to the 6800 TRQ line. When an i/o device gen-
erates an interrupt, an interrupt flag bit of the respective PIA con-
trol register will be set which, in turn, causes the respectlve IRQ line
to go low. This generates an interrupt request that is sent to the
6800. Each of these lines has two interrupt flag bits in its respective
control register that can cause the IRQ line to go low. Each of these
internal flags corresponds to a particular peripheral interrupt line;
CA1 and CA2 correspond to port A and CB1 and CB2 correspond
to port B. Once an internal interrupt flag has been set, the IRQ line
will remain low until the flag is cleared by servicing the interrupt
with a PIA read or write operation. Therefore, an interrupt request
is not lost if the I flag in the 6800 condition code register is set,
which disables it from recognizing interrupts.

Peripheral Control (CA2: Pin 39)

This line is used in essentially the same way as the CB2 line (pin
19). It can be programmed through the use of control register A
to act as an interrupt input line or it may be used as a peripheral
control output line. When in the output mode, it is TTL compatible
and when configured as an interrupt input, it represents one TTL
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load. A more detailed discussion of this pin function will follow
in this chapter (see PIA Control Registers).

Interrupt Input (CA1: Pin 40)

This line is similar to the CB1 line (pin 18). It is an input-only
line used to set bit 7 of control register A which is used as a flag
to indicate a peripheral interrupt. This, in turn, can cause the JRQA
line to go low, generating an interrupt request.

PIA INTERFACING AND ADDRESSING

Fig. 8-3 shows how the various pins would be utilized to interface
the PIA to the 6800. The PIA data lines would be connected directly
to the 6800 data lines DO through D7. For control, the following
PIA lines would be connected directly to the corresponding signals
on the 6800 control bus: R/W, RESET, IRQA, IRQB, +5V, and
GND.

Chip Selection

To access the PIA, you will use the PIA register-select, chip-select,
and enable lines. Recall that the chip-select pins along with the en-
able pin will select or access the PIA. In Fig. 8-3, we are connect-
ing the 6800 VMA line to the CS1 line on the PIA. This is done so
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<: 33 = i [ PA1
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Courtesy Motorola Semiconductor Products Inc.

Fig. 8-3. PIA interfacing.
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that the PIA will be selected only when a valid memory address
appears on the address bus. In practice, the VMA may be anped
with an address line to provide more complete decoding. To pro-
vide timing between the 6800 and the PIA, you will connect the ¢2
clock to the PIA enable pin (E). The remaining chip selects (CS0
and CS2) are tied to the 6800 address bus to provide partial decod-
ing for the chip.

Register Selection

The register select pins, RSO and RS1, are always connected to
address lines AQ and Al, respectively. Recall that these pins are used
to select one of six registers within the PIA. This creates a problem
since there are only four possible logic combinations for these two
pins. However, we wish to select one of six registers. The solution
to the problem is the PIA control register. The register selection
process is shown in Fig. 8-4. The RS1 bit is used to access either
port A or port B. If RS1 is low, port A will be selected, but if RS1
is high, port B will be selected. The RS0 bit narrows the selection

e T o R
<

5,7 o -F o-F o-F

Ts=0
RS =10or 0

= not used

Fig. 8-5. PIA pin connections and decoding chart.
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still further by selecting either the control register or the data reg-
ister/data direction register of the selected port. If RS0 is high, the
control register will be selected, but if RSO is low, either the data
register or the data direction register will be selected, depending
upon the status of bit 2 of the respective control register. If bit 2
of the control register is low and RSO0 is low, the data direction reg-
ister will be selected. However, if bit 2 of the control register is high,
the data register is selected. For example, suppose RS1 =1, RS0 =0,
and bit 2 of control register B is low. With these conditions, the data
direction register of port B (DDRB) will be selected.

Fig. 8-5 shows how a PIA might be connected to the 6800 system.
It is necessary only to allocate four addresses to select any register
in the PIA. In this example, we have used addresses 5000 through
5003. Naturally, we are only partially decoding the address bus since
from the decoding chart you can see that the PIA will be enabled
for addresses 5000-5FFF and 7000-7FFF. This does not create a
problem as long as no other chips are assigned to any of these ad-
dresses. Using this decoding scheme, the information in Fig. 8-6
shows how the PIA would respond to addresses 5000 through 5003
and which register would be selected for each address. Note that
with addresses 5000 and 5002, the data direction or data register
can be selected. The specific register that is selected will depend
on the status of bit 2 in the respective control register. The control
registers are selected with addresses 5001 and 5003.

P1A
ADDRESS I S0 (23] cs2 ARSI RSO |R4giuu Selected

5000 oDRA or DRA™

3001 CRA

0

1
5002 0 DDRB or DRB ¥
]

5003 cR®

# Depends on Bit 2 of the Controi Register

Fig. 8-6. Example of PIA register selection.

PIA INITIALIZATION AND SERVICING

Prior to using the PIA for data transfer, you must initialize it by
defining the port lines as either input or output lines. As you saw
in the first part of this chapter, this is accomplished by the 1s and
0s placed in the bits in each data direction register (DDR). Recall
that if a 1 existed in a DDR bit, its corresponding port line would
be configured as an output data line while if a 0 existed, its port
line would be an input data line. To initialize the PIA, you will have
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to execute an initialization program that will store a binary number
in each data direction register and, thus, configure each port. The
initialization procedure will be as follows:

1. Clear bit 2 of both control registers.

2. Store a number in DDRA to configure port A.
3. Set bit 2 of control register A (CRA).

4. Store a number in DDRB to configure port B.
5. Set bit 2 of control register B (CRB).

In the above procedure, Step 1 clears bit 2 of both control reg-
isters so that the data direction register will be selected rather than
the data register. The ports will then be configured by storing a bi-
nary number in each data direction register (Steps 2 and 4). After
each port has been configured, bit 2 of the control register is set
such that the data register will be selected for subsequent data
transfer.

Example 8-1: PIA Initialization
The following program will configure port A as an 8-bit input port and
port B as an output port. We will assume that the PIA has been assigned

addresses 5000 through 5003 and that the system has been reset prior to
executing the initialization program.,

Hex Mnemonics/

Address Contents Operation
0000 LDAA #
0001 00 00 — ACCA
0002 STAA $3%
0003 50 ACCA — DDRA
0004 00
0005 LDAA #
0006 04 04 — ACCA
0007 STAA $$
0008 50 ACCA — CRA
0009 o1
000A LDAA #
000B FF FF — ACCA
000C STAA $$
000D 50 ACCA — DDRB
000E 02
000F LDAA #
0010 04 04 — ACCA
0011 STAA $$
0012 50 ACCA — CRB
0013 03

First, resetting the system will reset the PIA if the RESET pin on the
PIA is connected to the system reset, as is usually the case. This will cause
all of the registers in the PIA to be cleared, and therefore, the first step
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of the initialization procedure is accomplished. Port A is configured as
an input port by loading 00 into accumulator A and then storing this in
data direction register A. This register will be selected since bit 2 of con-
trol register A is zero. Bit 2 of control register A is then set by loading 04
(0000 0100) into accumulator A and then storing this in the control
register. This allows you to access the data register for subsequent i/o.
The instructions for configuring port B as an output port are very similar
except that the data direction register is being loaded with all ones (FF).

Example 8-2: PIA Data I/0

Assuming that the PIA has been configured as in Example 8-1, the fol-
lowing program will input data from port A and output the same data to
port B,

Hex Mnemonics/

Address Contents Operation
0000 LDAA $3$
0001 50 Port A— ACCA
0002 00 (read port A data)
0003 STAA $3%
0004 50 ACCA — Port B
0005 02 (store data to port B)
0006 WAI STOP

To input data from port A, you simply use a load instruction that ad-
dresses the port A data register. The data register will be selected rather
than the data direction register since you have already set bit 2 of the
control register in your initialization program. To output the data to port B,
you will use a store instruction that addresses the port B data register. This
is a very simple program since data is just being transferred from an input
port to an output port. However, once the data is in the 6800, you have the
full power of the 6800 instruction set available to analyze that data to
determine the output conditions.

PIA Control Registers

Now we will discuss the control registers of the PIA in more de-
tail. Besides the bit-2 function of the control register which has al-
ready been discussed, the control register is used mainly for control
of interrupts. The bit format of each control register is shown in
Fig. 8-7. Actually, each control register is identical in format and

76 [s Jala] 2]1]0
CRA |IRQA1{IRCA2 CA?2 Control DDRA | CA1 Control
Access

76 |s a4 3] 211]o0

CRB |IRQB1[IRQB2 CB82 Control DDRB | CB1 Controf
Access

Courtesy Motorola Semiconductor Products Inc.
Fig. 8-7. Control register format.
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function, Therefore, we will confine our discussion to control reg-
ister A, keeping in mind that the function of control register B is
the same. Our discussion will begin with bit 0 (CRA-0) and bit 1
(CRA-1).

Bits 0 and 1 (CRA-0 and CRA-1) of the control register are la-
beled CA1 Control since they are used to define the effect and ac-
tive state of the CAl pin on the PIA. Recall that CAl is an input-
only pin that can be used by an i/o device to generate interrupt
requests. When the pin is activated, the interrupt flag bit (CRA-7)
of the control register will be set, indicating an interrupt request
has been generated. Bit 0 (CRA-0) of the control register will de-
termine the effect of setting this flag. If CRA-0 is set (1), the flag

MPU Interrupt
CRA-1 CRA-0 Interrupt Input Interrupt Flag Request
(CRB-1) | (CRB-0) CAt (CB1) CRA-7 (CRB-7) [RGA (IRGB)
0 0 | Active Set high on | of CA1 | Disabled — RQ re-
(CB1} mains high
[s} 1 | Active Set high on | of CA1 | Goes low when the
(CB1) interrupt flag bit CRA-7
(CRB-7) goes high
1 0 1 Active Set high on 1 of CA1 | Disabled — IRQ re-
(CB1) mains high
1 1 1 Active Set high on 1 of CA1 | Goes low when the
(CB1) interrupt flag bit CRA-7
(CRB-7) goes high
Notes: 1.

t indicates positive transition (low to high)
2. | indicates negative transition (high to low)

3. The Interrupt flag bit CRA-7 is cleared by an MPU Read of the A Data Register,
and CRB-7 is cleared by an MPU Read of the B Data Register.

4. If CRA-0 (CRB-0) is low when an interrupt occurs (Interrupt disabled) and is later brought
high, IRQA (IRQB} occurs after CRA-0 (CRB-0) is written to a “‘one”.

Courtesy Motorola Semiconductor Products Inc.
Fig. 8-8. Function of control register bits 0 and 1.

will cause the IRQA output pin to go low, thus generating an inter-
rupt request to the 6800. If CRA-0 is cleared (0), the IRQA pin
/will/remain high, masking out any interrupt request. Thus, CRA-0
determines whether the interrupt mode for the port is active or in-
active. Bit 1 of control register A (CRA-1) defines the active state
of pin CAL If CRA-1 is set (1), a low-to-high transition on the CAl
pin will cause the interrupt flag bit (CRA-7) of the control register
to be set. If CRA-1 is cleared (0), a high-to-low transition will cause
the interrupt flag bit to be set. Thus, either a positive pulse or a
negative pulse may be used to generate an interrupt signal. Fig. 8-8
summarizes the function of these two control register bits.
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Bit 2 of the control register (CRA-2) has already been discussed
and is used entirely for register selection. Bits 3, 4, and 5 of the
control register (CRA-3, CRA-4, and CRA-5) are labeled CA2 Con-
trol since they are used to define the function, effect, and active
states of the CA2 pin on the PIA. Recall that the CA2 pin can be
designated as either input or output. This designation is accom-
plished by CRA-5 of the control register. When CRA-5 is cleared,
the CA2 pin is configured as an input line. When CRA-5 is set, CA2
is designated as an output line.

CA2 Input

When configured as an input line, the CA2 pin is used as an
interrupt line similar to CAl. In this mode, an active level on CA2
will cause bit 6 (CRA-6) of the control register to be set. CRA-6 is
the interrupt flag used in conjunction with the CA2 pin in the same
way that CRA-7 is used in conjunction with CA1l. When being used
as an interrupt input, the CA2 active state and effect are defined
by bits 3 and 4 of the control register (CRA-3 and CRA4). CRA-3
is used to determine the effect of setting the CRA-6 flag similar to
the way CRA-0 was used in conjunction with the CRA-7 flag. If
CRA-3 is set, the CRA-6 flag will cause the IRQA pin to go low,
thus generating an interrupt request to the 6800. If CRA-3 is cleared,
the IRQA pin will remain high, thus masking out the interrupt re-
quest. Bit 4 of control register A (CRA-4) will define the active state

CONTROL OF CA2 AND CB2 AS INTERRUPT INPUTS
CRAS (CRBS) is low

| indicates negative transition (high to jow)

The Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB-6 is
cleared by an MPU Read of the B Data Register.

MPU Interrupt
CRA-5 | CRA-4 | CRA-3 Interrupt Input Interrupt Flag Request
1(CRB-5) {(CRB-4) | (CRB-3) | CA2(CB2) CRA-6 (CRB-6) TRQA (IROB)
[}} 0 0 1 Active Set high on | of CA2 | Disabled — RQ re-
CB2) mains high
0 0 1 | Active Set high on | of CA2 | Goes low when the
(CB2) interruptflag bit CRA-6
(CRB-6) goes high
0 1 0 1 Active Set high on 1 of CA2 | Disabled — IRQ re-
(CB2) mains high
0 1 1 1 Active Set high on 1 of CA2 | Goes low when the
{CB2) interrupt flag bit CRA-6
(CRB-6) goes high
Notes: 1. 1 indicates positive transition (low to high)

4. 1f CRA-3 (CRB-3) is low when an interrupt occurs (Interrupt disabled) and is later brought
high, IRQA ({IRQB) occurs after CRA-3 (CRB-3} is written to a “‘one”’.

Courtesy Motorola Semiconductor Products inc.

Fig. 8-9. Function of control register bits when CA2 is used as an input line.



of pin CA2 similar to the way CRA-1 defines the active state of CAl.
If CRA-4 is set (1), a low-to-high transition on the CA2 pin will
cause the interrupt flag bit (CRA-6) to be set. If CRA-4 is cleared
(0), a high-to-low transition will cause the interrupt flag bit to be
set. Fig. 8-9 summarizes the function of these control register bits
when CA2 is used as an input line.

CA2 OQutput

Recall that CA2 will be configured as an output line when bit 5
of the control register is set. When CA2 is designated as an output
line, the interrupt flag (CRA-6) will be cleared and remain in that
state as long as bit 5 is set.

You will use CA2 as an output for polling and handshaking rou-
tines. Recall the discussion of handshaking in Chapter 5. Handshak-
ing or polling required the use of status bits that would indicate
when a peripheral device has requested service and when the 6800
has completed the service. The use of CAl as an input and CA2 as
an output as shown in Fig. 8-10 will provide the proper status levels
to permit handshaking between the 6800 and a peripheral device.
The procedure will be as follows.

Address O
input Dota

PORT A {PAD-PAT }

CaAl
caz

Peripheral
6800 PIA

Device
Data Qutput Deta
(00-D7) PORT B P8O - PB7)

CcBI
cB2

O Control /}

Fig. 8-10. Complete input and output handshaking using the PIA.

i |lF

1. The peripheral device will generate an interrupt by activating
the CAl line on the PIA, signaling that it has data to give the
6800.

2. The CALl interrupt causes the interrupt flag bit CRA-7 to set.

3. The interrupt flag causes an interrupt request to be generated
to the 6800 and .also causes CA2 to go high.

4. When the interrupt request is acknowledged, the 6800 will read
the data from the port A data register (DRA).
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5. After the read operation takes place, the CA2 line will go low
and CRA-7 signaling is cleared, the peripheral that the inter-
rupt has been serviced and the 6800 is ready for more data.
Thus, the handshake is complete.

To achieve this complete handshake, CRA-5 must be set with CRA-3
and CRA-4 cleared. Therefore, bits 5, 4, and 3 of control register A
would be 100.

If you do not desire to use interrupts and decide to use pro-
grammed i/o, CAl would be eliminated from Fig. 8-10 and CAZ2
would be used as an output to signal the peripheral device. Here,
the peripheral device would make data available on a continuing
basis to the PIA port, but it needs to know when the 6800 has read
the data from the data register so that new data can be supplied.
This is a partial handshake. In this mode, CA2 will normally be high,
then go low after a read-port A operation is executed. It will remain
low for one enable signal ($2) cycle. To achieve this mode, CRA-5
and CRA-3 must be set with CRA-4 cleared. Therefore, bits 5, 4,
and 3 of control register A would be 101.

CRAS is high
CA2
CRAS5 | CRA4 | CRA-3 Cleared Set
1 V] 1] Low on negative transition of £ High when the interrupt flag bit

after an MPU Read “A’ Data CRA-7 is set by an active transi-

operation.

tion of the CA1 signal.

L.ow on negative transition of E
after an MPU Read “A” Data
operation.

High  on the negative edge of
the first "'E’’ pulse which occurs
during a deselect.

Low when CRA-3 goes low as a
result of an MPU Write to
Control Register “A"".

Always low as long as CRA-3 is
jow. Wili go high on an MPU
Write to Control Register “A’’
that changes CRA-3 to “one’.

Always high as iong as CRA-3
is high. Will be cleared on an
MPU Write to Control Register
"A'" that clears CRA-3 to
a “‘zero”,

High when CRA-3 goes high as
a result of an MPU Write to
Control Register A",

There are two other possibilities for the output condition of CA2.
They are:

Courtesy Motorola Semiconductor Products inc.

Fig. 8-11. Control of CA-2 as an output.

1. CRA-5, CRA-4, CRA-3=110
2. CRA-5, CRA4, CRA-3=111

In the first case, the CA2 output line will be held in a low state and

in the second case CA2 will be held high.
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CONTROL OF CB2 AS AN OUTPUT

the first E pulse after an MPU
Write “B"" Data Register opera-
tion,

CRB8-5 is high
cB2
CRB-5 |CRB-4 | CRB-3 Cleared Set

1 0 0 Low on the positive transition of | High when the interrupt flag bit
the first E puise following an | CRB-7 is set by an active transi-
MPU write “B" Data Register | tion of the CB1 signal.
operation.

1 0 1 Low on the positive transition of | High on the positive edge of

the first “E” puise following an
“’E” pulse which occurred while
the part was deselected.

Low when CRB-3 goes low as a
result of an MPU Write in Control
Register “B"

Always low as long as CRB-3 is
low. Wili go high on an MPU Write
in Control Register “B" that
changes CRB-3 to “one".

Always high as long as CRB-3 is
high. Will be cieared when an
MPU Write Control Register “8”
results in clearing CRB-3 to
“zero”.

High- when CRB-3 goes high as &
resuit of an MPU Write into
Control Register “B".

Courtesy Motorola Semiconductor Products inc.

Fig. 8-12. Control of CB-2 as an output.

When CA2 and CB2 are used as output lines, they have slightly
different functions. When handshaking, port A will be used com-
pletely as an input port and port B will be used as an output port.
Therefore, CA2 will indicate when the 6800 has read (loaded) data
from the port A data register (DRA) and CB2 will indicate when
the 6800 has written (stored) data into the port B data register
(DRB). Figs. 8-11 and 8-12 summarize the functions of CA2 and
CB2, respectively, when used as an output line. The following ex-
amples should help to clarify the above discussion.

Example 8-3

Suppose you store the hex number 27 into control register B. How will
this control port B? The control register would be configured as shown

below:

CRB-7 CRB-6 CRD-5 CRE-4 CR8-3 CAB-2 CRB-i CRE-0

L]

] [} o o [}

T

This configuration will provide complete data output handshaking through
port B. The following is a description of each bit function:
CRB-0 set will cause an interrupt to be generated when the interrupt

flag (CRB-7) is set.

CRB-1 set will cause the CRB-7 interrupt flag to set on a low-to-high
transition of the CB1 pin.

CRB-2 set selects the data register of port B.
CRB-3 and CRB-4 cleared permits CB2 to go high when the interrupt
flag bit is set by an active transition of CB1 and to go low after the 6800
stores data to the port B data register.
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CRB-5 set designates CB2 as an output line.
CRB-6 cleared as a result of CRB-5 being set.
CRB-7 cleared to -be used as an interrupt flag for CAL.

Example 8-4:

Suppose you store the hex number 27 into control register A. How will
this control port AP The control register bit structure would be the same
as control register B was in Example 8-4. However, here CA2 would go
high after an interrupt is generated on CA1l and go low after a read (load)
operation has been performed on the port A data register. Therefore, this
would provide for complete data input handshaking through port A.

Example 8-5:

Suppose you store the hex number OF into control register A. How will
this control the port? The control register bit structure would be as shown
below:

CRA-7 CRA-6 CRA-5 CRA-4 CRA-3 CRA-2 CRA-1 CRA-O

T

CRA-0 set will cause an interrupt to be generated when the interrupt flag
bit (CRA-7) is set.

CRA-1 set will cause the CRA-7 interrupt flag to set on a low-to-high
transition of the CAl pin.

CRA-2 set selects the data register of port A.

CRA-3 set will cause an interrupt to be generated when the interrupt flag
bit (CRA-6) is set.

CRA-4 cleared will cause the CRA-6 interrupt flag bit to set on a high-to-
low transition of CA2.

CRA-5 cleared designates CA2 as an input pin.

CRA-6 cleared to be used as an interrupt flag for CA2.

CRA-7 cleared to be used as an interrupt flag for CAl.

Fig. 8-13 summarizes the control register bit functions.

REVIEW QUESTIONS

1. List the six internal registers of the PIA,

2. The PIA has . programmable data lines. (How many?)
3. Draw the flowchart of the register selection process.

226



Determine Active CA1 (CB1) Transition for Setting
Interrupt Flag JRQA(B} 1 — bit b7)

b1 =0: IRQA(B)1 set by high-ta-low transition on
CAt (CB1).

b1 = 1: IRQA(B)1 set by low-to-high transition on

CA1(CB1).
CA1 (CB1) Interrupt Request Enable/Dissbie
]‘ b0 = 0 : Disables |ROA(B) MPU Interrupt by CA1 {CB1)
active transition.

IRQA(B) 1 Interrupt Flag (bit b7} b0 = 1 Ensble IRQA(B) MPU Interrupt by CA1 (CB1)
AT T ontarrupt Tag on 07 active transition,
Goes high on active transition of CA1 {CB1}; Automaticslly 1. IRQA({B) will occur on next (MPU generated) positive
cleared by MPU Read of Output Register A(B). May alto be transition of b0 if CA1 (CB1) active transition occurred
cleared by hardware Reset. while interrupt was disabled.

=il o —

b6 b5 | ba | o3 b2 b1 | e
IRQA(B)1 | IRQA(BI2 cA2(CB2) ooR | caiicen
Fisg Flag Control Access | Control

—]

(RQA(B)2 Interrupt Fiag {bit b6}

CA2 (CB2)} Established as Input (b5 = 0): Goes high on active Determines Whether Dats Direction Register Or Output
wransition of CA2 (CB2); Automatically cleared by MPU Read W,.TW——"—

of Output Register A(B}. May also be cleared by hardware

Resec. b2 = 0 : Data Direction Register selected.
CA2 (CB2) Established as Output (b5 = 1) IRQA(B)2 = 0, )
not affected by CA2 {CB2) transitions. b2 = 1: Output Register selectsd.
A2 (cB2) % Outputby b5 = 1 CA2 (CB2) Established es Input by b5 = 0
55 b4 b3 (Nate that operation of CA2 and CB2
output functions are not identical) b5 b4 b3
1o
|—=caz ° W T_. CA2 (CB2) Interrupt Reguest Enabl
b3=0 Strobe With CA1 Restore Ois
CA2 goas low an first Nigh-to- b3 =0: Dissbles IRQA(B) MPU
low E transition following taterrupt by _(:Ai:l (ce2)
MPU Resd of Qutput Raqmor active transition.
A; returned high by next
active CA1 transition. b3 =1: Enables IRQA(B) MPU
Interrupt by CA2 {CB2)
b3 =1: Read Strobe with E Restors active transition.
I first high-to-
Ico‘:szggr.:n::;nfolrlowir;’;nn 1. IRQA(B) will occur on next (MPU
MPU Read of Output Register generated) positive transition of b3
A: returned high by next if CA2 (CB2) active transition
high-to-low E transition. occurred while interrupt was
disabled.
Lo co2
0. wri ; Detarmines Active CA2 (CB2) Transition
b3 =0: Write Strobe With CB1 Restore Tor Satting Interrupt Fiag IRGA(B)2 —
CB2 goes an law on first low- {bit b6)
b4=0: IRQA(B)2 setby high-tolow
Register B; returned high by transition on CA2 (CB2).
the next active CB1 transition.
T we ) bé=1: IRQA(B)Z set by low-to-high
b3 =1: Write Suobe With E Restore transition on CA2 (CB2).
CB2 goes low on first low-to-
high E i an
b5 ba b3 MPU Write into Output
= = Register B; returned high by the
) ' next low-ta-high E transition.
Set/Reset CA2 (CB2)
CA2 (CB2) goes low as MPU writes
63 - 0 into Control Register.
CA2 (CB2) goes high as MPU writes
b3 = 1 into Control Register.

Courtesy Motorola Semiconductor Products Inc.

Fig. 8-13. Control register bit functions.

4. What type of integrated-circuit technology is used to manufacture the
PIA?
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10.
11.

12.

13.

14.

228

. To configure PAQ through PA3 as input and PA4 through PA7 as output,
DDRA must contain ———__(44,.

. Port ________ of the PIA can always be used to drive the base of a transistor
directly.

. Two pins on the PIA that are always used as interrupt inputs are

and

. Bit ________ of the control register designates CA2 (CB2) as input or
output.

. When CA2 (CB2) is used as an interrupt input, bit __.___ of the

control register is used as the CA2 (CB2) interrupt flag bit.

The E (Enable) pin of the PIA is usually connectedtothe .
A high-to-low transition on the Reset pin of the PIA will cause what to
happen?

How are the interrupt request pins (IRQA and IRQB) usually connected?

Write an initialization program to configure port A as an output port and
and port B as an input port. Assume the PIA is assigned to addresses 8000
through 8003 and a reset has occurred prior to the program execution.

Assuming the PIA has been initialized as in problem 12, write a program
to input data from port B, and output the complement of that data to
port A,



15. When would CA2 (CB2) be used as an output pin?

16. Describe what is meant by complete handshaking.

17. How would the PIA ports be configured to provide complete input and
output handshaking?

18. Bit 7 of control register A is labeled and what is its function?

19. When CAl (CB1) and CA2 (CB2) are used as interrupt inputs, bits

and of the control register are used to define the
active levels of these pins.
20. To provide complete input handshaking, bits 5, 4, and 3 of CRA must be

ANSWERS

1. Data Register A (DRA)
Data Direction Register A (DDRA)
Control Register A (CRA)
Data Register B (DRB)
Data Direction Register B (DDRB)
Control Register B (CRB)

2. 16
3.
r A 1
PORT A PORT 8
|——NSI|' O—l ,—Rs!ll—]
RSO=0 RSO =1 RSO=0 ﬂsol =\

DDRA OR DRA CRA DORB OR DRB CRB
(DEPENDS ON CRA-2) {DEPENDS ON CRB-2)
4. NMOS.
5. FOue
6. B
7. CAl and CB1
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. five

9. six

10.
11.
12.
13.

14.

15.

16.

17.

18,
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¢2 clock

All internal PIA registers will be cleared.
Wire-ored together then connected to the 6800 IRQ line.

LDAA #
FF
STAA $$
80
00
LDAA #
04
STAA $$
80
01
CLRA
STAA $§
80
02

LDAA
04
STAA $$
80
03

LDAA §$
80
02
COMA
STAA $8%
80
00

Stores all Is in
DDRA to configure
Port A as output

Sets bit #2 of
control register A

Stores all Os in
DDRB to configure
port B as input

Sets bit #2 of control
register B

Reads data from port B
Complements data

Writes data to port A

To provide complete or partial handshaking between the 6800 and a

peripheral device.

A peripheral device requests service from the 6800; the 6800 acknowledges
the request and signals the peripheral device when the service is completed.

Port A as an input port with CAl as an interrupt input line and CA2 as
an output peripheral control line. Port B as an output port with CB1 as an
interrupt input line and CB2 as an output peripheral control line.

Bit 7 of control register A is the CAl interrupt request flag for port A
(IRQAL). It is used as an interrupt flag for interrupts generated on pin

CAlL



19. one and four

20. 100

EXPERIMENT 8-1
Purpose

To interface the PIA to the 6800 and demonstrate the PIA data
output procedure.

Equipment
ET3400 6820/6821 PIA

Schematic Diagram (Fig. 8-14)

oo 33 5o
01 —i—f—- DI
o2 -2 o2
p3 221 pa
pa 234 ps
05 28] ps
06 27{ D6
07 28] o7
g2 23 ¢
ap 23] TEF PIA
a2 24 ¢sg
e -;—2 cso
al RS1
A0 28 Rso PBO L0 o
P8} ‘I‘l 1
P82 2 Lomp
riW 2 /iw P83 12 3 onit
meser 24 mesev PB4 4 o
Pas |1 s
Pe6 |18 3
pB7 T 7

Fig. 8-14. Schematic diagram for Experiments 8-1 and 8-2.

Program:
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 4F CLRA
0001 43 COMA
0002 B7 STAA $$
0003 50 50 PIA initialized
0004 02 02 Port B = Output
0005 86 LDAA # CRB bit 2 set
0006 04 04
0007 B7 STAA $3$
0008 50 50
0009 03 03
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000A 8 LDAA # Load ACCA with

000B FF FF output data
000C B7 STAA §$ ACCA — DRB
000D 50 50 (store output data
000E 02 02 to port B)
000F 3E WAI Stop

Using the schematic diagram, the PIA is wired to the address bus
such that it is assigned addresses 5000 through 5003. The first part
of the program initializes the PIA by configuring port B as an out-
put port. Bit 2 of control register B is set such that subsequent port
B PIA operations will address the data register rather than the data
direction register. The remainder of the program loads accumulator
A with an 8-bit number (FF), then stores it to port B of the PIA.
Since the lamp monitors are connected to port B, they should illumi-
nate to indicate the stored value when the program is executed.

Procedure
Step 1

Construct the circuit shown in the schematic diagram on the ET3400
breadboard block using a PIA and the eight lamp monitors. The lamp
monitors are being used as data output indicators. CauTion: Be ex-
tremely careful when handling the PIA since it is a MOS device and
very sensitive to static electricity. Make sure you are grounded with
a ground strap. Also, when not using the PIA, be sure to place it in
conductive foam or protective device.

Step 2

Load and execute the given program. All the lamp monitors should
immediately illuminate upon program execution since you have
stored all 1s (FF) to port B. If this doesn’t happen, recheck your
program and circuit construction.

Step 3

Change address 000B to 55 and re-execute the program. Lamp moni-
tors #0, 2, 4, and 6 should now illuminate indicating a binary 0101
0101.

Step 4

Change address 000B to any value and note the lamp monitor pat-
tern upon program execution.

Step 5
Save the wired circuit for the next experiment.
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Conclusions

Briefly explain the PIA initialization procedure that you executed
in the program.

What group of addresses will the PIA respond to using this de-
coding scheme? (Remember, you are only partially decoding the
address bus.)

EXPERIMENT 8-2

Purpose
To demonstrate the use of a software time delay for data output.
Equipment
ET3400 6820/6821 PIA
Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 4F CLRA
0001 43 COMA
0002 B7 STAA $3%
0003 50 50 PIA Initialized
0004 02 02 Port B = Qutput
0005 86 LDAA # CRB bit 2 set
0006 04 04
0007 B7 STAA $3
0008 50 50
0009 03 03
000A 4F CLRA Clear ACCA
000B 4C INCA Increment ACCA
000C " NOP No Operation
000D 01 NOP No Operation
000E 01 NOP No Operation
000F B7 STAA $8$
0010 50 50 ACCA — DRB
0011 02 02 (store output data
to port B)
0012 7E JMP $$ Jump to address 000B
0013 00 00
0014 0B 0B
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This program will initialize the PIA and configure port B as an
output port. Accumulator A is then cleared and incremented. The
result is stored to port B and displayed on the lamp monitors. The
program will then jump back to the increment instruction. The ac-
cumulator will again increment with the results being displayed on
the lamp monitors. You are actually creating a binary counter. The
NOP instructions are added so that you may insert additional in-
structions required in a later step without re-entering the entire
program. The 6800 will ignore the NOP instructions.

Schematic Diagram
Same as for Experiment 8-1.

Procedure

Step 1
Construct the circuit used in Experiment 8-1.

Step 2

Load and execute the program. According to the program explana-
tion, you are creating a binary counter and the display should indi-
cate the count each time the accumulator is incremented. However,
all the lamp monitors are illuminated. Why?

Because the count takes place so fast, it looks like a constant output
with all lamp monitors illuminated.
Step 3

In order to see the count, you must slow the process down. To do
this, enter the following delay subroutine beginning at address 0030:

0030 Ccé LDAB #

0031 01 01 ‘

0032 CE LDX #

0033 D7 D7

0034 00 00 Delay Delay
0035 09 DEX —Loop —Loop
0036 26 BNE | #1 #2
0037 FD FD_ |

0038 5A DECB

0039 26 BNE

003A F7 F7

0038 39 RTS Return from  Subroutine
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To call the subroutine, you must insert a jump to subroutine (JSR)
in your main program. Therefore, insert:

BD-JSR
00-00
30-30

in place of the NOP instructions in the main program. The subrou-
tine you just entered will provide approximately a 1-second delay
between counts.

Step 4

Execute your program. The lamp monitors should now count in bi-
nary with a 1-second delay between each count. Let us take a closer
look at the delay subroutine. Note that we have indicated two delay
loops (#1 and #2). Delay loop #1 loads the index register with
D700, then decrements it down to zero before coming out of the
loop. Once out of loop #1, accumulator B is decremented. If the
accumulator is not zero after the decrement, the index register loop
(loop #1) will be executed again. If the accumulator is zero, the
6800 will return to the main program. In this case, you only exe-
cuted loop #1 once, since you loaded a 01 in accumulator B at the
beginning of the subroutine. To provide a longer delay, a larger
value would be loaded into accumulator B. If you were to load 02
into accumulator B, loop #1 would be executed twice for approxi-
mately a 2-second delay. To provide a shorter delay time, a smaller
value would be loaded into the index register for loop #1. The pre-
cise software delay time can be calculated based on the number of
MPU cycles required for the delay routine. You can determine the
number of MPU cycles required for each instruction from the in-
struction listings in Appendix C. Multiplying the total number of
cycles in the delay by the 6800 cycle time of one microsecond will
give you the software delay time. However, to get the total delay
time, you must consider the propagation delay within the PIA. We
have found that loading the index register with D700 and executing
loop #1 once will provide about a 1-second delay.

Step 5

Change memory location 0031 to 0A and execute the program. This
should provide about a 10-second delay between counts.

Step 6

Change the value being loaded into the index register to 0055 and
execute the program. The count should now be very rapid.
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Step 7
Save the circuit for the next experiment.

Conclusions

What is the longest delay obtainable with this subroutine (ap-
proximate )?

What is the shortest delay obtainable with this subroutine (ap-
proximate )?

How could the subroutine be modified to provide delays longer
than 256 seconds?

How could the subroutine be modified if only short delays were
required (less than one second)?

EXPERIMENT 8-3

Purpose
To demonstrate data input and output using the PIA.
Equipment
ET3400 7400 digital IC (2-bit NAND)
6820/6821 PIA 741.527 digital IC (3-bit NOR)
741.830 digital IC (8-bit NAND)
Program

This program initializes the PIA by configuring port A as input
and port B as output. The PIA decoding scheme partially decodes
the address bus to recognize addresses 5000 through 5003. Once the
PIA is initialized, the binary switch data is read from port A, then
stored to port B to illuminate the lamp monitors.

236



Hex Hex

Address Conten
0000 4F
0001 B7
0002 50
0003 00
0004 43
0005 B7
0006 50
0007 02
0008 86
0009 04
000A B7
000B 50
000C 01
000D B7
000E 50
000F 03
0010 B6
0011 50
0012 00
0013 B7
0014 50
0015 02
0016 3E

Mnemonics/
ts Contents Operation

CLRA
STAA $%
50

00
COMA
STAA $3%
50 PIA Initialized
02 Port A = Input
LDAA # —— Port B = Output
04 CRA bit 2 set
STAA $3% CRB bit 2 set
50

(0]

STAA $$
50

03
LDAA $3$ DRA — ACCA

50 (Read port A data)
00

STAA $$ ACCA — DRB

50 (Store data to port B)

02
WAI

Schematic Diagram (Fig. 8-15)
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Fig. 8-15. Schematic diagram for Experiment 8-3.
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Procedure
Step 1

Construct the circuit shown in the schematic diagram (Fig. 8-15).
Use caution when handling the PIA.

The extra logic circuitry is used to more completely decode the ad-
dress bus and to enable the data input lines through RE of the
Heath trainer. The ET3400 trainer uses three-state buffering be-
tween the 6800 data bus and the data i/o connector blocks. These
buffers are normally enabled to allow data transfer from the bus
to the connector blocks. However, a logic zero must be applied to
RE to allow data to be transferred from the data blocks to the data
bus. Therefore, the 74LS30 NaND gate is wired to supply a logic zero
state to RE during the data input operation.

Step 2
Load the given program.

Step 3

Set the binary switches to any arbitrary configuration and execute
the program. The lamp monitors should show the previously set bi-

"nary switch pattern. Note that the lamp monitors stay illuminated
even though the program has stopped. This is because the port B
data register acts as a storage register. The output data will not
change until the port B data register contents are changed.

Step 4

Change the binary switch configuration and note that it has no effect
on the output until the program is re-executed.

Step 5

Add a delay to the data transfer by inserting the delay subroutine
given in Experiment 8-2. Remember to add the jump-to-subroutine
instruction in the main program.

Step 6

Change the program to complement the binary switch data before
it is stored to the lamp monitors. -



Conclusions
Why do the lamps go out when you RESET the system?

What group of addresses will the PIA respond to using this de-

coding scheme? (Remember, you are still only partially decoding
the address bus.)
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CHAPTER 9

6800 System Interfacing

INTRODUCTION

Now that you are familiar with the PIA, you will see how this
powerful i/o chip can be used to interface your system to the out-
side world. This discussion of 6800 system interfacing begins with
switch interfacing. Many microcomputer input devices are simply a
group of switches. Even a complicated keyboard can be broken down
to a set of single switches. Therefore, it is important that you under-
stand the basics of interfacing to a single switch. Once this is accom-
plished, you will see how a group of switches arranged in both a
switch column and switch matrix can be interfaced to your system.
This will lead you to a discussion of un-encoded and fully encoded
keyboard interfacing.

A major output device in the microcomputer industry is the 7-
segment LED display. In this chapter 7-segment LEDs will be dis-
cussed and you will see how they can be interfaced to your 6800
system via the PIA. A single display will be interfaced first, then
you will see how a group of displays can be interfaced to display
intelligible messages. You will be given programs throughout the
discussion to show you how the PIA is initialized and the display
characters are generated.

Finally, many electrical and mechanical input and output devices
produce or require a continuous range of voltage or current values .
rather than two-state binary logic. For example, a thermocouple will
produce continuous voltage values as a function of temperature.
These continuous values are referred to as analog signals. In order
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for the 6800 to recognize these signals and to operate on them, they
must be converted to digital information. Other devices, such as
motors, might require that the digital information produced by a
microcomputer system be converted to analog signals for control
purposes. Fortunately, there are single chips that will perform these
conversions. They are referred to as digital-to-analog (D/A) and
analog-to-digital (A/D) converters. In this chapter, you will see
how the following converters can be interfaced to your 6800 system
via the PIA:

Signetics NE5018 D/A Converter

Motorola MC1408-8/MC1508-8 D/A Converter
Intersil ICL7109 A/D Converter

Teledyne 8703 A/D Converter

OBJECTIVES
At the end of this chapter you will be able to do the following:

® Interface your 6800 system to a single push-button switch.

¢ Interface your 6800 system to a switch column.

¢ Interface your 6800 system to a switch matrix.

® Interface your 6800 system to an un-encoded or fully encoded
keyboard.

¢ Interface your 6800 system to a single seven-segment LED.

¢ Multiplex several seven-segment LEDs to provide the display
of messages.

¢ Interface your 6300 system to the Signetics NE5018 and Moto-
rola MC1408-8/ MC1508-8 D/A converters.

¢ Interface your 6800 system to the Intersil ICL7109 and Tele-
dyne 8703 A/D converters.

INTERFACING WITH SWITCHES

You will begin this section by interfacing your 6800 system to a
single push-button switch. Then, you will interface the system to
a switch column and switch matrix. When interfacing to a switch
or switches, there are four basic interfacing requirements. They are
switch addressing, detecting switch closure, switch debouncing, and
switch decoding.

The first requirement, switch addressing, will be fulfilled by ad-
dressing the PIA. You can connect a single push-button switch to
one of the PIA port lines as shown in Fig. 9-1. Then, you can ad-
dress the switch by simply addressing the PIA.
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Fig. 9-1. Interfacing a single push-button switch.

Once you have addressed the switch or switches, you must detect
a switch closure, if any. Note in Fig. 9-1 that switch S1 is connected
to PAO of the PIA through a pull-up resistor. This will cause a logi-
cal one (1) to appear at PAO until the switch is closed. Recall from
Chapter 3 that a logical anD operation was used to determine a de-
vice condition. The procedure involved anping a status byte with a
mask byte to determine if a device is on or off. In this case, the de-
vice is a switch. A logic one indicates that the switch is off while
a logic zero indicates the switch is closed. The status byte will be
the port A input data byte. The mask byte will be 00000001 since,
in this case, the switch is connected to PAO. For example, if the
switch were connected to PA5, the mask byte would be 00100000.
Now, if the switch at PAQ is open, the status byte would be 0000
0001. If you anp this with a mask byte of 0000 0001 the result is
0000 0001. However, if the switch is closed, the status byte would
be 00000000. anping this with the mask byte would provide a re-
sult of 00000000. If this operation were performed by the 6800, the
Z flag of the condition code register would be set upon switch clo-
sure. Therefore, the Z flag would act as a flag to indicate switch
closure. Once the closure is detected, you can store the binary input
information in a memory location. In this example (Fig. 9-1) we
will simply store 01 in memory location 0060 to indicate that switch
closure has been detected. If memory location 0060 is cleared, no
closure has been detected. The program in Example 9-1 will detect
switch closure by addressing the switch through the PIA.

The next requirement for switch closure is debouncing. Each sin-
gle closure of a mechanical switch does not produce a single volt-
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Example 9-1: Detecting Switch Closure
The following program is used to detect switch closure.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 7F CLR $$
0001 50 50
0002 01 01
0003 7F CLR 8% PIA Initialized
0004 50 50
0005 00 00 Port A = Input
0006 86 LDAA # Set CRA bit 2
0007 04 04
0008 B7 STAA $3
0009 50 50
000A 01 o1
000B 7F CLR $$ Clear Meo
000C 00 00
000D 60 60
000E B6 LDAA $$
000F 50 50 DRA — ACCA
0010 00 00 (read Port A)
0011 84 ANDA # ACCA-01 — ACCA

(AND status and

0012 01 01 mask bytes)
0013 26 BNE Branch if Z flag clear
0014 F9 F9 (to address 000E)
0015 7C INC $$
0016 00 00 Increment Meo
0017 60 60
0018 3E WAI Stop

The program assumes that the PIA is located at addresses 5000 through
5003. Note that the PIA is first initialized by configuring port A as an input
port. Then, the mask byte is ANped with the port A data until contact
closure is detected.

age transition because the mechanical contacts “bounce.” That is,
the switch contacts are open-closed, open-closed, etc., for a few
milliseconds before settling to a firm closure. This bounce can look
like a series of 1s and Os to a microprocessor. Therefore, you must
wait until the bounce period ends before you read the data from
the switch. This can be accomplished two ways. You can use a cross-
coupled NAND gate circuit that will immediately latch in one state
and ignore all switch bouncing, or you can provide a software de-
lay in your program during the bounce period. In the latter case,
the 6800 is performing the debouncing action. A typical delay period
is 10 milliseconds; however, this will vary from switch to switch.
To provide software debouncing, you will provide a 10-millisecond
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delay after you detect contact closure. Then, after the delay, your
program will read the data from the switch (switches) again. If clo-
sure is still detected, you can be certain the switch is closed. The
program in Example 9-2 will address the switch, detect closure, and
provide software debouncing.
Example 9-2: Detecting Switch Closure and Providing
Software Debouncing

The following program is used to detect switch closure and provide soft-
ware debouncing.

Hex Hex Mnemonics/
Address Contents Contents Operation

0000 7F CLR $$
0001 50 50
0002 01 01
0003 7F CLR $$ PIA Initialized
0004 50 50
0005 00 00 Port A = Input
0006 86 LDAA # Set CRA bit 2
0007 04 04
0008 B7 STAA $$
0009 50 50
000A 01 01
000B 7F CLR $$
000C 00 00 Clear Mso
000D 60 60
000E B6 LDAA $$
000F 50 50 DRA — ACCA
0010 00 00 (read Port A)
0011 84 ANDA # ACCA-01 — ACCA
0012 01 01 (AND status and

: mask bytes)
0013 26 BNE Branch if Z flag clear
0014 F9 F9 (to address 00OE)
0015 BD JSR $$ Jump to subroutine at
0016 00 00 address 0030
0017 30 30 (debouncing delay)
0018 B6 LDAA $$
0019 50 50 DRA — ACCA
001A 00 00 (read port A)
001B 84 ANDA # ACCA-01 — ACCA
001C 01 01 (AND status and

mask bytes)

001D 26 BNE Branch if Z flag cleared
001E EF EF (to address 000E)
001F 7C INGC $3
0020 00 00 Increment Meo
0021 60 60

0022 3E WAI Stop
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(Debouncing Delay: 10 ms)

0030 CE LDX # 05 — XH

0031 05 05 00 — XL

0032 00 00

0033 09 DEX Decrement the index
0034 8C CPX # register

0035 00 00 Compare 0000 to the
0036 00 00 index register
0037 26 BNE Branch if Z flag clear
0038 FA FA (to address 0033)
0039 39 RTS Return to main program

(address 0018)

The first 11 instructions (0000-000A) initialize the PIA and configure
port A as an input port. Memory location 0060 is then cleared since this
location will be incremented when sure switch closure is detected. Now the
data at port A is read and a logic AND operation is performed to determine
switch closure. If no closure is detected (Z flag cleared), the program will
branch back to read the port until closure is detected (Z flag set). When
closure is detected, the 6800 will jump to the subroutine located at address
0030. This subroutine will provide a 10-millisecond delay for switch de-
bouncing using the index register. Once the delay has been provided, the
6800 returns to the main program to read port A and again verify contact
closure. If closure is detected again, memory location 0060 is incremented.
If no closure is detected, the program will branch back to the first port A
read operation and the cycle will repeat itself until a firm closure is detected.

The last requirement for switch interfacing is switch decoding.
After the 6800 detects a switch closure, it must decide which switch
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Fig. 9-2. Interfacing to a switch column.
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is closed. Naturally, this is not a problem with a single switch. How-
ever, with multiple switches, a decoding procedure must be pro-
vided. Fig. 9-2 shows how four switches might be connected to your
system. Note that switches S1 through S4 are connected to PAO
through PA3, respectively, and port A lines PA4 through PA7 are
held high. When one of the switches is closed, its corresponding
port line goes low. Therefore, when you load port A data into the
accumulator, the corresponding bit is also 0. All the other accumu-
lator bits will be 1 and the zero bit can be decoded by rotating the
accumulator contents into the carry flag of the condition code reg-
ister until that flag is cleared. The 6800 can then determine which
switch is closed by counting the number of rotations that it takes to
detect the cleared, or logic zero bit, position. Assuming switch clo-
sure has been detected and debounced, the program in Example 9-3
will decode the switches.

Example 9-3: Decoding a Switch Column
The following program is used to decode a switch column.

Hex Hex Mnemonics/
Address Contents Contents -Operation

0000 B6 LDAA $$ DRA — ACCA

0001 50 50 (read port A)

0002 00 00

0003 CE LDX #

0004 00 00 Clear the index register

0005 00 00

0006 46 RORA Rotate Right — ACCA

0007 08 INX Increment the
index register

0008 25 BCS Branch if Carry Set

0009 FC FC (to address 0006)

000A DF STX$

000B 5F 5F XH — MsF, XL — Meo

000C 3E WAI Stop

The program will load port A data into the accumulator then rotate that
data until the carry flag is cleared. After each rotation, the index register is
incremented to count the number of rotations necessary to clear the C flag.
The proper switch number is then stored in memory location 0060.

This program assumes that switch closure has been detected. When more
than one switch is connected in a column to the PIA as in Fig. 9-2, you will
use a compare instruction rather than a logic AND to detect closure. In this
case, comparing the input data immediately to FF would detect closure,
If none of the switches were closed, the Z flag would set as a result of the
compare instruction. However, if a switch is closed the Z flag would clear
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as a result of the compare instruction and the debouncing routine would
then be initiated, followed by the decoding scheme.

The same general procedure can be used to interface up to 16 switches in
a column using one PIA. Naturally, with this many switches, you would
have to utilize both PIA ports and two data bytes.

INTERFACING WITH KEYBOARDS

Keyboards are simply a collection of switches and, therefore, they
can be connected to the PIA in a switch column as discussed in the
first part of this chapter. In this case, the keyboard becomes a set
of switches in which each key is connected to a separate input port
line. When interfacing a keyboard in this manner, the procedure
for detecting key closure, debouncing, and decoding are the same
as discussed earlier. This is fine for a small number of keys, but
when more than eight keys are involved, you must use mutibyte
operations since more than one input port will be required. The
number of port lines required may be reduced by connecting the
keys in a switch matrix. The matrix will be an n-by-m, or n X m,
matrix where n is the number of rows and m is the number of col-
umns in the matrix. Each key will represent the intersection of a
row and column.

o] O] ]

ot e B B e DO

W) a— 9- A- s_

Juin S8 &k gt ?

Ry 4_ 5_ 6_ 7—

i e S T S W SR

Fy o_ ‘- 2_ 3_

. . . 7] =y el e

Fig. 9-3. Interfacing to a e
keyboard matrix.

Courtesy Heath Co.

A typical keyboard matrix is shown in Fig. 9-3. This is a 4 X 4
matrix which only requires eight port lines. In this scheme, an m X
n keyboard matrix will always require m + n port lines while if
you were to connect the keys in a switch column configuration, you
would need m X n port lines. Here, we are connecting the matrix
rows to PBO through PB3 and the columns to PB4 through PB7.
The keys are labeled to correspond to a hexadecimal keyboard. Each
matrix row contains four keys as does each column. You will con-
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figure PBO through PB3 as input lines and PB4 through PB7 as out-
put lines.

The procedure for detecting key closure will be to scan each col-
umn by successively applying a logic zero to each output line PB4
through PB7. For example, suppose a logic zero is applied to col-
umn one (PB4). This can be done by storing EF in the B data reg-
ister of the PIA. If none of the switches along the PB4 line (0, 4, 8,
or C) are closed, the input lines (PBO through PB3) will all be held
at a logic one by pull-up resistors R1 through R4. However, if one
of the keys is depressed, its corresponding input line will go low
since the low state of PB4 will be applied directly to the input line
through the switch. If no closure is detected in the first colurmn,
the logic zero will be removed from PB4 and applied to PB5 by
storing DF in the data register B. The program can then check to
see if any of the keys connected to the PB5 line (1, 5, 9, or D) are
closed. You would continue to scan the keyboard matrix in this man-
ner, one line at a time, until closure is detected. Once detected, you
must provide debouncing and decoding program steps as discussed
in the first part of the chapter. A rotate right procedure will be
used to detect key closure within a column.

This procedure could be used to interface a keyboard containing
as many as 64 keys using only one PIA. The keys would have to be
configured in an 8 X 8 matrix and both PIA ports utilized. The tech-
nique just described was for an un-encoded keyboard. Another type
of keyboard which makes the job of interfacing much easier is the
encoded keyboard. This keyboard contains the key switches along
with internal logic that will perform all the scanning and decoding
which you had to provide for the un-encoded keyboard. The en-
coded keyboard will provide a unique code for each key. This code
is usually an ASCII (American Standard Code for Information In-
terchange ) value, but can be any code that would identify each key
uniquely or separately. Most encoded keyboards will also provide
circuitry for switch debouncing, thus further simplifying the inter-
facing task. The trade-off between the two types is the simpler soft-
ware required by the encoded keyboard versus the lower cost of
the un-encoded keyboard.

Fig. 9-4 shows how you would interface an encoded keyboard to
your 6800 system. Here, the keyboard data is supplied to port A.
The encoded keyboard will also supply a keyboard strobe pulse for
each data transfer. The keyboard strobe will indicate a new key
closure and will be connected to the CAl pin on the PIA. Recall
that the CALl pin is an input-only line used to set an interrupt flag
(bit 7) of control register A. If bit 0 of CRA is set, this flag will
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Fig. 9-4. Interfacing to an encoded keyboard.

cause an interrupt request to be generated to the 6800. The flag
will be cleared when keyboard data is read from port A. After the
flag has been cleared, the 6800 will be ready to accept another key
closure through port A by a strobe pulse on the CA1 pin. Recall that
the active state of CAL can also be controlled with bit 1 of control
register A. If bit 1 of CRA is set, the system will recognize a low-
to-high strobe and if bit 1 of CRA is cleared, a high-to-low strobe
will be recognized. You can make use of the interrupt capabilities
of the 6800 and PIA as just discussed or you might want to use a
polling routine to enter keyboard data. The program in Example
9-4 uses a polling routine.

Example 8-4: Polling Routine for Encoded Keyboards
The following program is a polling routine for encoded keyboards.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 7F CLR $$
0001 50 50
0002 01 01
0003 7F CLR $$ PIA Initialized
0004 50 50 —— Port A = Input
0005 00 00 Set CRA bits 1, 2
0006 86 LDAA #
0007 06 06
0008 B7 STAA $%
0009 50 50
000A o 01
000B B6 LDAA $3 CRA — ACCA
000C 50 50 (read CRA)
000D ot 01
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000E 2A BPL Branch if plus

000F FB FB (to address 000B)
0010 B6 LDAA $$

0011 50 50 DRA — ACCA
0012 00 00 (read port A)
0013 3E WAI Stop

Note that only CRA bits 1 and 2 are set during initialization. Setting bit 2
will naturally cause the port A data register to be selected for subsequent
read operations. Setting bit 1 will cause the interrupt flag bit to set on a low-
to-high transition at pin CAl. Bit O of CRA is cleared, thereby preventing
the interrupt flag from generating an interrupt request to the 6800 Instead,
the contents of the control register will be polled. If no strobe has occurred,
bit 7 of the control register will remain cleared. The 6800 will therefore
recognize the control register data as “positive” and branch until a “nega-
tive” (bit 7=1) condition is recognized. When a keyboard strobe has caused
bit 7 of the control register to set, the 8800 will recognize the control regis-
ter data as “negative” and will read the keyboard data from the port A
data register. When the read operation occurs, bit 7 will be cleared to allow
for another keyboard strobe. The data values are not “signed,” but we have
used the sign flag for the keyboard detecting function.

INTERFACING WITH DISPLAYS

In Chapter 7 you saw how the PIA could be used to interface
your system to a group of single-lamp monitor displays. Recall that
you simply connected the lamp monitors to.port B of the PIA and
configured this port as an output port. To cause a particular light
pattern to be displayed, you would store the respective bit pattern
in the port B data register. This type of display is fine for indicating
status, conditions, and codes. However, it is not very meaningful
unless specifically defined for the user. A more meaningful display
would be one that could give you an alphanumeric display such
that decimal and hex numbers could be represented as well as a
limited alphabet so that messages could be displayed. Such a dis-
play is the 7-segment LED display.

A typical 7-segment display is shown in Fig. 9-5. The display
consists of seven separate LED “bar” displays labeled “a” through

<« _»

g” and a decimal point display labeled DP. There are two general

||
—_ Fig. 9-5. A typical
. I I c 7-segment display.
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Fig. 9-6. LED segment assignments p7 06 05,.04,03 02 01,00
for 7-segment display. oPjojtiefdfejrye

categories of 7-segment LED displays. They are: common cathode
and common anode. The common-cathode display has the LED
cathodes tied together and connected to ground. Therefore, a logic
1 must be applied to supply the current to illuminate a particular
LED segment. This is referred to as positive logic. The common-
anode variety has the LED anodes tied together and connected to
the +5-volt dc supply. This type of display uses negative logic,
meaning that a logic 0 must be applied in order to sink the current
necessary to illuminate a particular LED segment.

Regardless of whether the display is common anode or common
cathode, each LED segment will be assigned to a specific data line
on the data bus as shown in Fig. 9-6. In this manner, you can
control the LED illumination by the data that appears on the bus.
Since there are eight total LED segments including the decimal
point utilizing the 8-bit data bus, there are 256 possible unique
displays available. However, many of these displays are meaning-
less and you will actually use less than 50 different combinations
to form the numbers, letters, and characters shown in Table 9-1.

You will connect the common-cathode 7-segment display to port
B of the PIA as shown in Fig. 9-7. Port B will provide the neces-

ADDRESS

}

PBO
PIA PBI
PB2
P83
PB4
PBS
(1]
PB7

i

9w~ 8 ao oa

®

1L

Fig. 9-7. Interfacing to a 7-segment LED.
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Table 9-1. Hexadecimal Display Representations

Hexadecimal Representation

Display

Cominon Cathode

Common Anode

C20975000<XCUOUO0Or«—ITMMOPOONOIOLLALSO

w) e

3F
06
58
4F
66
6D
70
07
7F
67
77
39
79
7
76
06
1E
38
3F
73
3E
66
7C
58
5E
74
54
5C
50
1C
40
53
80

CcO
F9
A4
B0
99
92
82
F8
80
98
88
C8
86
8E
89
F9
E1
Cc7
Co
8C
C1
99
83
A7
Al
8B
AB
A3
AF
E3
BF
AC
7F

sary drive to properly illuminate the LED segments. You will con-
figure port B as an output port and then to display a particular
character you will store the character representation in the port B
data register. The program in Example 9-5 will accomplish this task.

If you desire to display a hexadecimal number directly from its
binary equivalent, you must provide a conversion since the charac-
ter designations are different from the actual hex numbers. Such a
conversion can be provided by means of a look-up table. A look-up
table is simply a set of consecutive memory locations that contain
the proper character designations. You can access the table and




Example 9-5: Output of 7-Segment LED Character Designations

The following program is used to output 7-segment LED character desig-
nations via the PIA.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 86 LDAA #
0001 FF FF
0002 B7 STAA $%
0003 50 50
0004 02 02 PIA Initialized
0005 86 LDAA # Port B = Qutput
0006 04 04 Set CRB bit 2
0007 B7 STAA $3$
0008 50 50
0009 03 03
000A 86 LDAA # Load accumulator A with
000B - - character designation
000C B7 STAA $$ ACCA — DRB
000D 50 50 (Output character
000E 02 02 designation to port B)
O000F 3E WAI Stop

This program assumes that the PIA has been assigned to address 5000
through 5003. The character designation will be inserted at address 000B.

provide the proper conversion with the use of indexed addressing
as shown in Example 9-6.

In order to display intelligible words and messages, several 7-
segment displays must be multiplexed together from one common
display bus. Fig. 9-8 shows how the PIA can be utilized to multi-
plex eight separate 7-segment LED displays. Note that port A of
the PIA is supplying the character representation code to a com-
mon display bus. Therefore, port A must be configured as an output
port. The port A data lines are buffered to provide the drive po-
tential needed by the displays. The displays are of the common-
cathode variety requiring positive logic. However, the port A data
lines are also inverted which requires the 6800 to supply negative
logic to the PIA. The displays are sequentially enabled by port B.
Therefore, port B provides for the display multiplexing and will
also be configured as an output port.

Recall that port B can be used to directly drive the base of a
transistor. A logic 1 state on a particular port B output line will
forward bias the corresponding transistor base-emitter junction en-
abling the LED display that is connected to it. Once the display
is enabled, you will load the proper character representation code
in the port A data register such that the correct display is achieved.
To display a message, you will simply enable each display sequen-
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Example 9-6: 7-Segment LED Character Designation Look-Up Table

The following program is used to provide hexadecimal 7-segment LED
character designations.

Hex Hex Mnemonics/
Address Contents Contents Operation

0000 97 STAA S Store accumulator A

0001 06 06 at address 0006

0002 CE LDX # Load the index register

0003 00 00 with the first address

0004 30 30 of the table

0005 A6 LDAA X Load accumulator A

0006 - - with the proper
character designation

0007 B7 STAA $8 ACCA — DRB

0008 50 50 (Output character

0009 02 02 designation to port B)

(Look-Up Table)
Hex Hex
Address Contents 7-Segment Representation

0030 Co hex designation for 0

0031 F9 hex designation for 1

0032 A4 hex designation for 2

0033 BO hex designation for 3

0034 99 hex designation for 4

0035 92 hex designation for 5

0036 82 hex designation for 6

0037 F8 hex designation for 7

0038 80 hex designation for 8

0039 98 hex designation for 9

003A 88 hex designation for A

0038 83 hex designation for B

003C cé hex designation for C

003D Al hex designation for D

003E 86 hex designation for E

003F 8E hex designation for F

The program again assumes that the PIA is located at addresses 5000
through 5003. It also assumes that the 7-segment common-anode LED dis-
play is connected to port B and this port has been configured as an output
port. Once the binary number is in accumulator A, the program will convert
it to its proper character designation then output that designation to port B
such that the proper display is achieved. Note that the key to the whole
procedure is in using the accumulator contents as the indexed offset to
access the look-up table.

tially by rotating a logic 1 through port B. As you do this, the proper
character representation codes must also be sequentially stored to
port A. Usually, you will want to display a particular message as
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Fig. 9-8. Using the PIA to multiplexing 7-segment LED displays.
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the result of some condition. The program in Example 9-7 is a sub-
routine that could be used to display a given message:

Address

Hex

0000
0001

0002
0003

0004
0005

0006
0007

0008
0009
000A
000B
000C
000D
000E
000F
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021

0022
0023
0024
0025
0026

0027
0028

0029
002A

Example 9-7: 7-segment LED Multiplexing Subroutine

The following program is used to multiplex 7-segment LED displays in
order to display a given message.

Hex
Contents

7F
40
01
4F
43
B7
40
00
7F
40
03
B7
40
02
86
04
B7
40
01
B7
40
03
FE
00
4F
5F
oD
4F
43
B7
40
00
59
F7
40
02
24
01
39

08
A6

00
B7

Mnemonics/
Contents

CLR $$
40

01

CLRA
COMA
STAA §%
40

Operation

PIA Initialized
Port A = Qutput
Port B = Output

CRA bit 2 set

CRB bit 2 set

Load index register
with (beginning address
of code table) —1
Clear ACCB
Set C flag
Clear ACCA
FF — ACCA
Store FF to port A
to blank all displays

Point to next display
Enable next display

Branch if carry clear
(to address 0027)
Return if message
complete
Point to next
character code
Load next character
code in ACCA



002B 40 40 Display next

002C 00 00 character code

002D 4F CLRA

002E 4C INCA Delay approximately 15 ms
002F 26 BNE

0030 FD FD

0031 20 BRA Branch Always

0032 E8 E8 (to address 001B)

The main program would call this subroutine using a jump-to-subroutine
(JSR) instruction, The first part of the subroutine initializes the PIA by
configuring both ports as output ports. The PIA is located at addresses
4000 through 4003. The subroutine will then load the index register with the
address immediately before the beginning address of the eight consecutive
memory locations that contain the character codes. In this example, ad-
dresses 0050 through 0057 contain the eight character codes for the mes-
sage; therefore, the index register is loaded with 004F. The subroutine will
then clear accumulator B, set the carry flag, and set accumulator A to FF
by clearing and complementing. The accumulator A contents (FF) are
then stored to port A so that all displays will be blanked. While the dis-
plays are blanked, the carry flag will be rotated into bit 0 of accumulator B,
then the accumulator B contents will be stored to port B. This will enable
display No. 0. A branch if carry clear (BCC) instruction is inserted so that
the program will return to the main program (RTS) if the carry is set,
meaning the C flag has been completely rotated through accumulator B and
the entire message has been displayed. However, at this point, the C flag is
cleared since it was just rotated into bit 0 of accumulator B. Therefore, the
index register is incremented and accumulator A is loaded with the first
character code. The code is then stored to port A, causing display No. 0 to
display the proper character. You will then clear and increment accumulator
A through FF to 00 to provide a delay which will allow the display to
illuminate for approximately 15 milliseconds.

The procedure is then repeated by blanking the displays, and rotating
accurnulator B to enable display No. 1. The character code for display No. 1
is then stored to port A to provide its proper display. The cycle is repeated
until all eight displays have been illuminated and the entire message has
been displayed. In practice, you would want to call this subroutine many
times a second to give the impression of a constant display. Since these
types of displays require constant refreshing, an interrupt is sometimes used
to interrupt the main program to refresh the display. Refresh rates of 50 to
60 Hz are quite common, with lower rates resulting in display flicker.

INTERFACING WITH DIGITAL-TO-ANALOG
CONVERTERS (DACs)

Digital-to-analog converters (DACs) are needed in many prac-
tical systems to translate the system digital code to a continuous
voltage level (analog signal) required by motors, ovens, relays, and
other electromechanical devices. These converters can be made from
standard resistors and op-amp circuitry or can be purchased as a
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single-chip device. Since the cost of these single-chip devices is very
reasonable (and decreasing), you will find it more economical and
less time consuming to use a manufactured DAC rather than de-
signing your own circuit. In this section we will discuss two D/A
converter chips: the Signetics NE5018 and the Motorola MC1408-8/
MC1508-8.

The Signetics NE5018 will convert an 8-bit digital signal to a
continuous output voltage level. Interfacing this chip to your sys-
tem is relatively simple. You will configure port B of the PIA as
an output port and use CB2 as an output strobe to enable the DAC.
The interfacing scheme is shown in Fig. 9-9. The NE5018 contains
an input latch that will store the digital input data when a high-
to-low transition is seen on LE. This transition is supplied by CB2.
Recall from Chapter 8 that CB2 can be configured as an output
strobe. In this mode, CB2 will normally be high then go low after
a write port B operation is executed. It will remain low for one
enable signal (¢2) cycle. This is long enough to allow the NES5018
converter to latch the digital input data. To achieve the output
strobe mode, CRB-5 and CRB-3 must be set with CRB-4 cleared.
Therefore, bits 5, 4, and 3 of control register B would be 101 re-
spectively. The program in Example 9-8 could be used to configure
the PIA and supply the digital information to the NE5018.

The Motorola MC1408-8/ MC1508-8 DAC interfacing is even more
straightforward. This DAC does not contain a latch and, therefore,
does not require a strobe or enabling pulse as did the NE5018. You
will use the latching capabilities of the PIA to provide data latching
to the MC1408-8/ MC1508-8. The interfacing scheme is shown in

} ADDRESS
Signetics

Pla NESOI8
———> Anclog

PORT B Digital Input ) oac
__——‘/ Output

i

Fig. 9-9. Interfacing to the Signetics NE5018 D/A converter.



Example 9-8: NE5018 Data Transfer Program

The following program is used to transfer data from the PIA to the
NE5018 DAC.

Hex Hex Mnemonics/

Address Contents Contents Operation
0000 7F CLR $3%
0001 50 50
0002 03 03
0003 86 LDAA #
0004 FF FF PIA Initialized
0005 B7 STAA $$ — Port B = Output
0006 50 50 CRB bits 5, 3, 2
0007 02 02
0008 86 LDAA #
0009 2C 2C
000A B7 STAA $$
000B 50 50
000C 03 03
000D 96 LDAA $ M3o — ACCA
000E 30 30 (get digital data)
00CF B7 STAA $3$
0010 50 50 Store digital
0011 02 02 data to port B

The program assumes the PIA is located at addresses 5000 through 5003.
To configure CB2 as an output strobe, bits 5, 3, and 2 of control register B
must be set. This requires you to store 00101100, =2Css in CRB. Once the
PIA is initialized, the program assumes the digital data is located at memory
location 0030. The data is obtained from that location and then written to
port B. Immediately after the write operation occurs, CB2 will automatically
go low for one clock pulse, allowing the data to be transferred to the
NE5018. The converter will then produce a corresponding analog output
within a few microseconds.

Fig. 9-10. You will configure port B as an output port. Then, to
provide a conversion, you will simply store an 8-bit data word to
port B. The MC1408/MC1508 will then provide a continuous ana-
log output voltage level which corresponds to the digital input.
This DAC will yield 256 different output voltage levels from 0 to
—4.980 volts corresponding to the digital input data. Consult Ap-
pendix D for more information on both the Signetics NE5018 and
Motorola MC1408/MC1508 DACs.

INTERFACING WITH ANALOG-TO-DIGITAL CONVERTERS

Many input devices such as various types of sensors and trans-
ducers generate analog signals. Before the 6800 microprocessor can
process the signal, it must be converted to a digital data word. This
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PBI A2 MCI408-8 Out
PB2 A3 -
P83 A4 NCIS08-8 2.5K
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PB6& A7
PBT A8
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Fig. 9-10. Interfacing to the Motorola MC1408-8/MC1508-8 D/A converter.

conversion process is not a simple task if you must provide the
external analog and digital circuitry as well as the software required
for an accurate conversion. Fortunately, complete A/D converter
chips are becoming increasingly available at low cost. Such a chip
is the Intersil ICL7109. This device is a complete A/D converter
that will convert an analog signal to a 12-bit binary word plus a
9-bit indication for signal polarity and overrange. It will provide
up to 30 conversions per second and can be operated in a partial
or complete handshaking mode. Fig. 9-11 shows one way in which
the ICL7109 can be interfaced to your 6800 system.

Given an analog input signal, the ICL7109 will provide 14 bits
of output data to the PIA—12 data bits (B1-B12) plus a polarity
(POL) bit and an overrange (OR) bit. The 12 data bits are di-

7 cm sle
- more—\ 1 T
rovonl * A" o ‘Bl
cLrion \ wosaco
Eﬁ> B1-88, 3 P07 C j C 3 MCS650X
Bomma] L. — -

-
ADDRESS DATA CONTROL
BUS L aus

Courtesy Intersil, Inc.
Fig. 9-11. Interfacing to the Intersil ICL7109 A/D converter.
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vided into a low-order data byte (B1-B8) and a high-order data
byte (B9-B12). The low-order byte is connected to PIA lines PBO
through PB7 and the high order byte connected to PAO through
PA3. Therefore, both PIA ports must be configured as input ports.
The control register for port B can be set up so that CB1 will be
activated and generate an interrupt request on a high-to-low transi-
tion of the ICL7109 STATUS pin. Also, CB2 will be designated as
an output line to the ICL7109 via its RUN/HOLD pin. This con-
figuration would require that 00111101, = 3D;¢ be stored in CRB
during the initialization process. Using this scheme, CB2 will al-
ways be held high (refer to Fig. 8-12). With CB2 held high, the
ICL7109 will be allowed to RUN and provide continuous conver-
sions by interrupting the 6800 via the CB1 line when each conver-
sion becomes available. The ICL7109 also contains an output latch
so that the data will not be lost before the 6800 acknowledges
the interrupt.

Now, if you were to clear bit 3 of the control register, CB2 will
g0 low and thus HALT the conversion process in the ICL7109. Then
a conversion may be initiated when desired by again setting bit 3
with a write to-CRB-instruction. This process allows for conversions
to be initiated under software control. Consult the ICL7109 specifi-
cations in Appendix D for other methods of interfacing and more
chip detail.

Another common A/D converter is the Teledyne 8703. This is
an 8-bit converter which also has an output latch. The interfacing
scheme is essentially the same as for the ICL7109 previously dis-
cussed. Fig. 9-12 shows how the 8703 might be connected to your

ADDRESS

GND

1

Output Enabie
{0E)
PAO-PAT Digital Out 80 - B7

CAl Data Valid I————Analog

(ov) In
CcA2 initiate Conversion
(i)

]

‘

Teledyne
8703

CONTROL

!

Fig. 9-12. Interfacing to the Teledyne 8703 A/D converter.
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system. The eight digital data bits (B0-B7) are connected to port A
lines PAO through PA7. Control line CA2 is used to initiate a con-
version. You will do this by changing bit 3 of control register A
from low to high then back to low again. This provides the initiate-
conversion pulse needed to start the conversion process. Once the
conversion is complete, the 8703 data-valid line will go from low
to high indicating data is available. This will cause an interrupt to
be generated via CAl. A read operation can then be performed on
port A to enter the converted data into the system. This A/D con-
verter is also available in a 10-bit version (8704) and 12-bit version
(8705). Naturally, with more than eight bits, multibyte data oper-
ations will be involved. However, a better digital resolution of the
analog signal can be achieved with more data bits.

You have now had a brief introduction to show you how some
D/A and A/D devices can be connected to the 6800. For more in-
formation on these devices and interfacing techniques, consult the
following:

1. Titus, Jonathan A.; Titus, Christopher A.; Rony, Peter R.; and Larsen,
David G., Microcomputer—Analog Converter Software and Hardware In-
terfacing. Indianapolis: Howard W. Sams and Co., Inc., 1978,

2. Jung, Walter G., IC Converter Cookbook. Indianapolis: Howard W. Sams
and Co., Inc., 1978.

3. Andlog-Digital Conversion Notes, Analog Devices, Inc., Norwood, MA
02062, 1977.

REVIEW QUESTIONS

1. What are the four basic interfacing requirements when interfacing to

switches?

2. Which one of the above requirements is fulfilled by the PIA?
3. How is switch closure detected when interfacing to a single switch?

4. A typical software delay that would provide switch debouncing is
seconds.

5. The debouncing delay is usually provided by decrementing the
6. How is switch closure detected in a switch column?

7. How is a switch column decoded?



10.
11.
12,

13.

14.

15.

16.
17.
18,

19.
20.

. A 2 X 2 switch matrix would require that . PIA port lines be

used.

. How is a switch closure detected and decoded in a keyboard matrix?

Two types of keyboards available are the and

A common-anode LED display woulduse ________ logic.

The LED character designations are generated froma. . located
in memory.

To display words and messages, several displays must be
together.

A message should be refreshed ata.______ rate to prevent flickering.

What is the difference between the Signetics NE5018 DAC and Motorola
MC1408-8 DACs?

The Intersil ICL7109 is a ______ bhit A/D converter.

The Teledyne 8703 isa.__ __ bit A/D converter.

What is the advantage of more data bits in an A/D converter?
An analog signal can be defined as

The Intersil ICL7109 A/D converter provides‘ 12 data bits plus a 2-bit

indication of and

ANSWERS

. Switch addressing, detecting switch closure, switch debouncing, switch

decoding.

2. Switch addressing..

w

o S~ T L

. By anping a mask byte to the switch status byte, then checking the Z-flag

status with a branch-if-not-zero (BNE) instruction.

. 10 milliseconds

. index register

By comparing the switch status byte to FF.

. By rotating the switch status byte through the C flag, checking the C-flag

status after each rotation, and counting the number of notations required
to clear the flag.
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8. four

9. With the matrix connected as in Fig. 9-3, switch closure is detected by

10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

scanning each column with port B of the PIA and simultaneously reading
port A. A compare operation is then used to detect the closure and a
rotate-right operation is used to decode the closure within a particular
column.

un-encoded and fully encoded.
negative

look-up table

multiplexed

50-60 Hz

The NE5018 has an internal 8-bit latch, requiring an output strobe or
enabling pulse from the PIA.

12

8

Greater precision.

continuous voltage or current values

signal polarity and overrangé

EXPERIMENT 9-1

Purpose

To demonstrate switch closure detection and debouncing.

Equipment

ET3400 741830 digital IC (8-bit nanD)
6820/6821 PIA Push-button switch

(Heath #64-724)

7400 digital IC (2-bit NAND) 1K-ohm ¥j-watt resistor
741527 digital IC (3-bit NOR) Extra connector block

(Heath #432-875)
Program
Hex Hex Mnemonics/
Address Contents Contents Operation

0000 86 LDAA #

0001 04 04 PIA Initialized
0002 B7 STAA $3 Port A = Input
0003 50 50 CRA bit 2 set
0004 01 01

0005 7F CLR $$



0006 00 00 Clear Mso

0007 60 60

0008 B6 LDAA $$

0009 50 50 DRA — ACCA

000A 00 00 (read port A)

000B 84 ANDA # ACCA-01 — ACCA

000C 01 01 (AND status and mask bytes)

000D 26 BNE Branch if Z flag clear

000E F9 F9 (to address 0008)

000F BD JSR $$ Jump to subroutine

0010 00 00 at address 0030

0011 30 30 (debouncing delay)

0012 B6 LDAA $3% DRA — ACCA

0013 50 50 (read port A)

0014 00 00

0015 84 ANDA # ACCA-01 — ACCA

0016 " o1 (AND status and mask bytes)

0017 26 BNE Branch if Z flag cleared

0018 EF EF (to address 0008)

0019 7C INC $$

001A 00 00 Increment Mso

001B 60 60

001C 3E WAI Stop
(Debouncing Delay: 10 ms)

0030 CE LDX # 05 — XH

0031 05 05 00 — XL

0032 00 00

0033 09 DEX Decrement index register

0034 8C CPX #

0035 00 00 Compare 0000 to the

0036 00 00 index register

0037 26 BNE Branch if Z flag clear

0038 FA FA (to address 0033)

0039 39 RTS Return to main program

(address 0012)

This program is essentially the same as the one we discussed
earlier in this chapter to provide switch closure detection and de-
bouncing. The only difference is in the PIA initialization procedure.
Here, you are able to eliminate the first two clear instructions since
you have wired the PIA RESET to the system reset. This will clear
all the PIA registers automatically when you reset the system,

Procedure
Step 1

Construct the circuit shown in the schematic diagram,
Note: An extra breadboard block will be needed to mount the
push-button switch.

265



Schematic Diagram (Fig. 9-13)

+5V GND IK

o |

po 23400 2 s

PAO
o1 220
31

vz -2+ b2
03 2203
pa 22 pa
05 28405

o 27406

o7 -2&{ o7

62 2t € PlA

alg
7“: 9 a1 284 Rs)
8 24

Al — a0 28] rso
1

% E‘, >.‘. o2 221 ¢cso
A8

rfw 2 AW

RESET

Digital IC Power:

Pin 18- +5V
Pin T~ GND

RE (ravs30/—
2 a4

—vma

Fig. 9-13. Schematic diagram for Experiment 9-1.
Step 2
Enter the given program.

Step 3
Execute the program without depressing the switch and examine
memory location 0060.

You should find memory location 0060 cleared.

Step 4
Execute the program and depress the switch.:

Step 5
Examine memory location 0060.

The contents should be 01, indicating that switch closure detection
and. debouncing has been achieved.

Step 6
Save your circuit for the next experiment.
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Conclusion

Why is the external digital logic required when reading data into
the Heath trainer?

Summarize the switch closure detection and debouncing proce-
dure.

How would you modify the circuit and program to provide a
lamp monitor indication of switch closure?

EXPERIMENT 9-2

Purpose

To provide a lamp monitor indication of switch closure.
Equipment
ET3400 Push-button switch
6820/6821 PIA ( Heath #64-724)

7400 digital IC (2-bit NaND) 1K-ohm ¥4-watt resistor
741527 digital IC (3-bit NoR) Extra connector block
741.830 digital IC (8-bit NaND) (Heath #432-875)

Schematic Diagram

The circuit will be the same as the one you constructed in Ex-
periment 9-1 except that you must connect a wire from PB0 (pin 10)
of the PIA to lamp monitor No. 0.

Program
Hex Hex Mnemonics/
Address Contents Contents Operation

0000 4F CLRA
0001 43 COMA
0002 B? STAA §$
0003 50 50
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0004

0005

0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039

02 02 PIA Initialized

86 LDAA # Port A = Input

04 04 —Port B = Output
B7 STAA $$ CRA bit 2 set

50 50 CRB bit 2 set

01 01

B7 STAA $$

50 50

03 03 |

7F CLR $$

00 00 Clear Mso

60 60

B6 LDAA $$ DRA — ACCA

50 50 (read port A)

00 00

84 ANDA ACCA-01 — ACCA
01 o1 (anD status and mask bytes)
26 BNE Branch if Z flag clear
F9 F9 (to address 0010)
BD JSR $$ Jump to Subroutine
00 00 at address 0030
30 30 (debouncing delay)
B6 LDAA $$ DRA — ACCA

50 50 (read port A)

00 00

84 ANDA # ACCA:01— ACCA
01 01 {AND status and mask bytes)
26 BNE Branch if Z flag clear
EF EF (to address 0010)
7C INC

00 00 Increment Meo

60 60

D6 LDAB $ Mso — ACCA

60 60

F7 STAB $$ Hluminate lamp
50 50 monitor No. 0

02 02

3E WAI Stop

(Debouncinb Delay: 10 ms)

CE LDX # 05— XH

05 05 00 — Xu

00 00

09 DEX Decrement index register
8C CPX # Compare 0000 to the
00 00 index register

00 00

26 BNE Branch if Z flag clear
FA FA (to address 0033)

39 RTS Return to main program



This program is similar to the one in Experiment 9-1. However,
here you have configured port B as an output port and will store
the contents of memory location 0060 to port B. This will provide
a lamp monitor indication after switch closure has been detected
and debounced.

Procedure

Step 1

Using the circuit in Experiment 9-1, connect a wire from PB0 (pin
10) of the PIA to lamp monitor No. 0.

Step 2

Enter the given program.

Step 3

Execute the program.

Step 4

Depress the switch and the lamp monitor should illuminate indi-
cating switch closure has been detected and debounced.

Step 5

Save this circuit for the next experiment.

Conclusions

What additional instructions were required to provide the lamp
monitor indication of switch closure?

How would the program have to be modified to detect switch
closure for any one of four switches connected to the PIA in a switch
column configuration?

EXPERIMENT 9-3
Purpose
To interface a four-switch column to the 6800 system and to
demonstrate switch closure detection, debouncing, and decoding.
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Equipment

ET3400 Four push-button switches
6820/6821 PIA (Heath #64-724, 64-725,
7400 digital IC (2-bit NAND) 64-728, and 64-727)

741827 digital IC (3-bit NOR) Five 1K-ohm ¥3-watt resistors
741,830 digital IC (8-bit Nanp)  Extra connector block
( Heath #432-875)

Schematic Diagram

The circuit will be the same as the one you used in Experiment 9-1
except you must wire the push-button switches to the system as
shown in Fig. 9-2.

Program

Hex Hex Mnemonics/
Address Contents Contents Operation

0000 4F CLRA
0001 43 COMA
0002 B7 STAA §$
0003 50 50
0004 02 02 PIA Initialized
0005 86 LDAA # Port A = Input
0006 04 04 —— Port B = Output
0007 B7 STAA $$ CRA bit 2 set
0008 50 50 CRB bit 2 set
0009 01 01
000A B7 STAA $$
000B 50 50
000C 03 03 ]
000D B6 LDAA §$
000E 50 50 DRA — ACCA
000F 00 00 (read port A)
0010 81 CMPA # Compare port A data to FF
0011 FF FF (Is a switch closed?)
0012 27 BEQ Branch if Z flag set
0013 F9 F9 {to address 000D)
0014 BD JSR $% Jump to Subroutine
0015 00 00 at address 0030
0016 30 30 (debouncing delay)
0017 B6 LDAA $3 DRA — ACCA
0018 50 50 (read port A)
0019 00 00
001A 81 CMPA # Compare port A data to FF
001B FF FF (Is switch still closed?)
001C 27 BEQ Branch if Z flag set
001D EF EF (to address 000D)
001E CE LDX #
001F 00 00 Clear index register
0020 00 00
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0021 46 RORA Rotate ACCA Right

0022 08 INX Increment index register
0023 25 BCs Branch if C flag set
0024 FC FC (to address 0021)
0025 DF STX $ Store index register count
0026 5F 5F (XH = 5F, XL— 60)
0027 D6 LDAB $ Mso — ACCB

0028 60 60 (Load ACCB with count)
0029 F7 STAB $$ ACCB —— DRB
002A 50 50 (store count to port B)
002B 02 02

002C 7€ JMP $$ Jump to address 000D
002D 00 00 (look for another

002E oD oD switch closure)

- (Debouncin.g Delay: 10 ms)
CE #

0030 LDX 05 — XH

0031 05 05 00 — XL

0032 00 00

0033 09 DEX Decrement index register
0034 8C CPX # . Compare 0000 to the
0035 00 00 index register

0036 00 00

0037 26 BNE Branch if Z flag clear
0038 FA FA (to address 0033)
0039 39 RTS Return to main program

This program first initializes the PIA by configuring port A as an
input port and port B as an output port. Then, switch closure is
detected by reading and comparing the port A data to FF. If no
switches are depressed, the port A data will be FF, the Z flag will
set, the program will branch, and it will continue to read and com-
pare port A until a closure is detected. Once a switch closure is de-
tected, the debouncing subroutine is called. After debouncing, the
port A data is read and compared again to be sure of switch clo-
sure. Once switch closure is assured, the switch column must be
decoded. Since the switches are connected to the system via pull-up
resistors, a switch closure will represent a zero on its respective
port A data line. The 6800 decodes the zero by reading the port A
data into accumulator A then rotating the data until the C flag is
cleared. Each time a rotate is executed the index register is incre-
mented to count the number of rotations. The final index register
count is the switch number that is closed. This count is then stored
to port B such that the lamp monitors will illuminate to indicate
which particular switch has been depressed.
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Procedure

Step 1

Make the following additional connections to the circuit you con-
structed in Experiment 9-2:

1. Connect push-button switches S2, S3, and 54 to the PIA as
shown in Fig. 9-2. Each switch will be connected via a 1K-ohm
pull-up resistor. Switch S2 will be connected to PAl (pin 3),
switch S3 to PA2 (pin 4), and switch S4 to PA3 (pin 5).

9. Connect PA4, PA5, PA6, and PA7 (pins 6, 7, 8, and 9) together
and through a 1K-ohm pull-up resistor to the +5-volt supply as
shown in Fig. 9-2.

3. Connect PB1, PB2, and PB3 (pins 11, 12, and 13) to lamp
monitor No. 1, No. 2, and No. 3.

Step 2

Enter the given program.
Step 3

Execute the program.

Step 4

Depress the switches at random. The lamp monitors should indicate
the binary representation of the particular switch number being de-
pressed. If not, check the circuit and examine your program.

Step 5

Save the circuit for the next experiment.

Conclusion

Why did PA4, PA5, PA6, and PA7 have to be connected to the
+5-volt supply? '

Explain the procedure for detection, debouncing, and decoding
a switch closure in a switch column.

How would you have to modify the circuit and program if the
switches were connected in a 2 X 2 matrix configuration?
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Purpose

EXPERIMENT 9-4

To interface a 7-segment LED to the 6800 system.

Equipment

ET3400

7400 digital IC (2-bit NanD)
741527 digtial IC (3-bit Nor)
741.S30 digital IC (8-bit NanD)

TIL-312 common-anode 7-seg-
ment LED (Heath #411-831)

Schematic Diagram (Fig. 9-14)

Fig. 9-14. Schematic diagram for

Program

Hex
Address

0000
0001

0002
0003
0004
0005
0006

0007
0008
0009
000A
0008
000C
000D
000E
000F
0010
0011

0012
0013
0014
0015

Experiment 9-4,

Hex
Contents

4F
43
B7
50
02
86
04
- B7
50
03
4F
97
1
CE
00
50
A6

No Entry

08
B7
50
02

Extra connector block (Heath

#432-875)
+5Y
FIA 3 14
pBo | 10 g TIL- 312
PBI u 31b ——
PB2 |12 0]c
pa3 |13 LN i) I |
PB4 | 14 e )&/
PBS |18 2]t
PBG [ & LN I - l
PB? |17 2! op
Mnemonics/
Contents Operation
CLRA
COMA
STAA $3%
50 PIA Initialized
02 — Port B = Qutput
LDAA # CRB bit 2 set
04
STAA $$
50
03
CLRA Clear ACCA
STAA $ ACCA — M1
1 (Store index offset)
LDX # Load the index
00 register with the first
50 address of the table
LDAA X Load ACCA with the proper
No Entry character designation
INX Increment index register
STAA $3 ACCA — DRB
50 (Output character
02 designation to port B)
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0016
0017
0018
0019

001A

001B
001C

001D
001E
001F
0020
0021

0022
0023
0024
0025
0026

0050
0051

0052
0053
0054
0055
0056
0057
0058
0059
005A
005B
005C
005D
005E
005F

86
FF
Cc6
FF

5A

26
FD

4A
26
F8
8C
00
60
27
E8
20
EQ

Co
F9
A4
BO
99
92
82
F8
80
98
88
83
Cé
Al
86
8E

LDAAF
FF
LDAB#
FF

Delay | Delay
DECB Loop #1 Loop #2
BNE

FD

DECA
BNE
F6
CPX # Compare immediate
00 to 0060

60

BEQ Branch if Z flag set
E8 (to address 000D)
BRA Branch to address 0010
E9

(Look-up Table)

hex designation for 0
hex designation for 1
hex designation for 2
hex designation for 3
hex designation for 4
hex designation for 5
hex designation for &
hex designation for 7
hex designation for 8
hex designation for @
hex designation for A
hex designation for B
hex designation for C
hex designation for D
hex designation for E
hex designation for F

This program initializes the PIA by configuring port B as an out-
put port. The character designation look-up table begins at address
0050. The program will start with the first character designation and,
using indexed addressing, sequentially store each character designa-
tion to the 7-segment LED via PIA port B. After each character
is displayed, a delay of approximately one second is provided before
the next character is displayed. This delay is provided by delay
loops No. 1 and No. 2, using the two accumulators similar to the
way you used accumulator A and the index register in Experiment
8-2. You cannot use the index register for the delay routine in this

274



program because you are using it to sequence through the look-up
table.

Procedure
Step 1

Connect the 7-segment LED to port B as shown in the schematic
diagram (Fig. 9-14). Use the circuit from Experiment 9-3 for the
remaining connections. ’

Note: Do not destroy the switch connections to port A.

Step 2
Enter the given program.

Step 3

Execute the program. The LED should sequentially display the
hexadecimal characters and then repeat the cycle until the system
is reset.

Step 4
Save the circuit for the next experiment.

Conclusion

How would you modify the circuit and program to have the 7-
segment LED indicate which switch in a switch column has been
depressed?

How would you decrease the delay time between character dis-
plays in the above program? (Try it!)

Explain how indexed addressing is used in conjunction with the
LED character designation look-up table.

EXPERIMENT 9-5
Purpose

To provide a switch column input and 7-segment output for the
6800 system.
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Equipment

ET3400

7400 digital IC (2-bit NaND)

741527 digital IC (3-bit Nor)

741.530 digital IC (8-bit NAND)

TIL-312 common-anode 7-segment LED (Heath #411-831)

Four push-button switches (Heath #64-724, 64-725, 64-726, and 64-
727)

Five 1K-ohm Y4-watt resistors

Extra connector block (Heath #432-875)

Schematic Diagram

The circuit will be the same as the one you used in the previous
experiment.

Program
Hex Hex Mnemonics/
Address Contents Contents Operation
0000 4F CLRA
0001 43 COMA
0002 B7 STAA $$
0003 50 50
0004 02 02
0005 86 LDAA # PIA Initialized
0006 04 04 Port A - Input
0007 B7 STAA $$ —— Port B - Output
0008 50 50 CRA bit 2 set
0009 01 01 CRB bit 2 set
000A B7 STAA $$
000B 50 50
000C 03 03 __—
000D B6 LDAA $%
000E 50 50
000F 00 00
0010 81 CMPA # Detect switch closure
0011 FF FF
0012 27 BEQ
0013 F9 F9
0014 BD JSR Jump to debounce
0015 00 00 Subroutine at address 0040
0016 40 4
0017 B6 LDAA $$%
0018 50 50
0019 00 00 Verify switch closure
001A 81 CMPA # [ after debounce
001B FF FF
001C 27 BEQ
001D EF EF
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001E CE LDX #

001F 00 00

0020 00 ‘ 00

0021 46 RORA

0022 08 INX Decode switch
0023 25 BCS column and store
0024 FC FC switch number in ACCB
0025 DF STX $

0026 5F 5F

0027 D6 LDAB $

0028 60 60—

0029 D7 STAB $

002A 2F 2F

0028 CE LDX #

002C 00 00 Look up switch number
002D 50 50 —— designation and
002E A6 LDAA X store to port B (LED)
002F No Entry No Entry

0030 B7 STAA $3$

0031 50 50

0032 02 02

0033 7E JMP

0034 00 00 Repeat the cycle

0035 0D oD

(Debouncing Delay)

0040 CE LDX #
0041 05 05
0042 00 00
0043 09 DEX
0044 8C CPX #
0045 00 00
0046 00 00
0047 26 BNE
0048 FA FA
0049 39 RTS
(Look-Up Table)
0050 Cco hex designation for 0
0051 F9 hex designation for 1
0052 Ad hex designation for 2
0053 BO hex designation for 3
0054 99 hex designation for 4

This program combines the ideas of Experiments 9-3 and 9-4.
You should now be able to verify all the functional aspects of the
program and see how the different parts (PIA initialization, switch
closure detection, switch debouncing, switch decoding, and 7-seg-
ment character output via a look-up table) interrelate.
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Procedure
Step 1 ,
Using the circuit from Experiment 9-4, enter the given program.

Step 2
Execute the program.
Step 3

Depress the push-button switches at random. The 7-segment LED
should indicate the switch number being depressed.

Conclusion

Explain the major ideas for interfacing to a switch column and
providing a 7-segment LED indication of switch closure.
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APPENDIX A

Digital Review

BASIC LOGIC GATES

Recall the basic logic gates used in digital electronics. The fol-
lowing summary includes the gate symbol, the Boolean expression
for the gate, and the truth table for the gate.

Inverter

y=NOTA=A
OR Gate

y=AorRB=A+B
AND Gate

y=AapB=A-B
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Exclusive OR Gate

y = A Exclusive-orRB=A ® B

NOR Gate

y=NOT (AorB) =A+ B

NAND Gate

y=NOT (AanoB)=A-B

Exclusive NOR Gate

y = NOT (A Exclusive-orB) =A & B

Gate Conversions

If we want to express one gate in terms of others the following
conversion chart diagrams might be handy:
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GATE CONVERSIONS

ADD INVERTERS TO ALL

""" INPUTS aND GUTPUTS

=) > —) >

ADD INVERTERS TO ALL OUTPUTS

ADD INVERTERS TO ALL INPUTS

Convert the Following to NaND Logic:

A

By using the above conversion diagram, we get:

><,_
- >o_ ),
>

Note: The double inversions will cancel each other.
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FLIP-FLOPS

A flip-flop is simply an electronic device that is used to store a
binary digit. It will “latch” (hold) in one of two states (0 or 1) de-
pending on what it sees at its input when clocked. There are two
basic types we will be concerned with—the D flip-flop and the JK
flip-flop.

D Flip-Filop

PR (PRESET) CLK l D y

,,‘R 0 |0 Previous State

pa ° 7 outeuT 0 |1 Previous State
CLOCK -—> ) s 1 0 0
CLR 1 1 1

I

CLR (CLEAR}

Note that the inputs are D (data line) and CLX (clock). The out-
puts are y and y, where ¥ is simply NOT y. By observing the truth
table, you can see that binary data on the data line is transferred
to the output when a clock pulse is provided. The outputs at y and
y will remain latched until another clock pulse is provided. PR (pre-
set) and CLR (clear) functions are also provided. A high at PR im-
plies y=1 while a high at CLR implies y=0. No clocking is needed
to preset or clear the latch. D flip-flops are used most commonly as
storage registers.

4-Bit Storage Register

Loy L
Chd R hA
| !

L !

Y= ¥s Y2 n Yo

If in the beginning the four switches are open, the output is left
floating and will be a random 4-bit number. After the switches are
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closed and a clock pulse provided, the output word will be Y=
ysy2¥1¥o=1011. If you now would open the four switches, the out-
put would remain at 1011 regardless of the amount of clocking.
You can change the output by changing the input data, closing the
switches, and clocking the circuit.

JK Flip-Flop

""l’" J K | y
] . 00 Last State (Latch)
R ¢ | 01 0  (Reset)
eyt fx ¢ f— ouTRuT 1 0 1 (Set)
] 11 Last State (Toggle)

CLEAR

Here, the J and K inputs determine what the latch does when it
is clocked. When J and K are both low, the clock pulse has no effect.
When ] and K are both high, the output will “toggle” (change) with
each clock pulse. This idea of toggling is demonstrated in the fol-
lowing example.

4-Bit Counter

Y3 vy 13 J2 n 4 Yo Jo

W
CLR CLR CLR CLR

Ye oy v2 " Yo

First note that the J K inputs are not connected (floating). In this
floating mode, the flip-flop toggles the same as if ] =1 and K = 1.
The “bubble” at the clock input indicates that the flip-flop will actu-
ate when the clock goes in a negative direction, i.e., from 1 to 0.
The CLR is also “bubbled”; therefore, you will begin by making
CLR low - Y = yy2y1y, = 0000.

st negative clock - y,=1 - Y =yzysy;y0 = 0001
2nd negative clock =y, =0 ->y;=1 - Y=0010

Note in the above case, y, went from a high to a low condition.
Therefore, y; =1 since y, provides the clock signal for the second
gate.

3rd negative clock > yo=1 -»y,=1 - Y=0011



Note here that y, toggled but y; remained the same since its clock
(yo) went high. Again, the flip-flop will only toggle when its clock
goes low.

4th negative clock = yo,=0 ->y; =0 —»y,=1 - Y=0010
Here Oy, toggled

®y, toggled since its clock (y,) went low.
®y:. toggles since its clock (y;) went low.

Following this procedure,

5th negative clock - Y =0101
6th negative clock — Y =0110
7th negative clock — Y =0111
8th negative clock - Y = 1000
9th negative clock - Y =1001
10th negative clock - Y =1010
11th negative clock - Y =1011
12th negative clock - Y = 1100
13th negative clock - Y =1101
14th negative clock - Y =1110
15th negative clock - Y =1111
16th negative clock - Y = 0000 (Reset)

The circuit in this example is a binary counter. J K flip-flops are
commonly used in this type of counter.



APPENDIX B

Number Systems and
Computer Arithemetic

NUMBER SYSTEMS

Digital computers are made up of a series of logic gates integrated
onto “chips.” These gates are composed of standard electronic de-
vices such as resistors, capacitors, diodes, and transistors. Each of
these devices can be made to function like a switch; that is, to repre-
sent an “on” or “off” state. A resistor is either conducting or not
conducting. A capacitor is charged or not charged. The diode or
transistor is either conducting or not conducting. Thus, all of these
devices can be used to represent one of two states—on or off. Digital
computers, therefore, ultimately use a two-state system to represent
numbers. Binary is a number system ideally suited for digital com-
puters since it comprises only two digits, one and zero which can
be used to represent on and off states. Even though a computer
operates on binary information, it is very cumbersome to you and
me. Therefore, it is easier for us to use a higher-order number sys-
tem or computer language when communicating with the computer.
Two such number systems commonly used with microcomputers
are octal (base 8) and hexidecimal (base 16).

Decimal (Base 10)

This is the system familiar to all of us. It utilizes the digits 0
through 9. Remember how you learned to read decimal numbers.
You started with the decimal point. To the left of that point, each
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position represented a positive power of 10 from 10° on up. To the
right of that point, each position represented a negative power of
10 from 10— on down. Positional weights in the decimal system
are arranged as follows:

Positional Weights > - - - [102] [10] [10°] o [10—] [10—2] - - -

To interpret a number you simply:

1. Determine the positional weight of each digit.
2. Multiply the digit times its positional weight.
3. Add all of the above products.

Decimal Interpretation
Interpret the number (537);,.
(537)10=5 3 7
= (5X10%) + (3 X 10') + (7 x 10°)
= 500 + 30 + 7

Think about it. Isn’t this what you do mentally to determine the
“weight” of a number?

Binary (Base 2)

This is the number system used by the electronics of all digital
computers. It uses the digits 0 and 1. The idea here is the same as
with decimal numbers except that powers of 2 are used rather than
10 for the digit weights. Positional weights in the binary number
system are arranged as follows:

Positional Weights > - - - [22] [21] [2°] ® [2—1] [2-2] - -
To interpret a binary number the procedure is the same:

1. Determine the positional weight of each digit.
2. Multiply the digit by its positional weight.
3. Add the above products.

Binary — Decimal
Convert 1101, to decimal.
(1101);= 1 1 0 1
=(1X2%) 4+ (1xX22)+ (0x2')+ (1x2°)
= 8 + 4 + 0 + 1
= (13)10



You now have a feeling for the weight of the binary number 1101
since you have expressed it as a decimal number—something you are
familiar with. Now suppose you wish to express the decimal 13 as
a binary number. The procedure is as follows:

13/2 =6 with remainder 1
—t

6/2 =3 with remainder 0

— Read
3/2 =1 with remainder 1 Up
—

1/2 = 0 with remainder 1

Therefore, (13);0 = (1101),

To summarize the process, you see that the binary number is ob-
tained by repetitive division by the base number, 2 in this case.
If you need some brushing-up on binary numbers, study the pre-
ceding examples and work the related problems at the end of the
appendix until you feel comfortable with the process.

Octal (Base 8)

Now that you know the decimal and binary systems, octal will
be easy. Octal uses eight digits, 0 through 7. The idea of positional
weights is the same as in decimal and binary except that now you
use powers of 8 as follows.

Positional Weights > - - - [82] [81] [8°] e [8—1] [8—2] - - -
The interpretation procedures are the same as you used for the bi-
nary system.

Octal — Decimal
Interpret the number (257)s.
(257)s= 2 5 7
= (2% 82) 4+ (5x 8!) + (7 % 8°)
= 128 + 40 + 7
= (175)10

Decimal — Octal
Express (175),4 as an octal number.
175/8 =21 with remainder 7
—
21/8 = 2 with remainder 5
r_._I
2/8 = 0 with remainder 2

Read
Up
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Therefore, (175)10 = (257)s which checks with the above example.
As before, work the problems at the end of the appendix if you need
practice.

Hexadecimal (Base 16)

The hexadecimal numbering system, or “hex,” uses the 10 digits
0 through 9, and the alphabetical characters A, B, C, D, E, and F.
It might seem awkward to let the letters A through F represent
numbers, but keep in mind that numbers are just symbols for quan-
tities. In this case:

A=(10), B=(11), C=(12), D= (13), E= (14), and F = (15).

Keeping this in mind, the interpretation processes are the same. The
positional weights for hex (base 16) are as follows.

Positional Weights > - - - [162] [16'] [16°] @ [16—1] [16—2] - - -

Hex — Decimal

Interpret the number (9CF);e.

(CF);g= 9 C F
=(9x162)+ (Cx16) + (Fx1)
= (9% 256) + (12x 16) + (15X 1)
= (2511)10

Note the quantity you can represent with just 3 digits using hex.

- Decimal — Hex

Express (2511}, as a hex quantity.
2511/16 = 156 with remainder 15=F
156/16 = 9 with remainder 12 =C Rg':;,d
9/16 = O with remainder 9
ThllS, (2511)10 = (QCF)le
As we said before, you might “talk” to the computer using octal
or hex; however, the computer must translate this to binary. There-

fore, it might be beneficial if you also could make this translation
to better understand the operation of the digital computer.
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Octal — Binary
Translate (257)s to binary.

2 5 7
/\ /\ /\ (257)s = (010101111),
010 101 111

NoTE: You simply expressed each octal digit as a 3-bit number.

Binary — Octal
Translate (010101111), to octal.

010 101 111
\/ \ / \ / (010101111), = (257)
2 7

The process is reversed; i.e., divide the binary number into groups
of three digits and translate to the octal digit.

Hex — Binary
Translate (9CF);4 to binary.

9 C F
/\  /\ /\ (9CF )6 = (100111001111),
1001 1100 1111

Binary — Hex
Translate (100111001111), to hex

1001 1100 1111
\/ \/ \/ (100111001111), = (9CF )46
9 C F

The process is similar to the octal translation except that you break
the binary number into groups of four digits.

Bits, Bytes, and Nibbles

A binary-digit (1 or 0) is referred to as a “bit.” Information in
microprocessors and all digital computers is typically represented
by a series of bits. A string of 4 bits is referred to as a “nibble” and
an 8-bit string is called a “byte.” You will see that memory addresses
used by the 6800 are 16 bits = 4 nibbles = 2 bytes. Data within the
6800 are represented using 8 bits = 2 nibbles = 1 byte.



Bits, Bytes, and Nibbles

4 bits: 1011 =1 nibble
6800 Data — 8 bits: 1001 1011 =1 byte
6800 Addresses — 16 bits: 1101 0100 1001 1011 =2 bytes

A “word” is not as easily defined. Its definition is largely a func-
tion of the way we use it. For example, an address word for the 6800
is 16 bits while a data word is 8 bits in length. The PDP-11 mini-
computer has a word length of 16 bits, which means that it repre-
sents information as 2 bytes. Some larger computers have word
lengths of 24 bits, 32 bits, 64 bits, etc. Note that all of the above
words are multiples of 8 bits (1 byte). The lesson here is to be very
careful of how you use this “word.”

Binary Coded Decimal (BCD)

Binary coded decimal (bcd) is another way in which numbers
can be represented in digital computers and digital systems, par-
ticularly digital instrumentation. This number system was devel-
oped because it is easy to convert between bed and decimal. When
converting from decimal to bed, each decimal digit is represented
by its own 4-bit binary equivalent.

Decimal - BCD

To convert 256,, to bed you simply express each decimal digit as
a 4-bit binary number.

2 = 0010
5=0101
6 =0110

Therefore, 256, = 0010 0101 0110ccq
The reverse procedure is used for converting from bed to decimal.

BCD — Decimal

To convert 1001 0101 ,.; to decimal, you simply divide the bed
number into groups of four bits starting at the right, then convert
each group of four bits to decimal.

1st group of four bits: 0101 = 5,,
2nd group of four bits: 1001 =9,

Therefore, 1001 01014 = 95,0
Convert 110111,.4 to decimal

290



Ist group of four bits: 0111 =7,
2nd group of four bits: 0011 = 3,,

Therefore 110111404 = 374

NOTE, you had to add the leading zeros in the 2nd group of four

bits.

Caution: bed and binary are not the same. With bed, any group

of four bits which represent a decimal number larger than nine

are considered invalid. For example, 1101 = 13,, is an invalid
bed number. However, in the binary system this bit configura-
tion is valid.

As mentioned earlier, many digital instruments use the bed for-
mat for data being transmitted and received. The 6800 has an in-
struction that will allow you to perform arithmetic operations with
bed numbers. This instruction is the decimal adjust accumulator
(DAA) instruction. With this instruction, the 6800 can work with
bed data directly without using special bed-to-binary conversion
routines.

DIGITAL COMPUTER ARITHMETIC

Digital computers utilize the binary number system and, there-
fore, must add, subtract, multiply, and divide using this system.

Addition

Suppose that you wish to add two binary numbers. Just as you
did in decimal, starting with the-rightmost column, you simply add
each column generating and using the carries as you go. To deter-
mine the sum of a column, count the number of 1s in the column.

Binary Addition
Add 10, to 11,.
carry generated 111,
by previous column + 10,

101,

L— Column contains odd number of
1s and no pairs of 1s.
Column contains even number of

1s and one pair of 1s.
Column contains odd number of
one and no pairs of 1s.
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If the number of 1s is odd, the sum will be 1 with a carry generated
for each pair of 1s. If the number of 1s is even, the sum will be 0
with a carry generated for each pair of 1s in the column that was
added. Study the above examples.

Check your results by converting to decimal.

11, =34
10, =249
1012 = 510

Add 1010, to 1110,

carry generated 111
by previous column 1110,
+ 1010,

11000,
‘ | Column contains even number of 1s

with no pairs.

Column contains even number of 1s
with one pair.

Column contains even number of 1s
with one pair.

Column contains odd number of 1s
with one pair.

Column contains odd number of 1s
with no pairs.

Check: 11102 = 1410
+ 10102 = 1010
110002 = 2410

Add 0010 1100, to 0100 1010,

Check: 0010 11002= 4410
40100 1010; = T4,

0111 0110, =118,

NEGATIVE NUMBERS AND TWOS COMPLEMENT

Microprocessors utilize twos complement to represent negative
numbers. Let us examine some definitions before we use this idea.
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Definition: The ones complement of a binary word is obtained by
inverting all of the bits within the word. (The ones complement of
a word, A, is symbolized by A.)

Ones Complement

The ones complement of 1101 1011, is 0010 0100,
The ones complement of 0000 0111, is 1111 1000,
The ones complement of 1010 0000, is 0101 1111,

Definition: The twos complement of a binary word is obtained by
taking the ones complement and adding 1 to it.

Twos Complement

Find the twos complement of each binary word above.
The twos complement of 1101 1011, =

ones complement + 1 = 0010 0100,
+ Ls
0010 0101,
The twos complement of 0000 0111, =
ones complement + 1 = 1111 1000,
+ 12
1111 1001,
The twos complement of 1010 0000, =
ones complement + 1 = 0101 1111,
+ 12

0110 0000,

The 6800 uses twos complements to represent negative numbers.
Given any positive number, the twos complement of that number
will be its negative, within the range of bits allowed.

Given any 8-bit data word D;DgDsD,D;D.D;D,, we will desig-
nate the seventh bit (D7) to be the sign bit. When this bit is 1, the
6800 will consider the word to be negative. When D, = 0, the 6800
will recognize the word as positive. Using this scheme and the twos-
complement negative number system, it can be shown that the
largest possible positive number using an 8-bit data word is 0111
1111, = +127;0. The maximum negative quantity would be 1000
00002 = —12810.

Negative Numbers

What is the 8-bit binary representation for —5;,? The 8-bit word
for +5,4 is 0000 0101; therefore, the 8-bit word for —5,, is the twos
complement of this. Hence, —5,, = 1111 1011,.
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What is the 8-bit binary representation for —12750? It is +12710 =
0111 1111,. The twos complement of 0111 1111, = 1000 0001, =
—12746.

What decimal number does 1111 0011, represent if it is defined
as an 8-bit, twos-complement value? Since D; = 1, the number is
negative. To find its value, take the twos complement and convert
to decimal, i.e., 1111 0011, = —(twos complement ),o. Twos comple-
ment of 1111 0011, = 0000 1101, = 13,o. Therefore, 1111 0011, =
_1310.

Subtraction

To subtract, you will simply take the negative (twos complement)
of the number to be subtracted and add, disregarding any last carry.

Subtraction
Subtract 3,0 from 7.
In decimal, 710 710
—_3_1(_) = +( _310)
4 4
In binary:
Tio_ 0000 0111, _ 0000 0111, _ 0000 0111,
=330 —0000 0011, — +(—0000 0011,) — +1111 1101,
40— = = 10000 0100,
Dis&'egard last carry

Subtract —25,, from —8,,
The twos complement of —25, = 0001 1001;

—810 = 1111 10002
+(—25,0) =+0001 1001,
10001 0001 = 1710 (check)

disregard I |
AND/OR/XOR Logic

The 6800 is capable of Anping, oring, and exclusive-or (Xoring)
any 8-bit data words. The process is simple; given two 8-bit words,
the 6800 just ANDs, oRs, or Xors the word bit by bit.

Logic Operations

0101 1100, 0101 1100, 0101 1100,
anp 1110 1011; or 1110 1011 Xor 1110 1011,
0100 1000, 1111 1111, 1011 0111,
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Multiplication and Division

To multiply or divide with the 6800, you must successively add
or subtract, respectively. This is one of the drawbacks of the first
generation processors such as the 6800. This process consumes time
and memory space. The second and third generation chips such as
the 6801, 6803, and 6809 all contain internal hardware multiply
functions.

REVIEW QUESTIONS

1. To what decimal numbers do the following binary numbers correspond?
a. 1101
b. 1111 1111
c.. 1101 0011
d. 1111 1111 X111} XIRRQ .
2. To what hexadecimal numbers do the binary numbers in Question 1 cor-
respond?
a.
b.
c.
d
3. To what binary numbers do the following hexadecimal numbers cor-
respond?
a.. 00FC
b. 0100
c. 01CA
d. ED5B.
e. ABCD . .
4. To what decimal numbers do the hexadecimal numbers in Question 3 cor--
respond?
a.

b.

C.
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d.
. (0011 0101:) 4 (0100 1110,) = . .
. The ones complement of 0100 1010 is

. The twos complement of the number in question 6 is
. Using twos-complement code, what is the 8-bit binary representatlon for

@~ o W

—16,?
9. Using twos-complement code, what decimal number does 1011 0110 repre-
sent?

10. (0000 0101.) — (0000 0011;) = . . .

11. (1010 1100;) X or(0111 0010:) =_

12. Convert the following decimal numbers to binary and bed: (a) 7 (b) 15
(c) 25 (d) 109

ANSWERS
1. a 134 6. 1011 0101
b. 2555
o 211 7. 1011 0110
d. 65,535 8. 1111 0000,
2. a. Dm —
b. FFi 8. ~To
c D3 10. 0000 0010:
. FFFF.
* 11. 1101 1110.
3. a. 0000 0000 1111 1100,
b. 0000 0001 0000 0000, 12. (a) Ol11,
c. 0000 0001 1100 1010. 0111sca
d. 1110 1101 0101 1011, (b) 1111,
e. 1010 1011 1100 1101, 0001 0101vce
(C) 11001;
4. a. 25210 0010 0101.,@
b. 2561 (d) 1101101,
c. 458, 0001 0000 1001yca
d. 60,763
e, 43,98110
5. 83



APPENDIX C

6800 Instruction Set

The following pages contain detailed definitions of the 72 execut-
able instructions. These pages are provided through the courtesy ot
Motorola Semiconductor Products, Inc.

.1 Nomenclature

The following nomenclature is used in the subsequent definitions.

(a) Operators

() contents of
— = is transferred to
T = "is pulled from stack”
1 = "is pushed into stack”
. = Boolean AND
© = Boolean (Inclusive) OR
@ = Exclusive OR
~ = Boolean NOT
(b) Registers in the MPU
ACCA = Accumulator A
ACCB = Accumulator B
ACCX = Accumutator ACCA or ACCB
cC = Condition codes register
X = Index register, 16 bits
IXH = Index register, higher order 8 bits
IXL = Index register, lower order 8 bits
PC = Program counter, 16 bits
PCH = Program counter, higher order 8 bits
PCL = Program counter, lower order 8 bits
SP = Stack pointer
SPH = Stack pointer high
SPL = Stack pointer low
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(c) Memory and Addressing

M = A memory location (one byte)

M +1 = The byte of memory at 0001 plus the address of the memory location indi-
cated by “M.”

Rel = Relative address (i.e. the two’s complement number stored in the second byte

of machine code corresponding to a branch instruction).
(d) Bits 0 thru 5 of the Condition Codes- Register

C = Carry — borrow bit — 0
V = Two's complement overflow indicator bit — 1
Z = Zero indicator bit — 2
N = Negative indicator bit — 3
[ = Interrupt mask bit — 4
H = Half carry bit — 5
(e) Status of Individual Bits BEFORE Execution of an Instruction

An = Bit n of ACCA (n=7,65,...,0)

Bn = Bit n of ACCB (n=7,6,5,...,0)

IXHn = Bitnof IXH (n=7,65,..,0)

IXLn = Bitnof IXL (n=7,6,5,..,0)
Mn = Bitnof M (n=76,5,..,0}
SPHn = Bitn of SPH (n=76,5,...,0)
SPLn = Bitn of SPL (n=7,6,5,...0)
Xn = Bitn of ACCX (n=7,65...,0)
(f) Status of Individual Bits of the RESULT of Execution of an Instruction
(i) For 8-bit Results
Rn = Bit n of the result (n =7,6,5,..,0)
This applies to instructions which provide a result contained in a single byte of -
memory or in an 8-bit register.-
(ii) For 16-bit Resuits
RHn = Bit n of the more significant byte of the resuit

(n =76,5,..,0)
RLn = Bit n of the less significant byte of the result
(n =7,6,5,...,0)

This-applies to instructions which provide a resultcontained in two consecu-
tive bytes of memory or in a 16-bit register.

.2 Executabie Instructions (definition of)

Detailed definitions of the 72-executable instructions of the source language are provided on the
following pages.

Add Accumulator B to Accumulator A ABA
Operation: ACCA « (ACCA) + (ACCBY):
Description: Adds the contents of ACCB-to the contents of ACCA and places the result in
ACCA.
Condition Codes: Set if there was a carry from bit 3; cleared otherwise.
Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if there was two's complement overflow :as a result of the operation;
cleared otherwise.

C:  Setif there was a carry from the most significant bit of the result; cleared
otherwise.
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Boolean Formulae for Condition Codes:
H = As-Bs+B3-Ra+Rs-As
N =R,
Z =Ry Re'Rs Ra-Ra-R2-R1-Ro
V = A;-Br-Rr+A7-Br Ry
C = A7'B;+B7 Ry +R7-Ar

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. | OCT. DEC.
Inherent 2 1 1B 033 027
Add with Carry ADC
Operation: ACCX « (ACCX) + (M) + (C)
Description: Adds the contents of the C bit to the sum of the contents of ACCX and M, and

places the result in ACCX.

Set if there was a carry from bit 3; cleared otherwise.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if there was two's complement overflow as a result of the operation;
cleared otherwise.

C: Set if there was a carry from the most significant bit of the result; cleared
otherwise.

Boolean Formulae for Condition Codes:
H = X3-Ma+Ma-Ra+R3-Xs
N =Rz
Z =R7Re'Rs Re-Ra-R2-Ri-Ro
V = X7-M7-R7+X7- M7+ Ry
C = X7-M7+M7-R7+R7- X7

Condition Codes:

<Nz I

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):
(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 89 211 137
A DR 3 2 99 231 153
A EXT 4 3 B9 271 185
A IND 5 2 A9 251 169
B MM 2 2 Cc9 311 201
B DIR 3 2 D9 331 217
B EXT 4 3 F9 371 249
B IND 5 2 E9 351 233
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ADD Add Without Carry
Operation: ACCX « (ACCX) + (M)
Description: Adds the contents of ACCX and the contents of M and places the resultin ACCX.

Condition Codes: H: Set if there was a carry from bit 3; cleared otherwise.
Not affected.

I:

N: Set if most significant bit of the result is set; cleared otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Set if there was two's complement overflow as a result of the operation;
cleared otherwise.

C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.
Boolean Formulae for Condition Codes:
H = X3-Ms+M;-Ra+Ra' Xa
N=R __ _ _ _ _ _
Z =R7-Re'Rs-Re-Ra-Rz-Ri-Ro
V = X7-M7-R7+X7-M7-R?
C = X7"My+M7-R7+R7- X7
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):
(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 8B 213 139
A DIR 3 2 9B 233 155
A EXT 4 3 B8 273 187
A IND 5 2 AB 253 171
B MM 2 2 cB 313 203
B DIR 3 2 DB 333 219
B EXT 4 3 FB 373 251
B IND 5 2 EB 353 235
AND Logical AND
Operation: ACCX « (ACCX) - (M)
Description: Performs logical “AND” between the contents of ACCX and the contents of M and

places the resultin ACCX. (Each bit of ACCX after the operation will be the logical
“AND" of the corresponding bits of M and of ACCX before the operation.)

Condition Codes: H: Not affected.
I: Not affected.
N:  Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Not affected.
Boolean Formulae for Condition Codes:
N =R;
Z = Ry-Re'Rs-Ra-Rs Rz Ri-Ro
V=0



Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 84 204 132
A DIR 3 2 94 224 148
A EXT 4 3 B4 264 180
A IND 5 2 A4 244 164
B MM 2 2 C4 304 196
B DIR 3 2 D4 324 212
B EXT 4 3 F4 364 244
B IND 5 2 E4 344 228
Arithmetic Shift Left ASL
Operation: -t
(Cle—[T T T T T T T Je—o
bz bo

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with a zero. The

C bit is loaded from the most significant bit of ACCX or M.
Condition Codes: H: Not affected.
Not affected.

I

N:  Set if most significant bit of the result is set; cleared otherwise.

Z:  Set if all bits of the result are cleared; cleared otherwise.

V. Setif, after the completion of the shift operation, EITHER (N is setand C is
cleared) OR (N is cleared and C is set); cleared otherwise.

C:  Setif, before the operation, the most significant bit of the ACCX or Mwas set;

cleared otherwise.
Boolean Formulae for Condition Codes:
N=R
Z =Rr'Re'Rs-Ra*Ra-Rz-R1-Ro
V=N@C=NCIOINC]
(the foregoing formula assumes values of N and C after the shift operation)
C=M
Addressing Formats
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes {No. of cycles) machine code HEX. OCT. DEC.
A 2 1 48 110 072
B 2 1 58 130 088
EXT 6 3 78 170 120
IND 7 2 68 150 104
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ASR Arithmetic Shift Right

Operation: ] -
[——ITIIIIIII—>
b7 bo
Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is held constant. Bit 0 is
loaded into the C bit.
Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the resuit is set; cleared otherwise.
Z: Setif all bits of the result are cleared; cleared otherwise.
V: Setif, after the completion of the shift operation, EITHER (N is setand C is

cleared) OR (N is cleared and C is set); cleared otherwise.
C: Setif, before the operation, the least significant bit of the ACCX or Mwas set;
cleared otherwise.
Boolean Formulae for Condition Codes:
N =Ry
Z = R7-Re-Rs-Ra-Ra-Rz-Ri-Ro
V=N@®@C=[NCIOIN-C]
{the foregoing formula assumes values of N and C after the shift operation)
C =M
Addressing Formats:

Addressing Mades, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of ]
Modes (No. of cycles) machine code HEX. OCT. | DEC.
A 2 1 47 107 071
B 2 1 57 127 087
EXT 6 3 77 167 119
IND 7 2 67 147, 103
BCC Branch if Carry Clear
Operation: PC « (PC) + 0002 + Rel if (C)=0
Description: Tests the state of the C bit and causes a branch if C is clear.

See BRA instruction for further details of the execution of the branch.
Condition Codes: Not affected.
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 24 044 036




BCS

Operation:
Description:

Condition Codes:

PC « (PC) + 0002 + Rel if (C)=1
Tests the state of the C bit and causes a branch if C is set.
See BRA instruction for further details of the execution of the branch.

Not affected.

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Branch if Carry Set

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 25 045 037

Branch if Equal
Operation:
Description:

Condition Codes:

PC — (PC) + 0002 + Rel if (Z)=1
Tests the state of the Z bit and causes a branch if the Z bit is set.
See BRA instruction for further details of the execution of the branch.

Not affected.

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

BEQ

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes {No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 27 047 039

BGE

Branch if Greater than or Equal to Zero

Operation: PC — (PC) + 0002 + Rel if (N) ® (V) =0
i.e. if (ACCX) = (M)
(Two’s complement numbers)
Description: Causes a branch if (N is set and V is set) OR (N is clear and V is clear).

If the BGE instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the two's
complement number represented by the minuend (i.e. ACCX) was greater than or
equal to the two’s complement number represented by the subtrahend (i.e. M).
See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 2C 054 044

303




BGT

Branch if Greater than Zero

Operation: PC — (PC) + 0002 + Rel if 2) © [(NN® (V)] =0
i.e. if (ACCX) > (M)
(two’s complement numbers)
Description: Causes abranch if [ Zis clear ] AND [(Nis setand Vis set) OR (Nis clear and Vis

clear)].

If the BGT instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch wilt occur if and only if the two's
complement number represented by the minuend (i.e. ACCX) was greater than
the two's complement number represented by the subtrahend (i.e. M).

See BRA instruction for details of the branch.
Condition Codes: Not affected.
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 2E 056 046

BHI

Branch if Higher

Operation: PC « (PC) + 0002 + Rel if (C) - (2)=0
i.e. if (ACCX) > (M)
(unsigned binary numbers)
Description: Causes a branch if (C is clear) AND (Z is clear).

If the BHI instruction is executed immediately after execution of any of the
instructions CBA, CMP; SBA, or SUB, the branch will occur if and only if the
unsigned binary number represented by the minuend (i.e. ACCX) was greater
than the unsigned binary number represented by the subtrahend (i.e. M).
See BRA instruction for details of the execution of the branch.
Condition.Codes: Not affected.
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 22 042 034
BIT Bit Test
Operation: {ACCX) - (M)
Description: Performs the logical “AND" comparison of the contents of ACCX and the contents

of M and modifies condition codes accordingly. Neither the contents of ACCX or M
operands are affected. (Each bit of the resuit of the “AND” wouid be the logical
“AND” of the corresponding bits of M and ACCX.)
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Condition Codes: H: Not affected.
I: Not affected.
N:  Setif the most significant bit of the resuft of the “AND" would be set; cleared
otherwise.
Z:  Setif all bits of the result of the “AND" would be cleared; cleared otherwise.
V: Cleared.
C:  Not affected.
Boolean Formulae for Condition Codes:

N=Rr _ _ _ _ _ _
Z =R R Rs-Re-R3-R2-R1-Ro
V=0

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. | OCT. DEC.
A IMM 2 2 85 205 133
A DIR 3 2 95 225 149
A EXT 4 3 BS 265 181
A IND 5 2 AS 245 165
B IMM 2 2 C5 305 197
B DIR 3 2 D5 325 213
B EXT 4 3 F5 365 245
B IND 5 2 E5 345 229
Branch if Less than or Equal to Zero BLE
Operation: PC — (PC) + 0002 + Rel if (ZYO[N) ® (V)]=1
i.e. if (ACCX) = (M)
(two's complement numbers)
Description: Causes abranch if (Z is set] OR [(N is set and V is clear) OR (N is clear and V is

set)].

If the BLE instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the two's
complement number represented by the minuend (i.e. ACCX) was less then or
equal to the two's complement number represented by the subtrahend (i.e. M).

See BRA instruction for details of the branch.
Condition Codes: Not affected.
Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 2F 057 047




BLS

Branch if Lower or Same

Operation: PC « (PC) + 0002 + Rel if (C)O(Z) = 1
i.e. it (ACCX) < (M)
(unsigned binary numbers)
Description: Causes a branch if (C is set) OR (Z is set).

If the BLS instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
unsigned binary number represented by the minuend (i.e. ACCX) was less than
or equal to the unsigned binary number represented by the subtrahend (i.e. M).
See BRA instruction for details of the execution of the branch.

Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal).

Condition Codes:

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 23 043 035

BLT

Operation:

Description:

Condition Codes:

Branch if Less than Zero

PC < (PC) + 0002 + Rel if (N} @ (V) = 1
i.e. if (ACCX) < (M)
(two's complement numbers)

Causes a branch if (N is set and V is clear) OR (N is clear and V is set).
if the BLT instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the two’s
complement number represented by the minuend (i.e. ACCX) was less than the
two's complement number represented by the subtrahend (i.e. M).
See BRA instruction for details of the branch.
Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 2D 055 045




Branch if Minus
Operation:
Description:

Condition Codes:

PC— (PC) + 0002 + Rel if (N) =1
Tests the state of the N bit and causes a branch if N is set.
See BRA instruction for details of the execution of the branch.

Not affected.

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 2B 053 043

Branch if Not Equal

Operation:
Description:

Condition Codes:

PC — (PC) + 0002 + Relif (Z) = 0
Tests the state of the Z bit and causes a branch if the Z bit is clear.

BNE

See BRA instruction for details of the execution of the branch.

Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 26 046 038

Branch if Plus
Operation:
Description:

Condition Codes:

PC «— (PC) + 0002 + Rel if (N) =0
Tests the state of the N bit and causes a branch if N is clear.
See BRA instruction for details of the execution of the branch.

Not affected.

Addressing Formats:

BPL

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 2A 052 042

307




BRA

Operation:
Description:

Condition Codes:

Branch Always

PC « (PC) + 0002 + Rel

Unconditional branch to the address given by the foregoing formula, in which R is
the relative address stored as a two's complement number in the second byte of
machine code corresponding to the branch instruction.

Note: The source program specifies the destination of any branch instruction by
its absolute address, either as a numerical value or as a symbol or expression
which can be numerically evaluated by the assembler. The assembler obtains the
relative address R from the absolute address and the current value of the program
counter PC.

Not affected.

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 20 040 032

BSR

Operation:

Description:

Condition Codes:

Branch to Subroutine

PC — (PC) + 0002
| (PCL)

SP — (SP) — 0001
| (PCH)

SP — (SP) — 0001
PC — (PC) + Rel

The program counter is incremented by 2. The less significant byte of the contents
of the program counter is pushed into the stack. The stack pointer is then
decremented (by ). The more significant byte of the contents of the program
counter is then pushed into the stack. The stack pointer is again decremented (by
1). A branch then occurs to the location specified by the program.

See BRA instruction for details of the execution of the branch.
Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimai):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 8 2 8D 215 141
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BRANCH TO SUBROUTINE EXAMPLE

Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A.  Before
PC <  $1000 8D BSR CHARLI
$1001 50
SP «  SEFFF
B. After
PC <  $1052 - CHARLI
SP «~  $EFFD
$EFFE 10
$EFFF 02
Branch if Overflow Clear BVC

Operation:
Description:

PC « (PC) + 0002 + Rel if (V) = 0

Tests the state of the V bit and causes a branch if the V bit is clear.
See BRA instruction for details of the execution of the branch.
Condition Codes: Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 28 050 040
Branch if Overflow Set BVS

Operation: PC «— (PC) + 0002 + Rel if (V) =1

Description: Tests the state of the V bit and causes a branch if the V bit is set.
See BRA instruction for details of the execution of the branch.
Condition Codes: Not affected.
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
REL 4 2 29 051 041




CBA

Operation:

Compare Accumulators
(ACCA) — (ACCB)

Compares the contents of ACCA and the contents of ACCB and sets the condition
codes, which may be used for arithmetic and logical conditional branches. Both
operands are unaffected.

Condition Codes: H: Not affected.
I Not affected.
N: Set if the most significant bit of the result of the subtraction would be set;
cleared otherwise.
Z: Set if all bits of the result of the subtraction would be cleared; cleared
otherwise.
V: Set if the subtraction would cause two's complement overflow; cleared
otherwise.
C: Setif the subtraction would require a borrow into the most significant bit of
the result; clear otherwise.
Boolean Formulae for Condition Codes:
N =Ry
Z = R7 Re-Rs-Ra-R3-Re-R1-Ro
V = A7»§7-ﬁ7+_A7~B7~R7
C = A7-B;+B7R7+Ry-Ar
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Description:

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 11 021 017
CLC Ciear Carry
Operation: Cbit—20
Description: Clears the carry bit in the processor condition codes register.

Condition Codes: H: Not affected.

Not affected.

I:

N: Not affected.

Z: Not affected.

V: Not affected.

C: Cleared
Boolean Formulae for Condition Codes:

C=0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 0C 014 012
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CLI

Operation:
Description:

Clear interrupt Mask
I bit <0
Clears the interrupt mask bit in the processor condition codes register. This

enables the microprocessor to service an interrupt from a peripheral device if
signalled by a high state of the “Interrupt Request” control input.

H:  Not affected.
I: Cleared.

N:  Not affected.
Z:  Not affected.
V:  Not affected.
Not affected.

Boolean Formulae for Condition Codes:
I =0

Condition Codes:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 0E 016 014
Cilear CLR
Operation: ACCX « 00
or: M — 00
Description: The contents of ACCX or M are replaced with zeros.

Not affected.
Not affected.

Condition Codes: H:

I

N: Cleared
2: Set

V: Cieared
C: Cleared

Booiean Formulae for Condition Codes:

o
o

O<NZ
Il
oo =0

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First {or only)

Number of byte of machine code

Addressing Execution Time bytes-of

Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 aF 117 079

B 2 1 S5F 137 095

EXT 6 3 7F 177 127

IND 7 2 6F 157 111
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CLvV

Operation:
Description:

Condition Codes:

Clear Two’s Complement Overflow Bit

Clears the two's complement overflow bit in the processor condition codes

Vbit—0
register.

H: Not affected.
;. Not affected.
N: Not affected.
Z: Not affected.
V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

V=0

Coding of First (or only)

Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 0A 012 010
CMP Compare
Operation: (ACCX) - (M)
Description: Compares the contents of ACCX and the contents of M and determines the

Condition Codes:

condition codes, which may be used subsequently for controiling conditional
branching. Both operands are unaffected.

H: Not affected.
I Not affected.

N: Set if the most significant bit of the result of the subtraction would be set;

cleared otherwise.

Z: Set if all bits of the result of the subtraction would be cleared; cleared

otherwise.

V: Set if the subtraction would cause two’'s complement overflow; cieared

otherwise.

C: Carryis setif the absolute value of the contents of memory is larger than the

absolute value of the accumutator; reset otherwise.

Boolean Formulae for Condition Codes:
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N =Ry

Z = ﬁ7‘ﬁs‘ﬁ5‘ﬁ4‘ﬁ3-ﬁ2'ﬁ1 ‘Ro

Vo= 57'M7~§7+Y7'M7'Ft
C = X7"M7+M;7-R7+R7- X7



Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):
(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 81 201 129
A DIR 3 2 91 221 145
A EXT 4 3 B1 261 177
A IND 5 2 Al 241 161
B IMM 2 2 C1 301 193
B DIiR 3 2 D1 321 209
B EXT 4 3 F1 361 241
B IND 5 2 E1 341 225
Complement COM
Operation: ACCX « = (ACCX) = FF — (ACCX)
or: M = (M)=FF - M)
Description: Replaces the contents of ACCX or M with its one’s complement. (Each bit of the

contents of ACCX or M is replaced with the compiement of that bit.)

Condition Codes: H: Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Cleared.

. Set

r Condition Codes:

=Ry

7'ﬁ6‘ﬁ5'ﬁ4'ﬁ3'ﬁ2‘ﬁ| 'ﬁD

Boolean Formulae fi

]

it

0O<NZZT oO<NzZ~

]

R
0
1
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of

Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 43 103 067

B 2 1 53 123 083

EXT [ 3 73 163 115

IND 7 2 63 143 099
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Compare Index Register CPX

Operation:

Description:

Condition Codes:

(IXL) — (M+1)

(IXH) — (M)

The more significant byte of the contents of the index register is compared with
the contents of the byte of memory.at the address specified by the program. The
less significant byte of the contents of the index register is compared with the
contents of the next byte of memory, at one plus the address specified by the
program. The Z bit is set or reset according to the results of these comparisons,
and may be used subsequently for conditional branching.

The N and V bits, though determined by this operation, are not intended for
conditional branching.

The C bit is not affected by this operation.

H: Not affected.

I Not affected.

N: Set if the most significant bit of the result of the subtraction from the more
significant byte of the index register wouid be set; cleared otherwise.

Z: Setif all bits of the results of both subtractions would be cleared; cleared
otherwise.

V: Set if the subtraction from the more significant byte of the index register
would cause two’'s complement overflow; cleared otherwise.

C: Not affected.

Boolean Formulae for Condition Codes:

N = Rt

z =(EHrmrms‘mrma‘R‘gz'R—W'ﬁﬁo)‘
(RL;-BLs-RLs-RLs-RLs-RL2-RL1-RLo)

V = IXH7- My RH7 +1XH7 M7-RH7

Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimai):

Coding of First (or only)-
Number of byte of . machine code:
Addressing- Execution Time bytes of

Modes {No. of cycles) machine code HEX. OCT. DEC.
iMM 3 3 8C 214 140
DIR 4 2 9C 234 156
EXT 5 3 BC 274 188
IND 6 2 AC 254 172
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Decimal Adjust ACCA

DAA

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set
the carry bit, as indicated in the following table:
State of Number State of
C-bit Upper Initial Lower Added C-bit
before Half-byte Haif-carry to ACCA after
DAA (bits 4-7) H-bit (bits 0-3) by DAA DAA
(Col. 1) (Col. 2) (Col.3) (Col. 4) (Col. 5) (Col. 6)
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
o} A-F 0 0-9 60 1
0 9-F o} A-F 66 1
o] A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1 ¢

Note: Cotumns (1) through (4) of the above table represent all possible cases which can result from
any of the operations ABA, ADD, or ADC, with initial carry either set or clear, applied to two

binary-coded-decimal operands. The table shows hexadecimal values.

Description: If the contents of ACCA and the state of the carry-borrow bit C and the hali-carry bitH are
all the result of applying any of the operations ABA, ADD, or ADC to binary-coded-
decimal operands, with or without an initial carry, the DAA operation wilt function as
follows.

Subiject to the above condition, the DAA operation will adjust the contents of ACCA and
the C bit to represent the correct binary-coded-decimat sum and the correct state of the

carry.
Condition Codes:

H:
I:

N:
Z:
V:
C:

Not affected.
Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Not defined.

Set or reset according to the same rule as if the DAA and an immediately
preceding ABA, ADD, or ADC were replaced by a hypothetical binary-

coded-decimal addition.

Boolean Formulae for Condition Codes:
N =R _ _
Z = Ry'Rs-Rs'Ra-Rs-Rz-R1-Ro

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

C = See table above.

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 19 031 025
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DEC Decrement

Operation: ACCX «- (ACCX) — 01

or: M « (M) - 01

Description: Subtract one from the contents of ACCX or M.
The N, Z, and V condition codes are set or reset according to the results of this
operation.

The C bit is not affected by the operation.

Condition. Codes: H: Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if there was two's complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow occurs if and only if (ACCX)
or (M) was 80 before the operation.

C: Not affected.

Boolean Formulae for Condition Codes:
N =R/
Z =Ry Re-As Rs'Ra-Ra-R2-Ri-Ro

sNz=

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A 2 1 4A 112 074
B 2 1 5A 132 090
EXT 6 3 7A 172 122
IND 7 2 6A 152 106
DES Decrement Stack Pointer
Operation: SP — (SP) — 0001
Description: Subtract one from the stack pointer.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 4 1 34 064 052
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Decrement Index Register

IX «— (IX) - 0001
Subtract one from the index register.
Only the Z bit is set or reset according to the result of this operation.

Operation:
Description:

Condition Codes:

H
I;
N:
2z
\

Not affected.
Not affected.
Not affected.

Set if all bits of the result are cleared; cleared otherwise.

Not affected.
Not affected.

Boolean Formutae for Condition Codes:

Z = (R__Hri_HS'WS'mrma‘RHz'm|

(RL7-RLs-RLs-RLs-RLs RL2-RL:1-R

.mo).
Lo)

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

DEX

Coding of First (or only)

Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycies) machine code HEX. OCT. DEC.
INHERENT 4 1 09 011 009
Exclusive OR EOR

Operation:
Description:

Condition Codes:

Boolean Formulae

f

ACCX «— (ACCX) @ (M)

Perform logical “EXCLUSIVE OR” between the contents of ACCX and the
contents of M, and place the resultin ACCX. (Each bit of ACCX after the operation
will be the logical “EXCLUSIVE OR” of the corresponding bit of M and ACCX

before the operation.)

<NZ@6

o<sNz~Zx

Not affected.
Not affected.

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.

Cleared
Not affected.

r Condition Codes:

R _
R7-Rs-Rs-R4-R3-Rz'R1-Ro
0
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Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 88 210 136
A DIR 3 2 98 230 152
A EXT 4 3 B8 270 184
A IND 5 2 A8 250 168
B IMM 2 2 [e:} 310 200
B DIR 3 2 D8 330 216
B EXT 4 3 F8 370 248
B IND 5 2 E8 350 232
INC Increment
Operation: ACCX « (ACCX) + 01
or: M < (M) + 01
Description: Add one to the contents of ACCX or M.
The N, Z, and V condition codes are set or reset according to the results of this

operation.
The C bit is not affected by the operation.

Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if there was two’'s complement overflow as a result of the operation;
cleared otherwise. Two's complement overflow will occur if and only if
(ACCX) or (M) was 7F before the operation.

C: Not affected.

Boolean Formulae for Condition Codes:

Condition Codes:

sSNz=T

N =R,

Z= ﬁrﬁs'ﬁrﬁa'ﬁs'ﬁrﬁrﬁo
V = X7-Xe-Xs-Xa-Xa-X2:X1-Xo
C = Ry Re-Rs-Ra-Rs-Ra Ri-Ro

Addressing Formats:

Addressing Modes, Exeqution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of

Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 4C 114 076

B 2 1 5C 134 092

EXT 6 3 7C 174 124

IND 7 2 6C 154 108
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Increment Stack Pointer

Operation:
Description:

SP « (SP) + 0001
Add one to the stack pointer.

Condition Codes: Not affected.

INS

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 4 1 31 061 049
INX Increment Index Register
Operation: IX — (IX) + 0001
Description: Add one to the index register.

Only the Z bit is set or reset according to the result of this operation.

Condition Codes: H:

osNZ T

Not affected.
Not affected.
Not affected.

Set if all 16 bits of the result are cleared; cleared otherwise.

Not affected.
Not affected.

Boolean Formulae for Condition Codes:

Z = (RA;-RHsRH;-AH.-RHs- RA2- KA, - RHo)-

(W_Tﬁ_e'ﬁ_s'm'ﬁa'ﬁ[z'ﬂ—h'R—Lo)

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 4 1 08 010 008
Jump J M P
Operation: PC <« numerical address
Description: A jump occurs to the instruction stored at the numerical address. The numerical

address is obtained according to the rules for EXTended or INDexed addressing.
Condition Codes: Not affected.
Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
EXT 3 3 7E 176 126
IND 4 2 8E 156 110
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JSR

Operation:
Either:

or:

Then:

Description:

Condition Codes:
Addressing Formats:

Jump to Subroutine

PC « (PC) + 0003 (for EXTended addressing)

PC « (PC) + 0002 (for INDexed addressing)

L (PCL)

SP «— (SP) - 0001

| (PCH)

SP « (SP) — 0001

PC < numerical address

The program counter is incremented by 3 or by 2, depending on the addressing
mode, and is then pushed onto the stack, eight bits at a time. The stack pointer
points to the next empty location in the stack. A jump occurs to the instruction
stored at the numerical address. The numerical address is obtained according to
the rules for EXTended or INDexed addressing.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
EXT 9 3 BD 275 189
IND 8 2 AD 255 173
JUMP TO SUBROUTINE EXAMPLE (extended mode)
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A.  Before:
PC —  $OFFF BD JSR CHARLI
$1000 20
$1001 77
SP «  $EFFF
B.  After:
PC — $2077 x CHARL' rx EE2 ey
SP —  $EFFD
$SEFFE 10
$EFFF 02




Load Accumulator

Operation:
Description:

Condition Codes:

LDA

ACCX — (M)

Loads the contents of memory into the accumulator. The condition codes are set
according to the data.

Boolean Formulae for Condition Codes:

Addressing Formats:

H:  Not affected.

I: Not affected.

N:  Set if most significant bit of the result is set; cleared otherwise.
Z:  Setif all bits of the result are cleared: cleared otherwise.

V:  Cleared.

C:  Not affected.

N =Ry

Z = ﬁrﬁs'ﬁs‘ﬁa'ﬁa'ﬁz'ﬁrﬁo

V =0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

o o Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 86 206 134
A DIR 3 2 96 226 150
A EXT 4 3 B6 266 182
A IND 5 2 AB 246 166
B IMM 2 2 Cé 306 198
B DIR 3 2 D6 326 214
B EXT 4 3 F6 366 246
L B IND | 5 2 E6 346 230
Load Stack Pointer LDS
Operation: SPH — (M)
SPL — (M+1)
Description: Loads the more significant byte of the stack pointer from the byte of memory at the

Condition Codes:

address specified by the program, and loads the less significant byte of the stack
pointer from the next byte of memory, at one plus the address specified by the

program.

H: Not affected.

I: Not affected.

N:  Set if the most significant bit of the stack pointer is set by the operation;
cleared otherwise.

Z:  Set if all bits of the stack pointer are cleared by the operation; cleared
otherwise.

V: Cleared.

C: Not affected.
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Boolean Formulae for Condition Codes:

Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
MM 3 3 8E 216 142
DIR 4 2 9E 236 158
EXT 5 3 BE 276 190
IND 6 2 AE 256 174
LDX Load Index Register
Operation: IXH « (M)
IXL «— (M+1)
Description: Loads the more-significant byte of the index register from the byte of memory at

the address specified by the program, and loads the less significant byte of the
index register from the next byte of memory, at one plus the address specified by

the program.

Condition Codes: H:

N:

Z:

V:
C:

Not affected.
Not affected.

Set if the most significant bit of the index register is set by the operation;,

cleared otherwise.

Set if all bits of the index register are cleared by the operation; cleared

otherwise.
Cleared.
Not affected.

Boolean Formutae for Condition Codes:
N = RHy

2 - (o B, AR Ay
(RL7-RLe-RLs RLa-RLs-

V=0

Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimai):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
. -Modes {No. of cycles) machine code HEX. OCT. DEC.
IMM 3 3 CE 316 206
DIR 4 2 DE 336 222
EXT 5 3 FE 376 254
| IND 6 2 EE 356 | 238
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Logical Shift Right LSR

Operation: -
o—= [ [ T T T T T J—= [c]
bz bo
Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded with a zero. The C
bit is loaded from the least significant bit of ACCX or M.

Condition Codes: Not affected.

Not affected.

Cleared.

Set if all bits of the result are cleared; cleared otherwise.

Set if, after the completion of the shift operation, EITHER (NissetandC is
cleared) OR (N is cleared and C is set); cleared otherwise.

C: Setif, before the operation, the least significant bit of the ACCX or M was set:
cleared otherwise.

Boolean Formulae for Condition Codes:
N =

sNz~zT

V=N®C=[N-CIOIN-C]
(the foregoing formula assumes values of N and C after the shift operation).
C =M
Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A 2 1 44 104 068
B8 2 1 54 124 084
EXT 6 3 74 164 116
IND 7 2 64 144 100
Negate NEG
Operation: ACCX «— - (ACCX) = 00 - (ACCX)
or: M~ - (M) = 00 - (M)
Description: Replaces the contents of ACCX or M with its two's complement. Note that 80 is left

unchanged.

Condition Codes: H: Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if there would be two's complement overflow as a result of the implied «

subtraction from zero; this will occur if and only if the contents of ACCX or M

is 80.

C:  Setif there would be a borrow in the implied subtraction from zero; the C bit
will be set in all cases except when the contents of ACCX or M is 00.

sNz=

Boolean Formulae for Condition Codes:
N =R;
Z = R7-Re-Rs Ra Ra R R Ro
V = R7'ﬁ6‘ﬁ5'ﬁ4‘§3'ﬁ2'ﬁ1'ﬁ0
C = R7+Re+Rs+Rq+R3+R2+R1+Ro
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Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A 2 1 40 100 064
B 2 1 50 120 080
EXT 6 3 70 160 112
IND 7 2 60 140 096
NOP No Operation
Description: This is a single-word instruction which causes only the program counter to

be incremented. No other registers are affected.
Condition Codes: Not affected.
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 01 001 001
ORA Inclusive OR
Operation: ACCX — (ACCX)O(M)
Description: Pertorm logical “OR" between the contents of ACCX and the contents of M and

Condition Codes:

places the resultin ACCX. (Each bit of ACCX after the operation will be the logical
“OR" of the corresponding bits of M and of ACCX before the operation).

H: Not affected.
Not affected.

Cleared.
Not affected.

osNZ~

Bootean Formulae for Condition Codes:
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N =Ry

Z = Rr-Rs-Rs-Ra-R3-B2-Ri-Ro

V=0

Set it most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.



Addressing Formats:

Addressing Modes, Executioanime, and Machine Code (hexadecimal/ octal/ decimal):
(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 8A 212 138
A DIR 3 2 9A 232 154
A EXT 4 3 BA 272 186
A IND 5 2 AA 252 170
B IMM 2 2 CA 312 202
B DR 3 2 DA 332 218
B EXT 4 3 FA 372 250
B IND 5 2 EA 352 234
Push Data Onto Stack PSH
Operation: 1 (ACCX)
SP — (SP) — 0001
Description: The contents of ACCX is stored in the stack at the address contained in the stack

pointer. The stack pointer is then decremented.
Condition Codes: Not affected.
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycies) machine code HEX. OCT. DEC.
A 4 1 36 066 054
B 4 1 37 067 055
Pull Data from Stack PUL
Operation: SP — (SP) + 0001
1 ACCX
Description: The stack pointer is incremented. The ACCX is then loaded from the stack, from

the address which is contained in the stack pointer.
Condition Codes: Not affected.
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A 4 1 32 062 050
B 4 1 33 063 051
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ROL Rotate Left
Operation: -
I v St B e K

Description: Shifts all bits of ACCX or M one place to the left. Bit O is loaded from the C bit. The
C bit is loaded from the most significant bit of ACCX or M.

Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if, after the completion of the operation, EITHER (N is set and C is
cleared) OR (N is cleared and C is set); cleared otherwise.

C: Setif, before the operation, the most significant bitof the ACCX or Mwas set;
cleared otherwise.

Condition Codes:

sNz~zZ

Boolean Formulae for Condition Codes:
N =Ry
Z =Ry Re'Rs Ra-Rs-R2Ri-Ro
V=N@C=[NCIOINC]
{the foregoing formula assumes values of N and C after the rotation)
C=M
Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A 2 1 49 111 073
B 2 1 59 131 089
EXT 6 3 79 171 121
IND 7 2 69 151 105
Rotate Right ROR
Operation: -
(e]l— [ T T T T [ 1 |—
bz bo
Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded from the C bit. The

C bit is loaded from the least significant bit of ACCX or M.

Condition Codes: H: Not affected.
Not affected.

I

N: Set if most significant bit of the result is set; cleared otherwise.

Z:  Setif all bits of the result are cleared; cleared otherwise.

V: Set if, after the completion of the operation, EITHER (N is set and C is
cleared) OR (N is cleared and C is set); cleared otherwise.

C: Setif, before the operation, the least significant bit of the ACCX or Mwas set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N =R/
Z =Ry Re'Rs-Ra-Rs Rz Ri-Ro
V=N®C=INCIOIN-C|
(the foregoing formula assumes values of N and C after the rotation)
C =Mo
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Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of

Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 46 106 070

B 2 1 56 126 086

EXT 6 3 76 166 118

IND 7 2 66 146 102

Return from Interrupt RTI

Operation:

SP « (SP) + 0001
SP < (SP) + 0001

SP « (SP) + 0001
SP « (SP) + 0001
SP « (SP) + 0001
SP « (SP) + 0001
(
(

. 1CC

, 1XH
L 1IXL
, 1PCH

SP — (SP) + 0001, 1PCL

Description:

, 1ACCB
, TACCA

The condition codes, accumulators B and A, the index register, and the program

counter, will be restored to a state pulled from the stack. Note that the interrupt
mask bit will be resetif and only if the corresponding bit stored in the stack s zero.

Condition Codes:

Restored to the states pulled from the stack.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or oniy)

Number of byte of machine code
Addressing Execution Time bytes of ]
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 10 1 3B 073 059
Return from Interrupt
Example
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A.  Before
PC - $D066 3B RTI
SP —  $EFF8
$EFF9 11HINZVC (binary)
$SEFFA 12
$SEFFB 34
$EFFC 56
$EFFD 78
$EFFE 55
$EFFF 67

327




B.  After

ArExx

PC - $5567 - -
SEFF8
$EFF9 11HINZVC (binary)
: $EFFA 12
$EFFB 34
$EFFC 56
$EFFD 78
$EFFE 55
spP —  $EFFF 67
CC = HINZVC (binary)
ACCB = 12 (Hex) IXH = 56 (Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)
RTS Return from Subroutine
Operation: SP «— (SP) + 0001
1 PCH
SP — (SP) + 0001
1 PCL
Description: The stack pointer is incremented (by 1). The contents of the byte of memory, at the

address now contained in the stack pointer, are loaded into the 8 bits of highest

significance in the program counter. The stack pointer is again incremented (by

1). The contents of the byte of memory, at the address now contained in the stack

pointer, are loaded into the 8 bits of lowest significiance in the program counter.
Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 5 1 39 071 057
Return from Subroutine
EXAMPLE
Memory Machine Assembler Language
Location Code (Hex) Labet Operator Operand
A. Before
PC $30A2 39 RTS
SP SEFFD
$EFFE 10
$EFFF 02
B. After
PC $1002 ”
$EFFD
$EFFE 10
SP $EFFF 02
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Subtract Accumulators SBA

Operation: ACCA « (ACCA) - (ACCB)

Description: Subtracts the contents of ACCB from the contents of ACCA and places the result
in ACCA. The contents of ACCB are not affected.

Condition Codes: H: Not affected.
Not affected.
Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the resuit are cleared; cleared otherwise.
Set if there was two's complement overflow as a result of the operation.
Carry is set if the absolute value of accumulator B plus previous carry is
larger than the absolute value of accumulator A; reset otherwise.
Boolean Formulae for Condition Codes:

N =R;

Z = ﬁrﬁe‘ﬁs‘ﬁa‘ﬁa‘ﬁz'ﬁrﬁo

V = A;-B7 R:+A, B;-Ry

C = A;-B7+B7-R;+R; - Ay

O<NZ=

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 10 020 016
Subtract with Carry SBC
Operation: ACCX — (ACCX) - (M) — (C)
Description: Subtracts the contents of M and C from the contents of ACCX and places the

result in ACCX.

Condition Codes: H: Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Set if there was two's complement overflow as a result of the operation;

cleared otherwise.

C: Carry is set if the absolute value of the contents of memory plus previous
carry is larger than the absolute value of the accumulator; reset otherwise.

sNz =T

Boolean Formulae for Condition Codes:
N =R;
Z = ﬁ7‘ﬁe‘ﬁ5'ﬁ4'§3‘ﬁz’ﬁ1 Ro
V = X7'M7‘ﬁ7+77'M7'R7
C = Y7'M7*M7'R7+R7'Y7
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Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code |
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 82 202 130
A DIR 3 2 92 222 146
A EXT 4 3 B2 262 178
A IND 5 2 A2 242 162
B IMM 2 2 Cc2 302 194
B DIR 3 2 b2 322 210
B EXT 4 3 F2 362 242
B IND 5 2 E2 342 226
SEC Set Carry
Operation: C bit < 1
Description: Sets the carry bit in the processor condition codes register.
Condition Codes: H: Not affected.
I:  Not affected.
N:  Not affected.
Z: Not affected.
V: Not affected.
C: Set
Boolean Formulae for Condition Codes:
Cc=1
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):
Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No..of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 oD 015 013
SEI Set Interrupt Mask
Operation: I bit « 1
Description: Sets the interrupt mask bit in the processor condition codes register. The-microp-

rocessor is inhibited from servicing an interrupt froma peripheral device, and will
continue with execution of the instructions of the program, until the interrupt mask
bit has been cleared.

Not affected.
Set.

Not affected.
Not affected.
Not affected.
Not affected.

Booiean Formulae for Condition Codes:
I =1

Condition Codes:

OsNZTT
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Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycies) machine code HEX. OCT. DEC.
INHERENT 2 1 OF 017 015
Set Two’s Complement Overflow Bit SEV

Operation:
Description:
Condition Codes:

H
I:
N:
z
\

V bit < 1
Sets the two's complement overflow bit in the processor condition codes register.

Not affected.
Not affected.
Not affected.
Not affected.
Set.

Not affected.

Boolean Formulae for Condition Codes:
V=1

Addressing Modes, Execution Time, and Machine Code (hexadecimai/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 0B 013 011
Store Accumuiator STA
Operation: M < (ACCX)
Description: Stores the contents of ACCX in memory. The contents of ACCX remains un-

changed.

Condition Codes: H:
I:
N:

Z:
V:
C:

Not affected.
Not affected.

Set if the most significant bit of the contents of ACCX is set; cleared

otherwise.

Set if all bits of the contents of ACCX are cleared; cleared otherwise.

Cleared.
Not affected.

Boolean Formulae for Condition Codes:

N =

X7

V=0
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Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A DIR 4 2 97 227 151
A EXT 5 3 B7 267 183
A IND 6 2 A7 247 167
B DIR 4 2 D7 327 215
B EXT 5 3 F7 367 247
B IND 6 2 €7 347 231
STS Store Stack Pointer
Operation: M < (SPH)
M + 1 « (SPL)
Description: Stores the more significant byte of the stack pointer in memory at the address

specified by the program, and stores the less significant byte of the stack pointer
atthe next location in memory, atone plus the address specified by the program.
Condition Codes: H: Not affected.
Not affected.

I:
N: Set if the most significant bit of the stack pointer is set; cleared otherwise.
Z:  Setif all bits of the stack pointer are cleared; cleared otherwise.
V: Cleared.
C: Not affected.
Boolean Formulae for Condition Codes:
N = SPHy

V=0
Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
DIR 5 2 9F 237 159
EXT 6 3 BF 277 191
IND 7 2 AF 257 175
STX Store Index Register
Operation: M — (IXH)
M + 1 < (IXL)
Description: Stores the more significant byte of the index register in memory at the address

specified by the program, and stores the less significant byte of the index register
at the next location in memory, at one plus the address specified by the program.
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Condition Codes: H:
I

N:
Z:
V:

C:

Not affected.

Not affected.

Set if the most significant bite of the index register is set; cleared otherwise.
Set if all bits of the index register are cleared; cleared otherwise.
Cleared.

Not affected.

Boolean Formuiae for Condition Codes:
N = I)ﬁ o
Z = (IXH7IXHs " IXHs - IXHa-1XH; - [XHz - IXH; - IXHo)-

(IXT7- XL IXLs - IXLg - IXL3 - IXL- IXLy IXLo)

V=0

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
DIR 5 2 DF 337 223
EXT 6 3 FF 377 255
IND 7 2 EF 357 239
Subtract SUB
Operation: ACCX — (ACCX) ~ (M)
~
Description: Subtracts the contents of M from the contents of ACCX and places the result in -
ACCX.
Condition Codes: H: Not affected.
I: Not affected.
N:  Set if most significant bit of the result is set; cleared otherwise.
Z:  Set if all bits of the result are cleared; cleared otherwise.
V:  Set if there was two's complement overflow as a result of the operation:

cleared otherwise.
Set if the absolute value of the contents of memory are larger than the
absolute value of the accumulator; reset otherwise.

Boolean Formulae for Condition Codes:

N = R7

Z = Rs-Re Rs-Ra-Ra-R2-Ri-Ro
V = X7-M7 Ry X7 M7-R7

C = X7 M>+M;-R7+R7- X7
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Addressing Formats:
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)
Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A IMM 2 2 80 200 128
A DIR 3 2 90 220 144
A EXT 4 3 BO 260 176
A IND 5 2 A0 240 160
B IMM 2 2 co 300 192
B DIR 3 2 DO 320 208
B EXT 4 3 FO 360 240
B8 IND 5 2 EO 340 224
SWi Software Interrupt
Operation: PC — (PC) + 0001

Description:

Condition Codes:

| (PCL) , SP « (SP)-0001

| (PCH) , SP « (SP)-0001
1 (IXL) , SP « (SP)-0001

| (IXH) , SP — (SP)-0001

| (ACCA) , SP — (SP)-0001
| (ACCB) SP — (SP)-0001
1 (CC), SP — (SP)-0001

| — 1

PCH « (n-0005)

PCL — (n-0004)

The program counter is incremented (by 1). The program counter, index register,
and accumulator A and B, are pushed into the stack. The condition codes register
is then pushed into the stack, with condition codes H, |, N, Z, V, C going
respectively into bit positions 5 thru 0, and the top two bits (in bit positions 7 and 6)
are set (to the 1 state). The stack pointer is decremented (by 1) after each byte of
" data is stored in the stack.

The interrupt mask bit is then set. The program counter is then loaded with the
address stored in the software interrupt pointer at memory locations (n-5) and
(n-4), where n is the address corresponding to a high state on all lines of the

address bus.

H: Not affected.
I Set.

N: Not affected.
Z: Not affected.
V: Not affected.
Not affected.

o<h

Boolean Formula for Condition Codes:

1 =1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 12 1 3F 077 063
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Software Interrupt
EXAMPLE
A. Before:

CC = HINZVC (bi

nary)

ACCB = 12 (Hex) IXH = 56 (Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
pPC —  $5566 3F SWI
SP —  $EFFF
SFFFA Do
$FFFB 55
B.  After:
PC —  $DO055
SP — $EFF8
$EFF9 11HINZVC (binary)
SEFFA 12
$EFFB 34
$EFFC 56
$EFFD 78
$SEFFE 55
SEFFF 67

Note: This example assumes that FFFF is the memory location addressed when all lines of the
address bus go to the high state.

Transfer from Accumulator A to Accumulator B TAB
Operation: ACCB « (ACCA)
Description: Moves the contents of ACCA to ACCB. The former contents of ACCB are lost.

The contents of ACCA are not affected.

Not affected.
Not affected.
Set f the most significant bit of the contents of the accumulator is set; cleared
otherwise.
Set if all bits of the contents of the accumulator are cleared: cleared other-

Condition Codes: H:
I:
N:
Z:

V:
C:

N

wise.

Cleared.

Not affected.
Boolean Formulae for Condition Codes:

=R,

Z = ﬁrﬁs'ﬁs'ﬁrﬁyﬁz'ﬁrﬁo

\

=0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 1 16 026 022
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TAP

Transfer from Accumulator A
to Processor Condition Codes Register

Operation: CC «— (ACCA)
Bit Positions
7 6 54 3 210
CI T TTTTT] Acca
H N[Zz]V]C cC
Carry-Borrow
Overflow
(Two's Complement)
Zero
Negative
Interrupt Mask
Halif Carry
Description: Transfers the contents of bit positions 0 thru 5 of accumulator A to the correspond-

ing bit positions of the processor condition codes register. The contents of
accumulator A remain unchanged.

Condition Codes:  Set or reset according to the contents of the respective bits 0 thru 5 of accumulator
A

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or onIyT
Number of byte of machine code
Addressing Execution Time bytes of
Modes {No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 06 006 006
TBA Transfer from Accumulator B to Accumulator A
Operation: ACCA — (ACCB)
Description: Moves the contents of ACCB to ACCA. The former contents of ACCA are lost.

The contents of ACCB are not affected.

Condition Codes: H:

osNZ™

Not affected.
Not affected.

Cleared.
Not affected.

Boolean Formutae for Condition Codes:

N

=Ry

Z =Ry, Re-Rs-Ra-Ra Rz Ri Ro

\

=0

Set if the most significant accumulator bit is set; cleared otherwise.
Set if all accumulator bits are cleared; cleared otherwise.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 17 027 023
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Transtfer from Processor Condition Codes Register to TPA

Operation:

Description:

1
1

Condition Codes:

Accumulator A

ACCA — (CC)
Bit Positions
7 6 543 210
LI T I T T T71 acca
_A

Hit[N]Z [0] ccC
Carry-Borrow

Overflow
(Two's Complement)

Zero

Negative

Interrupt Mask

Half Carry

Transfers the contents of the processor condition codes register to corresponding
bit positions 0 thru 5 of accumulator A. Bit positions 6 and 7 of accumulator A are
set (i.e. go to the “1” state). The processor condition codes register remains
unchanged.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First {or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 2 1 07 007 007
Test TST
Operation: (ACCX) ~ 00
(M) — 00
Description: Set condition codes N and Z according to the contents of ACCX or M.

Condition Codes:

H: Not affected.

I Not affected.

N:  Set if most significant bit of the contents of ACCX or M is set; cleared
otherwise.

Z:  Setif all bits of the contents of ACCX or M are cleared; cleared otherwise.

V: Cleared.

Boolean Formulae for Condition Codes:

C: Cleared.

N=M

Z = M7-Ms-Ms-Ms-M3 M2 M, -Mo
V=0

C=0
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Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
A 2 1 4D 115 077
B 2 1 5D 135 093
EXT 6 3 7D 175 125
IND 7 2 6D 155 109
TSX Transfer from Stack Pointer to Index Register
Operation: IX — (SP) + 0001
Description: Loads the index register with one plus the contents of the stack pointer. The

contents of the stack pointer remain unchanged.

Condition Codes: Not affected.
Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.
INHERENT 4 1 30 060 048
sz Transfer From Index Register to Stack Pointer
Operation: SP « (IX) — 0001
Description: Loads the stack pointer with the contents of the index register, minus one.

The contents of the index register remain unchanged.
Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)

Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code - HEX. OCT. DEC.
INHERENT 4 1 35 .065 053




Wait for Interrupt

Operation:

Condition Codes:
Description:

Condition Codes:

WAI

PC — (PC) + 0001

| (PCL), SP « (SP)-0001

| (PCH) , SP — (SP)-0001
| (IXL) , SP — (SP)-0001

| (IXH) , SP «— (SP)-0001

| (ACCA) , SP « (SP)-0001
| (ACCB) , SP « (SP)-0001
1 (CC), SP « (SP)-0001
Not affected.

The program counter is incremented (by 1). The program counter, index register,
and accumulators A and B, are pushad into the stack. The condition codes
register is then pushed into the stack, with condition codes H, I, N, Z, V, C going
respectively into bit positions 5 thru 0, and the top two bits (in bit positions 7 and 6)
are set (to the 1 state). The stack pointer is decremented (by 1) after each byte of
data is stored in the stack.

Execution of the program is then suspended until an interrupt from a peripheral
device is signalled, by the interrupt request control input going to a low state.

When an interrupt s signalled on the interrupt request line, and provided the | bitis
clear, execution proceeds as follows. The interrupt mask bit is set. The program
counter is then loaded with the address stored in the internal interrupt pointer at
memory locations (n-7) and (n-6), where n is the address corresponding to a high
state on all lines of the address bus.

H: Not affected.

I: Not affected until an interrupt request signal is detected on the interrupt
request control line. When the interrupt request is received the I bit is set and
further execution takes place, provided the | bit was initially clear.

Not affected.

Not affected.

Not affected.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code
Addressing Execution Time bytes of
Modes {No. of cycles) machine code HEX. OCT. DEC.
INHERENT 9 1 3E 076 062
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MOTOROLA MC6800

10 to 70°C: L or P Suffix)

-
Semiconductors
BOX 20912 ., PHOENIX, ARIZONA 85036 Mc6800c
(-40 to 85°C; L Suftix only}
MICROPROCESSING UNIT (MPU)
The MC6800 is a monolithic 8-bit microprocessor forming the Mos
central control function for Motorola’s M6800 family. Compatible
with TTL, the MCBB00. as with all M6800 system parts, requires
only one +5.0-volt power supply, and no external TTL devices for
bus interface. {NCHANNEL, SILICON-GATE)
The MCGBB00 is capable of addressing 65K bytes of memory
with its 16-bit address lines. The 8-bit data bus is bidirectional as
well as 3-state, making direct memory addressing and multiproces-
sing applications realizable. R
® Eight-Bit Parallel Processing MICROPROCESSO
@ Bi-Directional Data Bus
® Sixteen-Bit Address Bus — 65K Bytes of Addressing
® 72 Instructions — Variable Length
® Seven Addressing Modes — Direct, Retative, Immediate, Indexed,
Extended, !mplied and Accumulator
® Variabte Length Stack
® Vectored Restart
& Maskable Interrupt Vector
® Separate Non-Maskable Interrupt — Internai Registers Saved
In Stack
® Six Internal Registers — Two Accumulators, Index Register,
Program Counter, Stack Pointer and Condition Code Register L SUFFIX
® Direct Memory Addressing {DMA) and Multiple Processor CERAMIC PACKAGE
Capability CASE 715
® Clock Rates as High as 1 MHz OT SHOWN: P SUFFIX
N HOWI
@ Simple Bus Interface Without TTL PLASTIC PACKAGE
¢ Hait and Single instruction Execution Capability Case 711
246800 MICROCOMPUTER FAMILY
MCE800 MICROPROCESSOR
BLOCK DIAGRAM BLOCK DIAGRAM
MCE800
Microprocessor Data Bus Address Bus
i Read Only t
4 Memory
Data Registers Adddress
Buffers Registers
Random and Bul and Buffers
Access
A Memory

Interface
Adaprer

i

i 9 ALY

Input/ —am|
tnterface
* Adapter Output Control
1 Control

Address Data
Bus
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ELECTRICAL CHARACTERISTICS (Vce =50V £ 5%, Vgg = 0, Ta = 0 10 70°C unless otharwise noted.}

Vov - Vgg t 0.5V - Clock Overlao
Ineasurement point

Characteristic Symbol Min Typ Max Unit
Input High Voltage Logic VIH Vsg +20 - vee Vde
0102 Vine | vec-03 - Vee + 0.1
input Low Voltage Logic ViL Vss - 0.3 - Vgs + 08 Vde
91,02 ViLe vgs — 0.1 - vgs+0.3
Clock Overshoot/Undershoot — tnput High Level vos | Voo -95 - Veg+05 Vdc
— Input Low Level Vgs - 05 - Vgs + 05
Input Leakage Current lin LWAde
Vin = 010525 V, Vg = max) Logic* - 1.0 25
(Vin=0105.25 V, Vgg = 0.0 V} 01,62 - - 100
Three-State (Off State) Input Current 00-D7 1151 - 20 10 uAde
{Vin 041024V, Vg = max) AQ-A15 R/W - - 100
Output High Voltage VOoH Vdc
—205 uAdc, Vg = min} 00-07 Vss+24 - -
—145 pAde, Ve = min) AO-A15,R/WVMA Vgs +24
00 1 Adc, Vg = min) 8A Vgg +24 - -
Output Low Voltage VoL - - Vss + 04 Vdc
{1 gad = 1.6 mAdc, Ve = min)
Power Dissipation Pp - 0.600 12 W
Capacitance = 01,02 Cin 80 120 160 oF
(Vin =0, Ta = 25°C, 1 = 1.0 MHz) TsC - - 15
DBE - 7.0 10
D0-07 - 10 125
Logic tnputs - 85 85
AD-A15.R/W.VMA Cout - 12 oF
Frequency of Operation * 01 - 10 MHz
Clock Timing {Figure 1)
Cycle Time toye 10 - 10 us
Clock Putse Width PWon ns
{Measured at Voo — 0.3 V) @1 430 - 4500
2 1 450 4500
Total 01 and 92 Up Time [ 940 - ns
Rise and Fall Times 01,92 tor. ot 50 - 50 ns
(Measured between Vss + 0.3 V and Voe — 0.3V}
Delay Time or Clock Separation td 0 - 8100 ns
{Measured at VQy = Vgg + 0.5 V]
Overshoot Duration 108 0 40 ns
*Except TRQ and NN, which require 3 ki2 pullup load resistors for wire-OR capability at optimum operation
*Capacitances are periodically sampled rather than 100% tested
FIGURE 1 — CLOCK TIMING WAVEFORM
Overshoot
- Vos
Vipgmin
— " Vos
08
Unaershoot
o8 —|
\\:os
(Lemax
Tor [
Vos
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MAXIMUM RATINGS

This device contains circuitry to protect the
inputs against damage due to high static voit-

ages or electric fields; however, it is advised that

normal precautions be taken to avoid applica-
tion of any voltage higher than maximum rated

voltages to this high impedance circuit.

Rating Sysabol Vaive Unit
Supply Voltage vee [ 0310470 | vac
Irput Voltage Vin | 031t0+70 | v
Operating Temperature Range Ta 010 +70 °c
Storage Temperature Range Tetg | —95to +150 5C
Thermal Resistance 0a 70 oc/w

READ/WRITE TIMING Figures 2 and 3, t = 1.0 MHz, Load Circuit of Figure 6.

Characteristic Symbot Min Typ Max Unit
Address Detay TAD - 220 300 ns
Peripheral Read Access Time tace - - 540 ns
tacc ~ lut — {taD * tDSR!
Data Setup Time {Read) DSR 100 - - ns
Input Data Hold Time ty 10 - - ns
Output Data Hoid Time tH 10 25 - ns
Address Hold Time {Address, R/W, VMA) tan 50 75 - ns
Enable High Time for DBE Input EH 450 - - ns
Data Delay Time (Write) tDDW - 165 225 ns
Processor Controls*®
Processor Control Setup Time wes 200 - - ns
Processor Controt Rise and Fall Time tpcr. tpCH - - 100 ns
Bus Available Delay 18A - - 300 ns
Three State Enable tTsE . - 40 s
Three State Delay trsp - - 700 ns
Data Bus Enable Down Time During 1 Up Time (Figure 3) 1OBE 150 - - ns
Data Bus Enable Delay (Figure 3) 1DBED 300 - - ns
Data Bus Enable Rise and Fall Times (Figure 3 tDBEr. tDBEF - - 25 ns

*Additional informatian is given in Figures 12 through 16 of the Family Characteristics -

see pages 17 through 20,

FIGURE 2 - READ DATA FROM MEMCRY OR PERIPHERALS

Start of Cycle

/
o Vee 03V /
03v 03v
-t
L vee-03v
02 T\o.av )
- - tAD - i
24 V- e
R/W ! °
AN

Adaress 24V o
From MPU 0.4 v e

AR eats Not vatia

i ‘Dsna’

ol |- tH

re—- taD e — - -tace
Data ! 20v
From Memory
or Peripherals . 08V —-

Data Valia
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FIGURE 3 — WRITE IN MEMORY OR PERIPHERALS

DBE = 02 \

—— Startof Cycle

teve

Ve - 0.3V
1
@ CERM
‘.1 S
0z \
fe—tan
R/W
0.4 v—
Adaress 2.4 v |
3
rom MPU 0.4 V
—"1AD
24v
VMA
tAD—of
Dsta
From MPU

Data Vatig

DBE # 02
(~— 'DBEr
24v
Data
From MPU iy
j—toDW—=

R Cate Not Valig

FIGURE 4 - TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING

FIGURE 5 — TYPICAL READ/WRITE, VMA, AND
ADDRESS OUTPUT DELAY versus CAPACITIVE LOADING

C(. LOAD CAPACITANCE (pF)

S @ MOTOROLA Semiconductor Products Inc.
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FIGURE 6 — BUS TIMING TEST LOAD

TYPICAL POWER SUPPLY CURRENT

a75v 2 FIGURE 7 - VARIATIONS WITH FREQUENCY
N o7 Duty Cycie < o2 Doty Cycle ~ 5%
= IHC = 50V
AL= 22k & ViLe = 0V
s Vee = 5.0V
Test Point MMEDE"SO s BT
or Equiv z
" Equ g .
p 1
c ] <
MmD7000 om0 200 100 500 300 woe 1200
or Equiv

f QPERATING FREQUENLY (kH1)

FIGURE 8 — VARIATIONS WITH TEMPERATURE

Ea
C = 130pF for DO-D7 E 1 21 Doty Cydle = 02 Duty Cycle = 50°,
90 pF for AD-A15, R/W, and VMA = VMg = 50V 7
30 pF for BA > o vigg = 0V
A 1.7 k2 for DO-D7 S veg > 50V
16.5 k(2 for AD-A15, R/W, and VMA 2 1= 500kH/
24k for BA = -— Lo
£ I~ ]
3 L]
5
=t 20 I 60 30 100 120

Ta, AMBIENT TEMPERATURE {9C}

EXPANDED BLOCK DIAGRAM

A15 Al4 A13 AIZ A1l AID A9 A8 A7 A6 A5 aa A3 A2 A} A0
25 24 2 '

IR R R
L su —’

Output
Butters

Clock 01 3 —#e]
Clock. 02 37 ——td
feser 40 —an]
of Maskabie I6teiipt 6 —md
pa 2T rction
iirérritn Roaodis 4 —ml  Gacace
Thee State Control 39—l commor
Oare BusEnavie 36 —an]
s Avariavie 7 a—|
Vato Memory Adaress 5 a—]

Resdiwine 38

Jnsteuction J]
Register — — B

29 3% 31 32 1

Vss T Pn 123 o7 oe D3 D2 D! DO

vec - Pin® % 27 28
o6 DS
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Proper operation of the MPU requires that certain con-
trol and timing signals be provided to accomplish specific
functions and that other signal lines be monitored to
determine the state of the processor.

Clocks Phase One and Phase Two (61, $2) ~ Two pins
are used for a two-phase non-overlapping clock that runs
at the VC( voltage level.

Address Bus (A0-A15) — Sixteen pins are used for the
address bus. The outputs are three-state bus drivers capa-
ble of driving one standard TTL toad and 130 pF. When
the output is turned off, it is essentially an open circuit
This permits the MPU to be used in DMA applications.

Data Bus (D0-D7) — Eight pins are used for the data
bus. It is bi-directional, transferring data to and from the
memory and peripheral devices. It also has three-state
output buffers capable of driving one standard TTL load
and 130 pF

Halt — When this input is in the low state, all activity
in the machine will be halted. This input is level sensitive.
in the halt mode, the machine will stop at the end of an
instruction, Bus Available will be at a one level, Valid
Memory Address will be at a zero, and all other three-state
lines will be in the three-state mode.

Transition of the Halt line must not occur during the
last 250 ns of phase one. To insure single instruction
operation, the Falt line must go high for one Clock cycle.

Three-State Control (TSC} — This input causes alt of the
address lines and the Read/Write line to go into the off or
high impedance state. This state will occur 700 ns after
TSC = 2.0 V. The Valid Memory Address and Bus Available
signals will be forced low. The data bus is not affected by
TSC and has its own enable {Data Bus Enable). In DMA
applications, the Three-State Coitrol line shoutd be
brought high on the leading edge of the Phase One Clock
The ¢1 clock must be held in the high state and the ¢2
in the low state for this function to operate property. The
address bus will then be available for other devices 10
directly address memory. Since the MPU s a dynamic
device, it can be held in this state for only 45 us or
destruction of data will occur in the MPU.

Read/Write (R/W) — This TTL compatible output
signals the peripherals and memory devices whether the
MPU is in a Read {high} or Write {low} state. The normal
standby state of this signal is Read (high). Three-State
Control going high will turn Read/Write to the off (high
impedance} state. Also, when the processor is halted, it
will be in the off state. This output is capable of driving
one standard TTL load and 90 pF

Valid Memory Address (VMA) — This output indicates
to peripheral devices that there is a valid address on the
address bus. In normal operation, this signal should be
utitized for enabling peripheral interfaces such as the
PIA and ACIA. This signal is not three-state. One standard
TTL load and 90 pF may be directly driven by this active
high signal.

346

MPU SIGNAL DESCRIPTION

Data Bus Enable {DBE) — This input is the three-state
control signal for the MPU data bus and will enable the
bus drivers when in the high state. This input is TTL com-
patible; however in normal operation, it would be driven by
the phase two clock. During an MPU read cycle, the data
bus drivers will be disabled internally. When it is desired
that another device control the data bus such as in Direct
Memory Access (DMA) applications, DBE should be
held low.

Bus Available (BA) — The Bus Available signal will
normally be in the low state; when activated, it will go to
the high state indicating that the microprocessor has
stopped and that the address bus is available. This will
occur if the Halt line is in the low state or the processor
is in the WAIT state as a result of the execution of a
WAIT instruction. At such time, all three-state output
drivers will go to their off state and other outputs to their
normatly inactive tevel. The processor is removed from the
WAIT state by the occurrence of a maskable {mask bit
| = 0} or nonmaskable interrupt. This output is capable
of driving one standard TTL load and 30 pf

interrupt Request {TRQ) — This level sensitive input
requests that an interrupt sequence be generated within
the machine. The processor wilt wait until it compietes the
current instruction that is being executed before it recog-
nizes the request. At that time, if the interrupt mask bit
in the Condition Code Register is not set, the machine will
begin an interrupt sequence. The Index Register, Program
Counter, Accumulators, and Condition Code Register are
stored away on the stack. Next the MPU will respond to
the interrupt request by setting the interrupt mask bit high
so that no further interrupts may occur. At the end of the
cycle, a 16-bit address will be loaded that points to a
vectoring address which is focated in memory locations
FFF8 and FFF9. An address loaded at these locations
causes the MPU to branch to an interrupt routine
in memory.

The Halt line must be in the high state for interrupts to
be serviced. Interrupts will be latched ‘internally while
Halt is low.

The TRQ has a high impadance pullup device internal
to the chip; however a 3 k§l external resistor 10 VCC
should be used for wire:OR and optimum control
of interrupts.

Heset — This input is used to reset and start the MPU
from a power down condition, resulting from a power
failure or an initial start-up of the processor. If a high level
is detected on the input, this will signal the MPU to be-
gin the restart sequence. This will start execution of a
routine to initialize the processor from its reset condition
All the higher order address lines will be forced high. For
the restart, the last two (FFFE, FFFF) locations in
memory will be used to 10ad the program that is addressed
by the program counter. During the restart routine, the
interrupt mask bit is set and must be reset before the MPU
can be interrupted by fRQ.

- @ MOTOROLA Semiconductor Products Inc. —  ——— ———
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Figure 9 shows the initi of the microprocessor
after restart. Reset must be held low for at least eight
clock periods after Vo reaches 4.75 volts. If Reset goes
high prior to the leading edge of $2, on the next ¢1
the first restart memory vector address (FFFE) will
appear on the address lines. This location should contain
the higher order eight bits to be stored into the program
counter. Following, the next address FFFF should contain
the lower order eight bits to be stored into the pro-
gram counter.

Non-Maskable interrupt (NMI) — A low-going edge on
this input requests that a non-mask-interrupt sequence be
generated within the processor. As with the interrupt
Request signal, the processor will complete the current
instruction that is being executed before it recognizes the
NM1 signal. The interrupt mask bit in the Condition Code
Register has no effect on NMT.

475 Vv

FIGURE 9 — INITIALIZATION OF MPU AFTER RESTART

The Index Register, Program Counter, Accumulators,
and Condition Code Register are stored away on the
stack. At the end of the cycie, a 16-bit address will be
loaded that points to a vectoring address which is located
in memory locations FFFC and FFFD. An address loaded
at these locations causes the MPU to branch to a non-
maskable interrupt routine in memory.

NMi has a high impedance pullup resistor internal to
the chip; however a 3 k{2 external resistor to VCC should
be used for wire-OR and optimum contro! of interrupts.

Inputs TRQ and NMI are hardware interrupt lines that
are sampled during ¢2 and will start the interrupt
routine on the ¢1 following the completion of an
instruction.

Figure 10 is a flow chart describing the major decision
paths and interrupt vectors of the microprocessor. Table
1 gives the memory map for interrupt vectors.

2

Asset

1 n L n_n rnf f 1 L nn N n.n

l

|

S
f‘h 2 B Clock Times ~———4
VMA Ll T T 777 7 72 22 777 77777 7 777 277 7

Address Out = Contants of
FFFE + FEFE

h
——#{ [=—First Inswruction Loaded into MPU
1

Address Out
= FFFE
Address Out
= FFEF

TABLE 1 — MEMORY MAP FOR INTERRUPT VECTORS

Vector Descriptio:
iption
MS LS
FFFE  FFFE Restart
FFFC  FFFO Non-masksble Interrupt
FEFA  FFFB Sottware Interrupt
FFF8  FFF9 Interrupt Request

e — @ MOTOROLA Semiconductor Products Inc.
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FIGURE 10 — MPU FLOW CHART

FEFE, FRFE

te

h Instruction Executs
sty Interrupt Routine

Execute

Instruction NM) iRQ
FFEC FEF8
FFFD FFFD

}

MPU

The MPU has three 16-bit registers and three 8-bit
registers available for use by the programmer (Figure 11}.

Program Counter — The program counter is a two byte
{16-bits} register that points to the current program
address.

Stack Pointer -~ The stack pointer is a two byte register
that contains the address of the next available Jocation
in an external push-down/pop-up stack. This stack is
normally a random access Read/Write memory that may

348
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REGISTERS

have any location (address} that is convenient. In those
applications that require storage of information in the
stack when power is lost, the stack must be non-volatile.

Index Register — The index register is a two byte register
that is used to store data or a sixteen bit memory address
tor the Indexed mode of memo#y addressing

Accumulators ~ The MPU contains two 8-bit accumu-
lators that are used to hold operands and results from an
arithmetic fogic unit {ALU).
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FIGURE 11 — PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

7

I
Accumulator A
1 o
15 2
L 1%
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pC Program Counter

Index Registes
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I SP Stack Pointer
7 2

Condition Codes
Register

1Nl zivic

Carry (From Bit 7)
Overtiow
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————— interrupt

Halt Caery (From Bit 3)

FIGURE 12 — SAVING THE STATUS OF THE MICROPROCESSOR IN THE STACK
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IXH Index Register. Higher Order 8 Bits m-4} ACCA
XL Index Ragister, Lower Order 8 Bits m-3| 1xm
PCH  Program Counter. Higher Order 8 Bits Ty
PCL  Program Counter, Lower Order 8 Bits m-2 m-2 *
m-t1 m-1 PCH ‘E
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3
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Betore Atrer
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Condition Code Register — The condition code register
indicates the results of an Arithmetic Logic Unit operation:
Negative (N), Zero (2), Overflow {V), Carry from bit 7
(C), and haif carry from bit 3 (H). These bits of the
Condition Code Register are used as testable di

this location when it fetches the immediate instruction

for execution. Thesa are two or three-byte instructions.
Direct — In direct g. the address of

the operand is conumed in the second byte of the

for the conditional branch instructions. Bit 4 is the
interrupt mask bit (1). The unused bits of the Condition
Code Register (b6 and b7) are ones.

Figure 12 shows the order of saving the microprocessor
status within the stack.

MPU INSTRUCTION SET
The MCB800 has a set of 72 different instructions.
Included are binary and decimal arithmetic, logica, shift,
rotate, load, store, conditional or unconditional branch,
interrupt and stack manipulation instructions {Tables 2
thru 6).

. MPU ADDRESSING MODES

The MCB800 eight-bit microprocessing unit has seven
address modes that can be used by a programmer, with the
addressing mode a function of both the type of instruction
and the coding within the instruction. A summary of the
addressing modes for a particular instruction can be found
in Tabie 7 atong with the associated instruction execution
time that is given in machine cycles. With a clock fre-
quency of 1 MHz, these times would be microseconds.

Direct a ing ailows the user to directly
address the lowest 256 bytes in the machine i.e., locations
zero through 255. ion times are hieved
by storing data in these in most
it should be a random access memory. These are two-byte
instructions.

ded A ing — In ded addressing, the
address contained in the second byte of the instruction is
used as the higher eight-bits of the address of the operand.
The third byte of the instruction is used as the lower
eight-bits of the address for the operand. This is an abso-
lute address in memory. These are three-byte instructions.

Indexed Addressing — In indexed addressing, the address
contained in the second byte of the instruction is added
to the index register's lowest eight bits in the MPU. The
carry is then added to the higher order eight bits of the
index register. This result is then used to address memory,
The modified address is held in a temporary address regis-
ter so there is no change to the index register. These are
two-byte instructions.

Implied Addressing — In the implied addressing mode
the instruction gives the address (i.e., stack pointer, index
register, etc.). These are one-byte instructions.

Relative Addressing — In relative addressing, the address

operand is contained in the second byte of the instruction
except LDS and LD X which have the operand in the second
and third bytes of the instruction. The MPU addresses

BGE Branch if Greater or Equal Zero
BGT Branch # Greater than Zero

(accx) ing — In
only ing, either | Aor [ Bis d
specified. These are one-byte instructions.
di = Ini i addressing, the

Complement
Compare Index Register ATS

ABA Add Accumulators CLR Clear

ADC Add with Carry CcLv Clear Overflow
ADD Add CMP Compare

AND Logical And COM

ASL Arithmetic Shift Left CPX

ASR Arithmetic Shift Right DAA Decimal Adjust
BCC Branch it Carry Clear DEC Decrement
BCS Branch if Carry Set DES

BEQ Branch if Equal to Zero DEX

Decrement Stack Pointer SEC
Decrement Index Register SEI

EOR Exclugive OR

in the second byte of the instruction is added
to the program counter’s lowest eight bits plus two. The
carry or borrow is then added to the high eight bits. This
allows the user to address data within a range of -1251t0
+129 bytes of the present instruction. These are two-
byte instructions.

TABLE 2 — MICROPROCESSOR INSTRUCTION SET — ALPHABE TIC SEQUENCE

PUL Puil Data

ROL Rotate Left

ROR Rotate Right

RTI Return trom Interrupt
Return from Subroutine
SBA Subtract Accumulators
sBC Subtract with Carry

BHI Branch it Higher INC Increment
BIT  Bit Test NS Incroment Stack Pomier 1w S ien Fesier
BLE Branch # Less or Equal INX incrament Index Register SuUB Sublract
BLS Branch if Lower or Same

JMP Jump Swi Software Interrupt
eLT Branch it Less than Zero .
BMI  Branch i Minus JSR Jump 1o Subroutine TAB  Transfer Accumulators

BNE  Branch ¥ Not Equal to Zero LDA  Load Accumulator TAP  Transter Accumuiators to Condition Code Reg.

BPL Branch # Plus LDS Load Stack Pointer TBA Transter Accumulators

BRA  Branch Always LDX Load Index Register TPA Transier Condition Code Reg. to Accumuiator

BSA  Branch to Subroutine LSR Logical Shift Right ST Test

evC Branch i Overflow Clear NEG ‘e TSX Transter Stack Pointer to Index Register

(B:;I: Branch it Overfiow Set NOP Ne‘.wc ation TXS Transfer Index Register o Stack Pointer
Compare Accumulators . WAI Wait for interrupt

e Ciaar Carry ORA Inciusive OR Accumuiator

cu Ciear Interrupt Mask PSH Push Data
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TABLE 3~ ACCUMULATOR AND MEMORY INSTRUCTIONS

ADDRESSING MODES

BOOLEAN/ARITHMET(C OPERATION

COND. CODE AEG

Tewr gt
o NotAltecteg

P @ MOTOROLA Semiconductor Products Inc.

citared otbrewnse

o1RECT INGEX | ExTNO | mweuiED 1Al vegster Labely sle]s]2]1]o
OPERATIONS wueMoNIC | op o0 o o slee - el to concenis) MitngEIve
Aad aoDA fu8 2 2fs6 3 2]ae 5 7]se ¢ 3 A on BRAE
L R T E T B Y 6wy .
Add A ints aga W21 [aswa .
Add win Carry ADcA [ B8 2 2098 1 2fas 5 208y 4 3 Avmec ol
asce tes 2 2|08 1 2(es v 2és o 3 Bem-c ok .
Ao anoa |8 2 2196 3 2|ac s 2fpe & 3 I sle
anDy [ Ce 7 2[4 3 2ite s 2k @ 3 8wk ofe
Bt Tuyy BITA | By 2 2|9 3 2|ay 5 2@y @ 3 Aw ofel:
se [ @ z{os 3 2[5 5 7[5 a3 5w ole
Cear R o 1 2| § 3 0w oo
ciAa @ 2 1 dug s oo
cuag s 2 1o ole
Comgars wea |0z 2 e 3 2|m s 2fe e 3 A om ole
e (o2 zjor 3 ozfer s 2|0 e 3 € om ofef: ]2
[, cBa w2 oi|ae oo i
[ com RV w o ofe s
coma 2 114 -a oo s
comg 32 |8 -e ofe s
[ NEG 0 4 2| b 3 0 MM oo D
Nyt NEGA 0 2 |00 a-a ola|: Q)|
NEDE 0 7 1|00 8B oo o
Drerngl At & DaA 192 1| Conveats Buary Add ol BCO Characiers @[ @] o
i BCD Forn
[ ote o2l e 3 oM olef:fila]e
veca w2 tfa s slef:|:fafe
oty a7 0|8 1w sei:|ilafe
Eoutanr OR wra | ss 2 209 3 7|a8 s 2(me ¢ 3 AGM <A sie|:|:]n[e
tose Jcx 2 2fo8 3 2yke s 2[re 4 3 BOM -8 ofe[tftfafe
b NG /2|6 3 LR ole]i| B e
INCA 4 2 1 A1 A DCIEE Q O
Nce €2 1 jBer-w ole]:f BN
Load gt was 86 2 2|w 3 zjac v 2l & 3 w oA efeliiz|ufe
was (s 2 2{06 3 2fe 5 2{t6 o 3 P slef:|i]nle
[ oRaa lga 2 2|98 3 zjan 5 2[ea 4 3 Avwa ofe]ifila]e
owag fea 2 2|0a 3 2|€A s 2|Fa 4 3 Bew g ofef:|i]nle
Puts Bt Psua % 4 1 fa M 1 -sp o[efofole]e
Psug o4 1|k Mg 1w alo(o[s|0|s
Pt Ot PuLA R I R ojo|e[s|o]s
PuLs N R oole[e|als
Rinats Lot AOL 87 2|6 2 " — NUBRHON
oo 0T I
KoLe 97 1ie) € HOHRCH
- Rr ROk % 7 2|k 6 3 " ofe|i @
noRa % 2 1 A] ofol: |11
RoRE 2 18 ool [il@d:
ast 6 1 218 5 3 W olel: t
Aste 2 18 ofe|:i1)d]:
L S— a5k 7] T " ole|] kD)
Jo . } MHRNG
SRy sio2 e o]t @0
Shtt g, Lo ) L I T " o[ein :
isRA Wz oua ale|r
tsh w2 1| ofafnlt
Stons Ao sTan voa 2la ¢ afe s 3 Aw ofo]t|:
s1ap oo afer s o283 Lo ofel:|:
. swa (a0 2 2|9 3 z|a0 s 2|s0 4 3 A Mo olo
suse oo 2 2)oo 3 2pe0 v 2)f0 & 3 B oW NNE
Subact Acuius sea w2 1| ogea .le
Suble woth Carry ssa w7 2w o3 2)ar s 2{e & 3 A M oCoa efol:f:]:]:
sece [z 2 2(w2 3 afe2 s 2w 3 B owoCoe efo]:|1]:]:
Teamber Acaits 148 6 2 1Ak olel:|:[nfe
Toa vz ol a oo Rle
Tesn, Zero v Mo 151 6 2fm s 3 ) ol aln
T5TA w2 1{a o0 oo #|n
1518 2 1jsm ofe|:[:R]r
wiin(z]v]c
LEGEND CONDITION COBE SYMBOLS
08 Oprearon Cuse Hiesadecnat + Buulean clsee OF
~ Nunhec ol MPY Cyuirs ¥ Bowean Exclosr OR Ko K Ly om b 3
Mawbes ot Brogram 8ytes, LR — R ——
A Pl Teansie o, N e tugn by
——— 9 B e 7 oty
Buvieas AND W Byte Zew V. Owibiow 2t congimen
5P Contents ol memoey 1ocatin passted 1 he Stack Pamier € Corytumm 7
B et A
Nate  Accumulator afdsessang wade st uctoum ave wchuded o v ol Loy IMPUIED adressing 5 S At
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TABLE 4 — INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

352
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[ wmen | DIRECT | INDEX €XTND | wpLED | il
roiNTER orcraTions  wuEmomic op |~ = |oe] “TeToel~T=o]~]= 0P ~ | = | SOOLEAN/ARITHMETIC OPERATION Wit n iz vic
Compare (ndex Reg x| 8C|3]3]9C 4|z AC|E \ 2lecis 3] | Xy M Xp- e Te .
Decrement Index Reg BEX ! ! wiag X X ‘e oo

| Decrement Stack Paur 0ES iy : letn P15 . ..
! lncrement Index Reg wx | | | 00 4|1 \ X+l oX ‘. el
Increment Stack Pntr ws Al R ‘e eje
Load index Reg 1ox | CE|31 3|DE| 4 ‘ 2|EE|6 \ 2 |Fe|5 i3, H Mo Xy (Mo 1)y e Re
Load Stack Prte tos  BE|3] 3,94 ‘ 7[aE{6 12 |BELS |3, | M -SPR. (M TSP . IR e
Store Index Reg STX } oF|s ' 2|eF |72 r;i 613 ‘ ‘ Xy cMXp M le R.®
Store Stack Patr STS | 9F 5 2fafF i 2 BFl6 |3 . SPW M SPL M) . R
Indx Reg - Stack Patc TS ' [ P38 X 1 -sp . L
! Stack Pate_ lndx Reg x| L] L {30800 ] sPe1 X |e (R
TABLE 5 — JUMP AND BRANCH INSTRUCTIONS
COND. CODE REG
RELATIVE | INDEX EXTND | IMPLIED s 4(3;2]1]0
OPERATIONS wnemomic | op] < | = o]~ | = opl ~ [ =]op[~ = BRANCH TEST o1 N[z |ViC
Branch Always BRA w42 T e o e el o]e
Branch If Carry Clear 8cC u|ay2 e ojeleio]|e
Branch If Carry Set 8Cs KR E] e e|sloiele
Branch If = Zero 2€Q zija|z o ole ojale
Branch It 3> Zero BGE wie |2 o o|eiojele
Braceh If > Zero BGT €| 4|2 e oleiofele
Branch i Higher 8HI n|ajz e eleieisle
Branch It < Zero BLE 2|4 f2 eaieia|ele
Branch If Laver Or Same BLS wlaje . e sleie
Branch 1t < Zero (184 w42 . viele
Branch I Minus am wie|2 . eiele
Branch If Not Equa) Zero BNE wfalz . o|efe
Branch 1t Overtiow Cleas 8ve |42 i . sle|s
Branch tf Overtiow Set 8vs (a2 . o|ele
Branch H us 8PL 4] 42 . alo]e
Branch To Subroutine BSR |82 \ . oo
Jump e I EIEIERE! See Specal Operanans alele
Jump To Subroutine 1SR A0| 8| 2{80)9}3 ‘ sieje
No Operation NOP nf2 1t Advances Prog. Cntr Only elels
Return From interrupt ATl L YRUE R
Return From Subroutine ATS mlsir| g ole
Software interrugt W 3 12 |1 See Speca! Oporations ofe
Wai for interrupt® WAl lef1] § ole
WAT puts Address Bus, RMW. and Data Bus i the threw.state made while VMA i eld low.
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SPECIAL OPERATIONS
JSR. JUMP TO SUBROUTINE
Maun Program

[0+ (oot ]
pp_Man Program
n HO JSH
EXTND n+ 1 | SH - Subt Addr
ne2 [ SU Sutr Agar ©
v | Next Man losts

BSR, BRANCH TO SUBROUTINE

s [ Subeos
S xR [Tt o]
. E——
sP
e Zand Ins 20y Farm o2
s Stack #C __ Subroutine
N — E
@ [ A
w P

PC Man Pragram s Siauk o Subroutine
+ [au_wsn CE] a—— vex
v [ ome ] > e [oarn [ ]
ez [ Next Man lncte | se | w2 |
KT Bt Syned Vatue we 2 burmea From o 20y and e 21y
IMP_JUMP
PC Mam Program PC Maw Program
ne1 | K Ditset nel
INOXD EXTENDED { a2
«
RTS, RETURN FROM SUBROUTINE
PC__ Subrounne s Stark PC Mo Program
s => H }
csPe2 [N
RTi, RETURN FROM INTERRUPT
g Interrupt Pragram @ Stack pr _ Man Program
s [ae- At sp n § Next Ma instr
= o A
P2 Acmite B
spe3 [ Acminca
SPod [“index Reguier (Xp!
SPe5 [ indes Regater (Xy)
spe6 [ Wn
= sPer | N

TABLE € — CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

COND. CODE REG,

[ wetico is[al3T2]1]s
OPERATIONS MNEMONIC [P | - | - B0OLEANOPERATION | H | + | N |z |v] C
Clear Carry cLe ociz ]t 0-C Telele]e]e]®
Clear Interruot Mask cu 0|21 0 olr|eje|s]e
Clear Overfiow v foalz 0y eloioinfr|e
Set Cany SEC 002t 1 o|e|e|e}als
Set (ntesrupt Mask SEI 0F 12 1.t ¢/ S|e |eie |
Set Overflaw SEv (08|21 Y elelolelsle
Acmitr & +CCR TAP 62 A -cCR —@®@
CCR » Atmitr A A3 a2t CCR A slefe]

CONOITION CODE REGISTER NOTES:

(But set 1t test»s teue and cleared otherwise)

| @av) Test Result - 10000000 7 {BMNE Test: Sign tat of mast signiticant (MS) byte = 17
2 {BACH Test Result - 000000007 8 (B V)  Test: 2's complement overtiow Irom subtraction of MS bytes?
3 (Bit€)  Test. Decimal vadur of most sgrticant 8CO Character greater than mine? $  (BitM)  Test: Resultless than rero? (812 15 = 1)

{Not cleared W prewiousty set 10 (AR Load Condition Cade Regester from Stack. (See Spacia Operations}
4 (@etV) Test Operand = 10000000 priot 10 execution? (B ) Set when interrupt accurs. H previousty set, a Nan Maskable
s (B V) Test: Qperand = 01111111 prios 10 execution? Intersupt 1s required 1o exit the wait state.
6 (BrVh  Test Set equal 1o result of NGIC atter shatt has occurred 12 (A Sevatcording 10 the contents of Accumulator A

@ MOTOROLA
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TABLE 7 — INSTRUCTION MODES AND TED EXECUTION TIMES
(Times in Mechine Cyclest
i |
H H :
55!9!35! §5¥E¥§1
dgesirtd dieiztilr
ABA . . . . - H - INC 2 . . & T e
ADC A e 2 3 4 5 s @ INS . . o 4
ADD L3 . 2 3 . 5 . . INX - » 3 . 4
AND " . 2 3 4 5 . . Jmp - - . 3 4 .
ASL 2 e o 68 7 o e JSR e e o 9 B
ASR 2 = v 6 7T s w LDA x e 2 3 4 S5
8CC a » s e e e 4 s « 3 & 5 6 .
8Ccs » s s s e s 4 LDX e 3 a4 5 & @
BEA e & e = » 4 LSA 2 e o & 7 e
BGE « & o = s s & NEG 2 e o 6 7 »
BGY e e+ e e o & & NOP e o e o .e 2
BH « o e e e a2 4 ORA x s 2 3 4 5 o
- x . 2 3 . 5 - . PSH . » . . . 4
BLE e & a = o e 4 PUL * e o » e 4
B8LS e & ® e o & & AOL 2 o s 6 7 w
T a o e s s e 4 ROR 2 e o 6 7T @
BMI . . . - - - 4 AT . - » . . 10
BNE . . . . . . 4 RYS . » . . - 5
BPL « o 8 = e e 4 SBA » e = s = 2
BRA a e o s e s 4 SBC x e 2 3 & 5 »
BSR e« ® o o o e B SEC . o e e+ s 2
8vC e s e e e e 4 SEY » s e« s e 2
BVS s s s e+ e e 4 SEV s o & s e 2
cea e e s e e 2 . STA x & e 4 5 6 e
G * e e e & 2 @ 578 * e« 5 6 7 »
Cul e * e o e 2 = STX « o 5 6 7 .
CLR 2 - . [ 7 . - sue ] - 2 3 4 S5 .
CLv. e & o o 2 . Swi a e e s e 12
CMP » . 2 3 4 5 . . TAB . . - . . 2
com 2 e o 6 7 e o TAP « o » e« & 2
cPx e« 3 4 5 & e o TBA « o o e = 2
DAA - . . - 2 . TPA 3 . . 3 . 2
DEC 2 6 7 e« o ST 2 e ¢ 6 7 =
DES . 4 . T8X « o o s = 4
DEX - . 4 . TS% e & e » e 4
EOR . S e e WA) + s+ o o o 9
NOTE Interrupt fsme 13 12 cvcles from the end of
the rnatructon being executed, except following
A WAL imteuchion Then it 5 & cycies
PIN ASSIGNMENT PACKAGE DIMENSIONS
5 CASE 715-02
1 Qvss Aeset p 40 o N {CERAMIC)
2 GHai Tsch as A See Page 185 for
EY: O3 Nchas Plastic Package dimansions.
a4 dira o2p a7 b
s qvma oeep 36 LR
6 g NMi NC.pas LI’F
7gQ8A RwWD 3a
8 {Vee oop 33 !
'R .
9 g4ao o1p 3z Lo Ly M
w0 ga o2p 3 —L—
11 gaz o3p 30 MILLIMETERS | INCHES
12gas pap 2 o] MIN_ | MAX | MIN_| MAX
13gas osh 28 [ A [50.29 [5131 | 1980 | 2020
) 14.86 | 1562 | 0.505 [ 0.615
e gas osp 27 s4 419 {01000 165 ]
15 as orb 26 D_| 038] 053 |0015]0021 NOTE:
16 qar arsh 2s | ¢ [ 07671 146 [0.030 {0055 | 1. LEADS, TRUE POSITIONED WITHIN
i BSC 0,100 BSC 0.25 mm (0.010) DIA (AT SEATING
q Alap 2e 78 {0030 ] 0.070 PLANE), AT MAX. MAT'L
18 a9 anp 2 33 | 0008 [0.013 CONDITION.
i [ 100 ] 0.1
w gar anzp 22 1+ Tivsolis3r Tt 5?2 %
20 an Vasp 21 [] 100 - 100 |
N[ 0511 157 ]0020]0060
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Table 8 provides a detailed description of the informa-
tion present on the Address Bus, Data Bus, Valid Memory
Address line (VMA)}, and the Read/MWrite line (R/W) dur-
ing each cycle for each instruction,

This information is useful in comparing actual with ex-

SUMMARY OF CYCLE BY CYCLE OPERATION

ware as the control program is executed. The information
is categorized in groups according to Addressing Mode and
Number of Cycles per i ion. {In general, i i

with the same Addressing Mode and Number of Cycles
execute in the same manner; exceptions are indicated in

pected resuits during debug of both software and hard- the table.)

TABLE 8 — OPERATION SUMMARY

I Address Mode l icym vml l RIW ]
nd Instructions | Cycles | = | Line Address Bus Line Dsta Bus
IMMEDIATE
ADC EOR 1 1 | Op Code Address 1] Op Code
RS Soa 2 | 2 | 1 | opCode Adaress + 1 1| opersnd Dats
8IT  SBC
CMP_sus
CPX 1 1 Op Code Address 1 Op Code
Los 3 2 [ 1 | OpCode Address + 1 1| Operand Data (High Order Byte)
3 1 | Op Code Address + 2 1 | Operand Dsta (Low Order Byte
DIRECT
ADC EOR 1 1 | Op Code Address 1 Op Code
aoo Loa 3 2 | 1 | opcCode Address + 1 1 | Address of Operand
BIT SBC 3 1 Addraess of Operand 1 Operand Date
CMP SUB
CPX 7 T [ Op Code Address 1 | Op Code
oS s | 2| 1| 9pCodeAdaress +1 1| Address of Operana
E) 1 | Address of Operend 1 | Operand Data (High Order Byte)
4 1 | Operand Address + 1 1| Operand Data {Low Order Byte)
STA 1 11 Op Code Address 1| Op Code
4 2 1 Op Code Address + 1 1 Destination Address
3 o Destination Address 1 Irrelevant Deta (Note 1}
4 1 Destination Address 1] Data from Accumulator
STS 1 1 | Op Code Address T | Op Code
sTX 2 | 1 | OpCode Address + 1 1| Address of Operand
5 3 o Address of Operand 1 Irrelevant Data (Note 1)
4 1 | Address of Operand G | Register Data (High Order Byte)
S 1 Address of Operand + 1 [ Register Data {Low Order Byts)
INDEXED
mP 1 1] Op Code Address 1 | Op Code
A 2 t Op Code Addrass + 1 1 Offsat
3 | 0 | tndex Register 1 | Irrstevant Date {Note 1)
4 [] Index Register Plus Oftset {w/o Carry) 1 Irrelevant Dai
ADC EOR 1 1 | OpCode Address 1 | Op Code
AD Loa 2 | 1| OpCodeAddress + 1 1| Offser
BIT  SBC 5 3 | 0 [ Index Register t | terslevant Data (Note 1)
CMP SUB 4 0 Index Register Plus Offset {w/o Carry) 1 Irrelevant Data (Note 1)
3 1 | index Register Plus Oftset 1 | Operand Dara
cPX 1 1 | Op Code Address + | Up Code
Los 2 | 1| OpcCodeAddress +1 1| ottt
6 3 | 0 | Index Register 1 | tersievant Data (Note 1)
4 | o | index Register Plus Offset (w/o Carry) 1 | trrsievant Data (Nots 1)
§ | 1 | Index Register Plus Offeat 1 | Operand Dats (High Order Byte)
6 | 1 | Index Register Plus Offset + 1 1 | Operand Dsts (Low Order Byte)

. @ MOTOROLA Semiconductor Products Inc.
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TABLE 8 — OPERATION SUMMARY {Cantinued)
| Addres Mode I Cyd-l vMma am
and Instructions | Cycies| # | Line Address Bus Line Deta Bus
INDEXED (Conti
STA 1 1| O Code Address 1 | Op Code
2| 1 | OpCodeAddress+1 1 | Offser
6 3 ] Index fAegister 1 Irrslevant Datas (Note 1)
a4 | 0 | Index Register Plus Offset tw/o Carry) 1 | trraievent Data {Note 1}
5 | © | Index Register Plus Otfet 1 | irrelevant Data (Note 1)
6 | 1| tndex Register Plus Otfset 0 | Operand Data
ASL LSR 1 1 | Op Code Address 1 | OpCode
ASR Mo 2| 1 | opcCodeAddress+ 1 1| ottser
COM ROR . 3 | 0 | index Register 1 | irretevant Data iNote 1)
ﬁfg ST 4 [} Index Register Plus Offset lw/o Carry) 1 {rrelovent Data {Note 1}
5 | 1 | index Register Plus Otfset 1 | Current Operand Date
6 o Index Register Plus Offset 1 trrelevant Data (Note 1)
7 | 10 | index Register Plus Offser 0 | New Operand Data (Note 3}
(Note
3
sTS 1 1| OpCode Address 1 | opcCoce
STX 2 1 Op Code Address + 1 1 Offsat
7 k] o Index Register 1 Irrelevant Data (Note 1)
4 | 0 | Index Register Plus Offset tw/o Carry) 1 | irretevant Data (Note 1)
§ | 0 | index Register Plus Offset 1 | irrelevant Data (Note 11
6| 1 Index Register Plus Offset 0 | Operand Data {High Order Bytel
7§ Index Ragister Plus Offset + 1 0 | Operand Data {Low Order Byte}
R 1 1 | 0p Code Address 1 | Op Code
2 | 1 | OpCode Address +1 1 | Offser
3| © | index Register 1 | iretevant Dats tNote 1)
8 a4 | 1 | Stack Pointer 0 | Return Addrass {Low Order Byte)
5 1 Stack Pointer — 1 [} Return Address (High Order Byte)
6 | 0 | Stack Pointer - 2 1 | trretevant Data iNote 1)
7 [} Index Register 1 irrelevant Data {(Note 1}
8 | 0 | index Register Plus Offset tw/o Carey) 1 | _Irrelevant Data tNote 1)
EXTENDED
e 1 1 Op Code Address 1 | OpCode
3 21 Op Code Addrass + 1 1 | Jump Address (High Order Bytel
3|t Op Code Address + 2 1 | Jump Address (Low Order Byte)
ADC EOR 1 1 Op Code Address 1 [ opcCode
:gg :.32: . 2| 1 Op Code Address + 1 1 | Address of Operand (High Order SByte)
81T SBC 3| 1 Op Code Address + 2 1 | Address of Operand (Low Order Byte)
CMP suB al Address of Operand 1 | Operand Data
cPX [ 1 Op Code Address 1 [ opcCode
o5 2| 1 | OpCodeAddress+1 1| Address of Operand (High Order Byte)
5 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte}
4 1 Address ot Operand 1 Operand Data (High Order Byte}
s | 1 Address of Operand + 1 1 | Operand Dats {Low Order Byte)
STAA ] Op Code Address 1 | opcode
sTAB 2| 1 | Opcode Address+ 1 1| Oestination Address tHigh Order Byte)
5 3| ot Op Code Address + 2 1 | Destination Address (Low Order Byte}
4 V] Operand Destination Address 1 Ircelevant Data {Note 1}
5| 1 Operand Destination Address 0 | Data from Accumutstor
ASL LSR 1 1 Op Code Address 1 [ opcoge
ef: :Sf 2| 1 Op Code Address + 1 1 | Address ot Operand {High Order Byte}
ggg ?gYR P 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
INC 4 1 Address of Operand 1 Current Operand Data
s [} Address of Operand 1 trralevant Data {Note 1}
6 | 1/0 | Address of Operend 0 | New Operand Data (Note 3)
(N;)u
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TABLE 8 — OPERATION SUMMARY {(Continued)
[ Address Mode Cycle [VMA l RIW —]
and Instructions 2 |Line Address Bus Line Data Bus
EXTENDED {C:
STS 1 1 Op Code Address 1 Op Code
STX 2 | 1 | opCode Address + 1 1| Address of Operand High Order Byte)
3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
4 ] Address ot Operand 1 Irrelevant Data iNote 1}
5 1 Address of Operand 0 | Operand Data (High Order Byte)
[ 1 Address of Operand + 1 0 | Operand Data {Low Order Bytel
JSR 1 1 Op Code Addrass 1 Op Code
2 1 Op Code Address + 1 t | Address of Subroutine (High Order Byte}
3 1 Op Code Addrass + 2 1 Adgdress of Subroutine (Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
5 1 Stack Pointer o Return Address {Low Order Byte)
6 1 Stack Pointer - 1 0 | Return Address (High Order Byte}
7 0 | Stack Pointer — 2 1 trretevant Data (Note 1)
8 0 Op Code Address + 2 1 Irealevant Data (Note 1}
9 1 Op Code Address + 2 1 Address of Subroutine (Low Order Byte)
INHERENT
ANHERL
ABA DAA SEC 1 1 Op Code Address 1 Op Code
Aoy DEC sE 2 | 1 | OpCode Address + 1 1 | Op Code of Next Instruction
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM_SBA
DES 1 1 Op Code Address 1 Op Code
oex 2 | 1 | OpCode address+1 1| Op Code of Next Instruction
INX 3 ] Previous Register Contents 1 Irrelevant Data (Note 1)
4 O__| New Register Contents 1 Ierelevant Data (Note 1}
PSH 1 1 Op Code Address 1 Op Code
2 1 Op Code Acdress + 1 1 | Op Code of Next Instruction
K} 1 Stack Pointer o Accumulator Dats
a O | Stack Pointer — 1 1 | Accumulator Date
PUL 1 1 Op Code Address 1 | OpCode
2 1) Op Code Address + 1 1 Op Code of Next Instruction .
3 [} Stack Painter 1 Irrelevant Data {Note 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 | Op Code of Next Instruction
3 [ Stack Pointer 1 {rrelevant Data {Note 1)
4 0 New Index Register 1 Irrelevant Data {Note 1}
TXS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 index Register 1 Irrelevant Data
4 [ New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 | OpCode
2 1 Op Code Address + 1 1 irrelevant Data (Note 2)
3 [ Stack Pointer 1 trretevant Dats (Note 1)
4 1 Stack Painter + 1 1 Addrass of Next Instruction (High
Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction {Low
Order Byte)

@ MOTOROLA Semiconductor Products Inc.
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TABLE 8 — OPERAYION SUMMARY (Continusd)}
Address Mode l ‘cvd- lVMA‘ l AW J
and Instructions Cycles Address Bus Line Data Bus
INHERENT (Conti
WAI 1 1 [Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next instruction
3 1 | Stack Pointer 0 | Return Address (Low Order Byte]
4 1 |Stack Pointer — 1 0 | Return Address (High Order Byte)
9 5 1 {Stack Pointer — 2 0 | Index Register (Low Order Byte)
[ 1 | Stack Pointer — 3 0 | Index Register (High Order Byte}
7 1 | Stack Pointer — 4 0 | Contents of Accumutator A
8 1 [Stack Pointer - S 0 | Contents of Accumulator 8
9 1 | Stack Pointer — 6 [Nots 4) 1 | Cantents of Cond. Code Register
AT 1 1 [ Op Code Address 1 [ Op Code
H 1 | Op Code Address + 1 1 [ trretevant Data (Note 2)
3 0 | Stack Pointer 1 | trretevant Data (Note 1)
4 1 |Stack Pointer + 1 1 | Contents of Cond. Code Register trom
Stack
1 § | 1 {Stack Pointer + 2 1 | Contents of Accumulator B from Stack
6 1 | Stack Pointer + 3 1 | Contents of Accumulator A from Stack
7 1 | Stack Pointer + 4 1 | Index Register from Stack [High Order
Byte)
8 1 | Stack Pointer + 5 1 | Index Register from Stack {Low Order
Byte}
9 1 | Stack Pointer + 6 1 | Next tnstruction Address from Stack
{High Order Byte)
10 1 | Stack Pointer + 7 1 | Next instruction Address from Stack
(Low Order Byte)
swi 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Aodress + 1 1 { irrelevant Data (Note 1)
3 1 | Stack Pointer 0 | Return Address {Low Order Byte}
4 1 | Stack Pointer — 1 0 | Asturn Address (High Order Byte)
5 1 | stack Pointer - 2 0 | index Aegister (Low Order Byte}
12 6 t | Stack Pointer — 3 0 | Index Register {High Order Byte)
7 t [ Stack Pointer — 4 0 | Contents of Accumulator A
8 1 | Stack Pointer - 5 0 { Contents of Accumulator B
9 1 | Stack Pointer — 6 0 | Contents of Cond. Code Register
10{ O |Stack Pointer — 7 t | trrelevant Data (Note 1)
n 1 | Vector Address FFFA (Hex) 1 | Address of Subroutine (High Order
Byte}
2 1 | Vector Address FFFB (Hex) 1 :ddv’ns of Subrouting {Low Order
vie
RELATIVE
BCC BHI BNE 1 1 | Op Code Addrass 1 | Op Code
R Y . 2| 1 |opcode Adaress + 1 3 | Branch Offser
8GE BLT BVC 3 ¢ | Op Code Address + 2 1 | trrelavant Data (Note 1)
6GT emi_8vs 4| 0 |Branch Address 1 | irestovant Data thote 1)
BSA 1 1 | Op Code Address 1 ] Op Code
2 1 | Op Code Address + 1 1 | Branch Offset
3 0 | Return Address of Main Program 1 | trraievant Data (Note 1)
8 4 1 { Stack Pointer 0 | Return Address (Low Order Byte}
5 1 | Stk Pointer — 0 | Aeturn Address (High Order Byte}
[ 0 | Stack Pointer — 2 1 | Irratevant Data (Note 1)
7 -0 | Return Address of Main Program 1 { lrretevant Data (Note 1)
8 0 | Subroutine Address 1 | Irrelevant Data (Note 1)
Note 1.  If device which is addretsed during this cycle uses VMA, then the Dats Bus will go 10 the high impedence three-state condition.
Depending on bus capacitance, dsta from the previous cycle may tained on the Data Bus.
Note 2. Data is ignored by the MPU.
Note 3. For TST, VMA =0 and Operand data does not change
Note 4. While the MPU is wai for the interrupt, Bus Au.lmln will go high mmcnmg the following states of the control lines: VMA is
low; Address Bus, R/W, and Data Bus are ail in the high it
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Semiconductors

BOX 20912, PHOENIX ARIZONA 85036

- MCM6810A4

(010 70°C: Lor P Suthix)

MCMG810AC

(-40 10 85°C. L Suffix only)

128 X 8-BIT STATIC RANDOM ACCESS MEMORY

The MCM6810 1s a byte-orgamzed memory designed for use n
bus-organized systems. It )s fabricated with N-channel sithcon gate
technology. For ease of use, the device operates from a single power
supply, has compatibility with TTL and OTL, and needs no
clocks or refreshing because of static operation

The memory 1s compatible with the M680Q Microcomputer
Family, providing random storage i byte increments. Memory

expansion is provided through multipte Chip Select inputs

® Organized as 128 Bytes of 8 Buts

Static Operation

8 Directional Three-Siate Data input Qutput

Six Chip Select Inputs (Four Actrve Low, Tuio Active Hight
Single 5 Voit Power Supply

TTL Compatrble

Maximum Access Time = 350 ns - MCM6810AL 1
450 ns - MCM68I10AL

® o 0 0 0 0

MOsS

(NCHANNEL  SILICON-GATE}

128 X 8-BIT STATIC
RANDOM ACCESS MEMORY

P L SUFFtX
CERANIC PACKATE

cast s,

P SUFFIX
NOT SHOWN
Cast on

PLASTIC PACKAGE

PIN ASSIGNMEN T+

1m0 vcchza
2 oo aop 23
agor arfp 22
ABSOLUTE MAXIMUM RATINGS 'seenote 1- adoz azh2e
Rating Symbol Value Unnt 5 o3 a3p 20
Suppty Vortse vee 03t -70 Vdc 6 Qo4 ad4p9
Tnput Voitae Vin 03070 vdc 7 os asphe
Operating Temperature Hange Ta Ot 70 oc egos asfr?
9 go’ Rwpe
Stocsge Temperature Hange Ty -65 10 *150 °c

10 gcso css1s
NOTE 1 Permanent device dumage may oucur ! ABSOLUTE MAXIMUM RATINGS are pr v dess csapa

ceeded Functonal operation should be restrcted 1o RECOMMENDE D. OPERAT ]
ING CONDITIONS €xposure 10 hugher than recommended voltages 1or ex tended cs3p3

B s 0 Lme Cauld atfect device retigtaiity

L 12 gesz

M6800 MICROCOMPUTER FAMILY
BLOCK DIAGRAM

MC6800
Mrcronrocessor |
-

i ——

+- f——t Peaa Oniy |
—_—

MCMEB30A
Read Only

—
~—— emony

intertace
aqspter

r~~;‘ -

T rertace
‘—‘.1 Adaprer .

r 1
Anaress Data
us o Bus

MCMGE10A RANDOM.-ACCESS MEMORY
BLOCK DIAGRAM.

Memory Data
@—a Dots
‘Matrix Butters Bus
(1024 x B) |
Sefection
and Control

1

Memory Adcress
and Controt
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MCM6810A

RECOMMENDED DC OPERATING CONDITIONS

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Fult operating voltage and temperature range uniess otherwsse noted ]

Parameter Symbol Min Nom Max Unit
Supply Voitage Vee 475 5.0 525 vdc
Input High Voltage ViK 20 - 526 vdc
input Low Voltage Vie 03 08 Vdc
DC CHARACTERISTICS
Characteristic Symbot Min Typ Max Unit
Input Cutrent {Aq, RIW, CSp, CSal T 25 uAdc
Vi 0t0525VI
Qutput High Voltage VOH 24 vdc
HoH = -205 4A)
Output Low Vottage VoL 04 Vde
tor - 1.6 mAl
Dutput Leakage Current {Three Statel Lo 10 uAdc
(CS-08VorCS=20V, Vo, :04V1024V)
Supply Current icc mAdc
Ve = 5.25 V, all other pins grounded, T = 0°C1 MCMEB10AL 70
MCM6810AL1 80
CAPACITANCE it 10MH2. Ty 25°C. periodically sampled
cather than 100" tested ) This device contams crcuitry 10 protect (he
inputs agains damage due 10 high static voltages
Characteristic Symbol Man Onit or elecinic ields, however, 1t s advised that
normat be taken 10 avoid apphication
Input Capacitance Cin 15 of ot any voltage highes than maximum rated voit
Output Copacnance Cour 125 oF 2ges 10 this high-impedance carcurt
BLOCK DIAGRAM
f—a 2 OO
a0 23 fe—e3 O
ar 22 ba—e= 2 02
A A | Memory Loy gl
2 2 Address Matrx 3 State —e5 03
A3 20— p—s  Butler pe—e=c Da
Decode (128 x 8
Ad 19— pet——ay pe— 7} DS
As 18 — —— ho—e=3 D6
A6 - 17 ——] ot po—a o o7
Ttss 15
CSa s
cs3 13 Memory
s Contro)
&2 12
TSy vee Pin24
Gna  Pin 1
cso 10 16 Read Write

E— @ MOTOROLA Semiconductor Products Inc. —————— |




l MCM6810A

AC OPERATING CONDITIONS AND CHARACTERISTICS
{Full operating voitage and temperature unless oTher wise noted |

FIGURE 1 — AC TEST LOAD

50V
R =25k
AC TEST CONDITIONS
MMD§6 150
Candition Value Test Pount or Equiv
Input Pulse Levels 08Vw20V
input Rise and Fall Times 20 ns 130 e T MMD 7000
Output Load See Figure 1 “inciudes g or Equiv
Capacitance
READ CYCLE
MCMEB10AL MCM6810AL 1
10AL 1
Symbal Min Max Min Max Un
Read Cycle Time cyciRl 450 350 -~ ns
Access Time tace - 450 - 350 ns
Address Setup Time tas 20 - 20 - ns
Address Hold Time tan [ - 0 - ns
Data Delay Time (Read} tDDR - 230 - 180 ns
Read 0 Select Delay Time tRCs 0 0 ns
Data Hold from Address ‘DHA 10 - 10 - ns
Output Hotd Time [ 10 - 10 - ns
Data Hold from Write DHW 10 80 10 60 ns
READ CYCLE TIMING
tevetRY -
tacc -
|
Address M :
— tag , — tap
. .
20v T
s 08 v / \
cE 20v 4
cs o8 v /
tAcs L’
RIW 20v @
l— tora —=
e T e iind
DHW
74V - >.__.
Data Valid

- @ MOTOROLA

Semiconductor Products Inc.

Note: CS and CS can be ensbled for consecutive
read cycles provided R/W remaing st V(.

361



MCM6810A

_WR|TE CYCLE
MCME810ALY
Characteristic Symboi Min Max Unit
Write Cycle Time teyciW) 350 - s
Address Setup Time tas 20 ~ ns
Address Hoid Time TAH 0 - ns
Chip Setect Pulse Width s 250 = ns
Write to Chip Select Delay Time wes o - 0 - ns
Data Setup Time (Write) 1OSW 190 - 150 - ns
Input Hold Time [ 10 - 10 = as

WRITE CYCLE TIMING

<s

& NWW/‘

Ty X
0.8V W 20V N\

0.8V /‘

wcs r-—

R //// 0.8 v

AN

tosw tH

o LTI

Data in Stanle

ol
<<

Note CS and CS can be enabled 1or consecutive write Cycles
provided R/W a¢ strgbed 10 V) Detore or coincident
with the Address change, and remains high for time tag.

PACKAGE DIMENSIONS
CASE 71602 See Page 165 tor
Plastic Pack sge dimansions.

o : -—‘-
? {CERAMICY
[
J NOTE: MILLMETERS] _INCHES ]
f ) 1. LEADS TRUE POSITIONED WITHIN DiM] MiN_{ MAX ] MAX
i 1 0.25mm (0.010) DIA (AT SEATING { A 29971
\ a U PLANE) AT MAXIMUM MATERIAL LIMEY. ]
CONDITION 308
——F D 038
. i
) 75
1 / = 7%
| - . 20
[ l:! SEATING /' . 54
D PLANE G— ~— a4y Mt 0]
[ PPN, M| -
N | 8%t

- -~ @ MOTOROLA Semiconductor Products Inc.




MC6820

(0 t0 70°C. L or P Sutfix)

Semiconductors MC6820C

BOX 20912, PHOEN'X ARIZUNA 85036

MOTOROLA

{-40 10 85°C; L Suttix only)

PERIPHERAL INTERFACE ADAPTER (PIA)

MOS
The MC6820 Peripheral Intertace Adapter provides the universal o
means of interfacing peripheral equipment to the MC6800 Micro- (NCHANNEL, SILICON-GATE}
processing Unit {(MPU}. This device 15 capable of interfacing the MPU
to peripherals through two 8-bit bidirectional peripheral data buses
and four control hines. No external logic is required for interfacing to
maost peripheral devices

The functional contiguration of the PIA is programmed by the PERIPHERAL INTERFACE
MPU during system inutialization. Each of the peripheral data lines ADAPTER
can be programmed to act as an input or output, and each of the
four control/interrupt fines may be programmed for one of severat
control modes. This altows a high degree of flexibility in the over-all

operation of the interface.

® 8-Bit Bidirectional Data Bus for Communication with the MPU

® Two Bidirectional 8-Bit Buses for Interface 1o Peripherals
® Two Programmable Controt Registers
® Two Programmable Data Direction Registers
® Four Indwidualiy-Controlled Interrupt Input Lines; Two Usable
as Peripheral Control Qutputs
® Handshake Controt Logic for Input and Qutput Peripheral
Operation sure
L SUFFIX
® High-) dance 3-State and Direct Transistor Drive Peripheral
o b CERAMIC PACKAGE
s CASE 715
Program Controiled interrupt and Interrupt Disable Capability
CMOS Drive Capability on Side A Peripheral Lines
NOT SHOWN P SUFFIX
PLASTIC PACKAGE
CASE 711
ME800 MICROCOMPUTER FAMILY MC6820 PERIPHERAL INTERFACE ADAPTER
BLOCK DIAGRAM BLOCK DIAGRAM
MC6800
Microprocessor — ’__A_
! Bufters
Data Peripheral
Fesd Only Dets Bus «8—| Bus and Ly g "V
q Memary Buffers Data
Register
Random
Access
b Memory
MCS'BZ!
——
—:| Adsoier oo Selection Bufters
o d and Peripheral

an
Contral Control Data Dats
s e ] L

Adaress Data
Bus aus




HC%ZO

ELECTRICAL CHARACTERISTICS (Veg = 5.0V :5%, Vs = 0. T = 0 to 709C unless otherwise noted.)

Characteristic Symbol Min Typ Max Unit
(nput High Voltage Enable | V|4 Vgg + 2.4 - Vee Vde
Other Inputs Vgg + 2.0 — vce
Input Low Voitage Enable | V(L Vgg -0.3 - Vsg + 04 Vde
Other Inputs Vgg -0.3 - Vgs + 08
Input Leakage Current R/W,Reset, RSO, RS1, CS0, C§1,TS2, CAT, lin - 1.0 25 nAdc
Vin = 010 5.25 Vdc) CB1, Enable
Three-State (Off Statel Input Current 0007, PBO-PB7,CB2 | ITs1 2.0 10 uAde
Vin =04 1024 Vdc)
Input High Current PAQ-PAT, CA2 H -100 -250 - uAdc
(V|H = 2.4 Vdc
Input Low Current PAO-PAT, CA2 [ 10 -16 ‘mAdc
(VL = 0.4 Vde)
Output High Voltage Von Vdc
UIoad = -205 xAdc, Enable Putse Width = 26 s Do-D7 Vgs+ 24 - -
(ILoag = ~100 kAdc, Enable Pulse Wigth - 25 us) Other Outputs Vss t 2.4 - -
Output Lows Voltage VoL Vgg + 04 Vdc
(ILoao - 1.6 mAdc. Enable Pulse Width - 26 us)
Output High Current (Sourcing! 1oH
(VoH - 24 Vdc) 00-D7 -205 - uAde
Other Outputs -100 - uAde
(V@ = 1.5 Vdc, the current for driving other than TTL, e.q..
Darlington Base) PBO-PB7. CB2 1o -25 -10 mAdc
Output Low Current (Sinking} oL 16 - - mAdc
(Vg - 0.4 vdc)
Output Leakage Current {Off State! {RQA.IRGB | ILoM 1.0 10 wAdc
(Vou = 24 Vdc!
Power Dissipation [ 650 mw
Tnnut Capacitance Enable | Cin - 20 pF
(Vin = 0, Ta = 259C, f = 1.0 MHz) 00-07 - 125
_ PAQ-PA7, PBO-PBT. CAZ, CB2 - - 10
R/W, Reset, RS0, RS1, CS0, CS1,CS2, CA1, CB1 - - 75
Output Capacitance VRQA, IRGB | Cout - 5.0 oF
(Vin =0, Ta = 259C, 1 = 1.0 MH2) PRO-PB7 - 10
Peripheral Data Setup Time {Figure 1] POSY 200 - - as
Delay Time, Enable negative transition to CA2 negative transition 1CA2 - 1.0 s
{Figure 2, 3)
Delay Time, Enable negative transition to CAZ2 positive transition tRS1 - 1.0 us
(Figure 2)
Rise and Fall Times for CA1 and CA2 input signals (Figure 3} At - 1.0 s
Delay Time from CA1 active transition 10 CA2 positive transition tRS2 - - 20 Hs
(Figure 3}
Delay Time, Enable negative transition to Peripheral Data vatid tPpW - - 10 us
(Figures 4, 5}
Delay Time, Enable negative transition to Peripheral CMOS Data Valid CMOS - - 20 us
Vg — 30% Vg, Figure 4; Figure 12 Load c) PAQO-PAT CA2
Delay Time, Enable positive transition to CB2 negative transition B2 - 1.0 I’
(Figure 6, 7)
Delay Time, Peripherat Data valid to CB2 negative transition toc 20 - - ns
{Figure 5}
Delay Time, Enable positive transition to CB2 positive transition [ - 1.0 us
(Figure 6)
Rise and Fall Time for CB1 and CB2 input signals {Figure 7} . t¢ - - 1.0 us
Detay Time, CB? active transition to CB2 positive transition tRS2 - - 2.0 us
{Figure 7}
Interrupt Aetease Time, IRGA and IRQB (Figure 8) tR - - 1.6 us
Reset Low Time* {Figure 9} tRL 2.0 - - s

*The Reset line must be high a minimum of 1.0 us before addressing the PIA.

@ MOTOROLA Semiconductor Products Inc.



l MC6820

]

MAXIMUM RATINGS

Rating Symbol Value Unit This device contans cwcuitry 1o protect the
Supply Voltage Vee —0.310+7.0 Vde Npurs against damage due to high static volt
Tnput Voltage Vin 031070 | vdc ages ar electric tields, however, 1t is advised that
Operating Temperature Range Ta Oto+70 °c ,"mma,l o ool
10n of any voltage higher than maximum rated
Storage Temperature Range Tstg —55 10 +150 o¢ voitages to this high impedance circuit
Thermal Resistance 04 825 SCiw
BUS TIMING CHARACTERISTICS
READ (Figures 10 and 12}
Characteristic Symbol Min Tve | Max Unit
Enable Cycle Time teycE 10 T - us
Enable Pulse Width, High PWEN 0.45 - 25 us
Enable Pulse Width, Low PWEL 0.43 - — s
Setup Time, Address and R/W valid (o Enable positive transition tas 160 - — ns
Data Delay Time 0DR = - 320 ns
Data Hold Time [ 10 = ns
Address Hold Time TAH 10 - ns
Rise and Fall Time for Enable input e, tES B 25 ns
WRITE (Figures 11 and 12}
Enable Cycle Time teycE 1.0 - - us
Enable Pulse Width, High PWER 0.45 - 75 s
Enable Pulse Width, Low PWEg( 043 - - s
Setup Time, Address and R/W valid to Enable positive transition tAS 160 = - ns
Data Setup Time 1oSW 195 B - ns
Data Hold Time ) 10 = = ns
‘Address Hold Time TAH 10 = = s
Rise and Fall Time for Enable input tEr. 1S B — 25 ns

FIGURE 1 -~ PERIPHERAL DATA SETUP TIME
{Read Mode}

FIGURE 2 ~ CA2 DELAY TIME
(Read Mode; CRA5 = CRA-3 = 1, CRA4 = 0}

PAQPAT 20V
PBOPE7 08V

E

nable

/_i/_
04V

~~{tPDsY) wa2 t=—tRS1"
24V
Enable ca2 Ja av
* Assumes part was deselected during
the previous € pulse.
FIGURE 3 — CA2 DELAY TIME
{Read Mode; CRA-5 = 1, CRA-3 = CRA-4 = 0)
Enable 0av
.y
7 70V
car 0.8 v
[ cA2 RS2 -/ =
caz

MOTOROLA Semiconductor Products Inc.
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|

FIGURE 4 — PERIPHERAL CMOS DATA DELAY TIMES
{Write Mode; CRAS = CRA-3 = 1,CRA4 = 0]}

FIGURE S — PERIPHERAL DATA AND C82 DELAY TIMES
(Write Mode; CRB-6 = CR8-3 = 1,CR84 = 0}

Enable 04V
temMOsS. -
Pwi I <esaVeg -30% Ve
PAO-PAT ZaV
CA2 0.4 V

Ensble 0.4V
POw
v
Pa0-PB? 0.4 v
oc
cB2 2.4 V!

CB2 Nots: C82 goes low as e result of the
posttive transition of Enable.

FIGURE 6 — CB2 DELAY TIME
(Write Mode; CRB.5 » CRB-3 = 1, CRB4 = 0}

FIGURE 7 — CB2 DELAY TIME
(Write Mode; CRB.S = 1, CRB-3 = CRB4 = 0)

*Asumes Dart was dessiected during the
previous E pulse.

Enable 'Z—V-\#
—/ A

*Assumaes part was desslacted during
any previous € pulse,

FIGURE 8 — IRQ RELEASE TIME

FIGURE 9 — RESET LOW TIME

Enable

fo——NR

TR ey

* Yosv

*The Resat line must be 3 V1 for 8 minimum of
1.0 us before sddressing the PIA.

FIGURE 10 — BUS READ TIMING CHARACTERISTICS
(Reed Information from PIA)

FIGURE 11 — BUS WRITE TIMING CHARACTERISTICS
) (Write Information inte PIA)

g———‘cvcg—.‘
tAs = we
lePWE =
Ensble EX 0.4 VEL
= tEe P=tef
DDA |- "
RS, CS, RW X 20V
08V
= betan
P
24V
Oata Bus 04V

teyeE
maitid fePWe o]
74V v
Enable 0.4V
Ty - ety
".DSW

Data Bus
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mMC6820

FIGURE 12— BUS TIMING TEST LOADS

C= 130 pF for DO-D7

= 30 pF for PAO PA7, PBO.PB7, CA2, and CB2
A= 11.7 k{l for DO D7

= 24 k{2 for PAO-PAT7, PBO PB7, CA2 and CB2

Load A Load B Load C
{D0-D7, PAO-PA7, PBO-PB7, CA2, CB2) (IRQ Only) {CMOS Load)
sov sov
RL=25 K
3k
Test Point MMDB150

or Equiv. Tast Point Test Polnt oj
MMD 7000 100 of 30pF
or Eaquiv I

The PIA interfaces to the MC6800 MPU with an eight-
ot bi-directionat data bus, three chip select lines, two
register select lines, two interrupt request lines, read/write
line, enable hine and reset line. These signals, in conjunc
tion with the MC6800 VMA output, permit the MPU to
have compliete control over the PIA. VMA should be uti-
lized in conjunction with an MPU address line into a chip
sefect of the PIA.

PIA Bi-Directional Data (D0-D7)  The bi-duectional
data lines (DO D7) allow the transfer of data between the
MPU and the PJA. The data bus output drivers are three
state devices that remain in the high-impedance (ot} state
except when the MPU pecforms a PLA read operation. The
Read/Wiite line 15 in the Read (high! state when the PIA
is selected tor a Read operation

PIA Enable {E) - The enable pulse, E. 15 the only
nming signal that 1s supplied to the PIA. Timing of all
other signals 1s referenced to the leading and trailing edges
of the E pulse. This signal will normatly be a decvative of
the MCE800 ¢2 Clock

PIA Read/Write (R/W) - This signal 1s generated by
the MPU to contro! the direction of data transfers on the
Data Bus. A low state on the PIA Read/Write line enables
the input buffers and data is transferred from the MPU to
the PIA on the E signal if the device has been selected. A
high on the Read/Write line sets up the PIA for a transfer of
data to the bus. The PIA gutput butfers are enabled when
the proper address and the enable pulse E are present.

Reset — The active low Reset line 1s used to reset
all register bits i the PIA 10 a logical zero (low). This line
can be used as a power-on reset and as a master reset during
system operation

L @ MOTOROLA Semiconductor Products Inc.

PIA INTERFACE SIGNALS FOR MPU

PIA Chip Select (CS0, CS1and CS2) — These three input
signals are used to select the PIA. CSO and CS1 must be
tigh and TSZ must be low for selection of the device.
Data transfers are then performed under the control of the
Enable and Read/Write signals. The chip select lines must
be stable for the duration of the E pulse. The device is
deselected when any of the chip selects are in the
inactive state.

PIA Register Select (RSO and RS1) — The two register
select lines are used to select the various registers inside
the PIA. These two lines are used in conjunction with
internal Control Registers to select a particular register
that is to be written or read.

The register and chip select lines should be stable for
the duration of the E pulse while in the read or write cycle.

Interrupt Request {IRQA and IRQB} — The active low
interrupt Request lines (TROA and 1RQB) act to interrupt
the MPU either directly or through interrupt priority
circuitry. These lines are “open drain” {no load device on
the chip). This permits all interrupt request lines 1o be
tied together in a wire-OR configuration,

Each Interrupt Request line has two internal interrupt
flag bits that can cause the Interrupt Request line to go
low. Each flag bit is associated with a particular peripheral
interrupt line. Also four interrupt enable bits are provided
in the PIA which may be used to inhibit a particular
interrupt from a peripheral device.

Servicing an interrupt by the MPU may be accom-
plished by a software routine that, on a prioritized basis,
sequentially reads and tests the two control registers in
each PIA for interrupt flag bits that are set.

The interrupt flags are cleared {zeroed) as a result of an
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EXPANDED BLOCK DIAGRAM

vee = Pin
Vgg = Pin

cso
cs1
cs2
RS0

20
1

22
24
23
38

Data Bus
Butters
ioee!

Bus Input
Rogister
iBIR}

Control

Input Bus

[

Control
Register A
(CRA)

Output Bus

Output
Register A
(ORA)

Qutput
Register B
(ORB)

Interrupt Status
Control &

Data Diraction
Aegister A
(DDRA}

40 cal

39 CAZ

Pariphars
interface
A

Peripharal
Interface

Control
Register B
icre)

__ﬁ___

Data Direction
Fegister 8

iboRa)

!

2 PAD
3 Pal
a PAZ
5 PA3
6 PA4
7 PAS
8 PAG
9 PAT

Hi

fe—e- 10 PBO
= 11 PBY
fe—w- 12 PE2